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Recent advances in genetic and imaging techniques have

established the zebrafish as an excellent model to study

behaviour. Their short development time, compact size and

ease of imaging deep within the brain have allowed the neural

circuits that control behaviour to be mapped. Increasingly

sophisticated optogenetic tools and virtual world setups allow

larval fish to be manipulated and monitored in real time

[1,2��,3,4,5]. Adult zebrafish are also emerging as a powerful

model for behaviours including aggression, anxiety, learning,

memory and shoaling [6,7,8��,9�]. In this review we will highlight

recent studies in which zebrafish have contributed to our

understanding of behavioural genetics.
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Introduction
Recent advances in genetic and imaging techniques have

established the zebrafish as an excellent model to study

behaviour. Their short development time, compact size

and ease of imaging deep within the brain have allowed

the neural circuits that control behaviour to be mapped.

Increasingly sophisticated optogenetic tools and virtual

world setups allow larval fish to be manipulated and

monitored in real time [1,2��,3,4,5]. Adult zebrafish are

also emerging as a powerful model for behaviours in-

cluding aggression, anxiety, learning, memory and shoal-

ing [6,7,8��,9�] (Table 1). In this review we will highlight

recent studies in which zebrafish have contributed to our

understanding of behavioural genetics.

Prey capture
Zebrafish larvae start to hunt prey such as paramecia from

around 5-days post fertilisation. Prey capture is achieved

through a series of stereotyped manoeuvres which are

triggered when prey enters the field of view. The first

movement is eye convergence followed by a calibrated

series of J-turns — flexions of the caudal tail that orientate

the fish towards its target. The sequence is completed by a

capture swim [4]. Hunting behaviour can be measured by

placing larvae in a virtual environment where films are used

to trigger tail and eye responses [4]. Small moving objects

such as paramecia are detected by the optic tectum which

responds visuotopically to moving (but not static) stimuli

[10], as has been demonstrated using the genetically

encoded calcium indicator GCaMP7a [11�]. GCaMP is a

modified version of GFP that increases in brightness upon

entry of Ca2+ into the cell [12]. The genetic basis of

GCaMP7a enables it to be restricted to specific populations

of cells. The optic tectum projects to a pair of neurons in

the lateral part of the nucleus of the medial longitudinal

fasciculus (MLF) called MeLr and MeLc [13]. Laser

ablation of the MeLr or MeLc reduces the ability of larvae

to capture prey suggesting this behaviour is largely driven

by MLF activation [13]. The combination of fixed-loop

virtual environments and genetically based calcium

indicators permits the investigation of how objects in

the visual field are processed at all levels of the central

nervous system. This setup could now be used to screen for

novel mutants that show aberrant hunting behaviour.

Lateralised behaviour
Lateralisation, asymmetries of body viscera, brain areas

and behaviour is a widespread property of many

vertebrates including fish. In the brain, lateralisation

has the potential to specialise neural circuit function

which may give rise to new behavioural phenotypes

[14]. In zebrafish the left and right habenulae (Hb) of

the epithalamus exhibit prominent asymmetries that are

established by left-sided expression of Nodal pathway

genes during development [15]. The Hb receives inputs

from the olfactory bulb and retina and projects to the

periaqueductal grey matter via the interpeduncular

nucleus (IPN) [14]. Zebrafish harbouring a naturally

occurring polymorphic mutation in the maternally

expressed gene mother of snow white (msw) [16] show

parallel alterations in body symmetry and eye usage when

biting an object [17]. Similarly, ENU (N-ethyl-N-nitro-

sourea; a chemical mutagen)-induced frequent situ inversus
( fsi) mutants show concordant left-biased or right-biased
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localisation of the pineal gland and eye usage, and differ-

ences in Hb size [18]. Left-handed fsi mutants have a

greater latency to enter a novel compartment compared to

right-handed animals demonstrating a range of beha-

viours connected to asymmetry [18]. Laterality is also

seen at the neural circuit level. The right lateral dorsal Hb

(ldHb) responds to odours and projects to the dorsal IPN

whereas the left ldHB is light-activated and projects to

the ventral IPN, as shown using the calcium indicator

GCaMP5G [19��]. Experimental manipulation of the Wnt

signalling pathway (by subjecting tailbud-stage embryos

to a short cold pulse or by using the pharmacological

inhibitor IWR-1) [20] can force the Hb into a double-right

or double-left configuration and trigger loss of brain

responsiveness to one of these stimuli [19��]. Intriguingly,

odour presentation appears to activate distinct ensembles

of Hb neurons that combine with spontaneous neural

activity to switch between different types of behavioural

output [21��]. In summary, a combination of mutant

analysis and cutting-edge tools has begun to unravel

the genetic and neural basis of lateralised behaviours,

demonstrating a link between asymmetry at the level of

brain anatomy and behaviour. Elucidation of the molecu-

lar identity of both fsi and msw would shed further light

upon the genetic cascades underlying this process.

The developmental basis of behaviour
Alterations to the early stages of neural development can

trigger long-lasting behavioural and neurochemical

changes, which may be linked to the expression of some

neurological disorders [22]. Comparison of six zebrafish

strains has uncovered large variability in locomotion levels

throughout juvenile development indicating that beha-

vioural ontogeny is influenced by both genetic and

environmental factors [23]. The orphan nuclear receptor

NR4A2 plays a role in dopamine (DA) progenitor commit-

ment by regulating the DA synthesis enzyme tyrosine

hydroxylase (TH) and controlling the differentiation of

DA neurons in the posterior tuberculum, telencephalon,

preoptic area and pretectum. nr4a2 morphant fish (lacking

nr4a2 activity during the first 3–4 days of embryonic de-

velopment [24]) show persistent hyperactivity, suggesting

a critical role for NR4A2 in tuning the neural circuits that

control locomotion [25]. In contrast to this, TH morphant

fish exhibit normal levels of activity at adult stages, but

increase bottom-dwelling and freezing (anxiety-like phe-

notypes) in a novel environment [26]. Methylphenidate

(MPH), a DA and noradrenaline (NA) reuptake inhibitor

used to treat attention-deficit/hyperactivity disorder

(ADHD), increases the levels of DA and NA at the

synapse. Acute MPH exposure during embryogenesis

reduces the time adult fish spend at the bottom of a novel

tank and impairs choice accuracy in a 3-chamber learning

task [27]. These findings indicate that transient early

alterations to dopaminergic neurotransmission can trigger

long-term impairments in behavioural plasticity.

Fear conditioning
The habenula (Hb) is a part of the epithalamus that

projects to brain stem nuclei including the raphe nucleus

and ventral tegmentum. The subdivisions of the habe-

nula are similar in zebrafish and other species: the dorsal

and ventral Hb (dHb and vHb) of fish correspond to the

mammalian medial Hb and lateral Hb respectively [28].

Inhibition of the lateral subnucleus of the dHb by expres-

sion of the tetanus toxin light chain (TeTxLC) does not

induce changes in locomotion but increases freezing

indicating that the Hb is important for the response to

fear [29]. Larval zebrafish learn to avoid a light when

paired with a mild shock but are unable to learn when

submitted to an inescapable shock. Photobleaching Hb

afferents or expressing TeTxLC in the dHb can block

this avoidance response, suggesting that abnormalities in

Hb function may contribute to anxiety disorders [7].

Zebrafish exposed to alarm substance (AS) also show a

fear response that includes erratic movements and freez-

ing. Intercranial administration of the neuropeptide Kis-

speptin decreases the behavioural response to AS.

Furthermore, inactivation of Kiss-Receptor1-expressing

neurons using Kiss1 peptide conjugated to saporin, a

ribosome inactivating protein, both reduces Kiss1 immu-

noreactivity and c-fos mRNA in the habenula and

decreases the AS-evoked fear response reinforcing the

role of Kisspeptin in this behaviour [30]. Although these

studies have already demonstrated a role for the Hb in

fear, a complete description of the genes and signalling

pathways that underlie this behaviour now needs to be

produced.
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Table 1

Description of the characteristic postures exhibited by zebrafish during different behavioural tasks. Key references describing these

behaviours are included.

Behaviour Behavioural posture References

Aggression Biting, thrashing tail and chasing opponent/pushing mirror [6,37,41]

Developmental alterations

to behaviour

Changes to locomotion, freezing, bottom-dwelling and choice accuracy in a learning task [20,21��,22]

Fear conditioning Erratic swimming, freezing and learned avoidance [23–25]

Lateralised behaviour Eye usage when biting an object, latency to enter a novel compartment, response to odour

or light

[15–17]

Learning and memory Short-term memory, classical and operant learning, associative conditioning [2��,8��,28]

Social behaviour Shoaling, preference for conspecifics, kin [9�,31,33]
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Learning and memory
Zebrafish display learning and memory capabilities and

both short and long-term memory formation have been

evaluated in this species [31,32]. There is evidence that

glutamatergic and cholinergic signalling are implicated in

the acquisition and consolidation phases of memory pro-

cessing [31]. Classical and operant learning behaviours

can be observed from 3 weeks post-fertilisation reaching

maximal performance at week 6 [33]. In addition, associ-

ative conditioning learning has been shown to be protein

synthesis-dependent and NMDA receptor-dependent

using a paradigm developed for larval zebrafish [34�].
Recent work using a genetically encoded calcium-sensi-

tive protein, inverse pericam, has identified an area of the

dorsal telencephalon that is activated during long-term

memory retrieval [8��]. This functional map changes

when the behavioural task is altered, suggesting that

memory traces are dynamically modified during the learn-

ing process [8��]. In larvae, calcium indicators have been

used to image neuronal activity during behaviour. For

example, neuronal populations in the hindbrain show

activity patterns that correlate with left or right optomotor

behaviour. Moreover, neurons in the habenula, pallium,

and midbrain respond dynamically to the changing

characteristics of an environment [2��]. This approach

can now be used to identify neural activation during

learning tasks. Although several memory tasks have been

developed for zebrafish, few of the genes that control this

behaviour have been identified. A mutant line that fails to

change place-preference following amphetamine admin-

istration (thus demonstrating a learning deficit) has been

described, but the mutated gene has not been cloned [35].

Further work is required to uncover the molecular players

involved in learning as well as developing novel para-

digms to fully probe the cognitive ability of this species.

Social behaviour
Zebrafish have an innate preference to associate with

conspecifics. The absence of social interaction appears

to be stressful; when tested individually fish show

increased cortisol levels and behavioural variability com-

pared to group-tested animals [9�]. Zebrafish begin to

shoal between 7 and 87 days post-fertilisation and show

correlated strain-dependent changes in DA and 5-HT

levels hinting at a neurochemical basis for this behaviour

[36]. Kin recognition is an important step in the evolution

of social behaviour. Zebrafish larvae exposed to kin at day

5 and 6 days post-fertilisation recognise each other

throughout their life, due to a combination of visual

and olfactory imprinting. This process involves the major

histocompatibility complex (MHC) code, which influ-

ences the chemical and visual features that zebrafish

display [37]. Zebrafish appear to only imprint upon kin

expressing similar MHC class II genes, and this process is

likely olfactory based, because MHC peptides can acti-

vate a subset of neurons in the olfactory bulb [38�]. Social

behaviour can also be influenced by exposure to other

chemicals during development. Fish treated with ethanol

at early embryonic stages show decreased individual

social behaviour and shoaling, increased anxiety and

concomitant alterations in the expression level of the

genes hrt1aa (5-HT receptor 1a), slc6a4 (serotonin trans-

porter) and oxtr (oxytocin receptor) [39]. Adult zebrafish

glucocorticoid receptor (GR) mutants have high cortisol

levels and show changes to social behaviour including

reduced exploratory behaviour, immobility and lack of

habituation to a novel tank. Fluoxetine treatment both

restores normal behaviour and normalises cortisol levels,

making it possible to study the link between the stress

axis and emotional behaviour [40]. The abundance of

tools available in zebrafish suggests that this model is

ideal to investigate the genetic basis of social behaviour.

Aggression
Recent studies have identified novel genes and neuro-

transmitters that control zebrafish aggression. Animals use

aggression to protect themselves and their offspring, fight

for resources and establish dominance hierarchies. Zebra-

fish aggression has a heritability estimate of 0.36 [41]

suggesting that environmental influences play an import-

ant role in the expression of this behaviour. Aggression

can be measured by recording the interaction of a pair of

fish or of a single fish with its own mirror image [42,43,44].

Zebrafish display characteristic agonistic postures in-

cluding undulating body movements, short slaps of the

caudal fin and bites directed against an opponent [44].

Aggressive incidents follow a highly structured pattern

[43] and they are influenced by similar neurotransmitters

in zebrafish and other vertebrates including 5-HT and

dopamine [45], histamine [6], 17a-ethinylestradiol [46]

and arginine vasopressin/arginine vasotocin (AVP/AVT)

[47]. Mutation of fibroblast growth factor receptor 1a ( fgfr1a)

causes a parallel increase in aggression, boldness and

exploration regardless of rearing conditions [6]. Further-

more, manipulation of the neurotransmitter ependymin

alters aggression in both zebrafish and trout implicating a

novel signalling molecule in this behaviour [48]. Although

zebrafish aggression research is still in its infancy, vali-

dation of robust behavioural protocols and the demon-

stration that single genes can modulate this behaviour

suggest that this is a promising area for further investi-

gation.

Conclusion
Studies of both adult and larval zebrafish have brought

new insights into the genetics and neurobiology of be-

haviour. The relative transparency and genetic tractabil-

ity of zebrafish makes them ideal to link behaviour to

neurobiology at different life stages. The approaches

used in this research, including genetically based tech-

niques such as calcium indicators, optogenetic tools to

manipulate neuronal activity [49], genetically encoded

fluorescent-based reporters [50] and the targeted

36 Behavioral genetics
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mutation of genes [51] suggest that the future of this field

is bright.
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