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b Laboratório de Biologia Genômica e Molecular, Departamento de

Biologia Celular e Molecular, Faculdade de Biociências, Pontifı́cia
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Ambientais, Universidade Comunitária da Região de Chapecó,
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Abstract—Hyperprolinemia is an inherited disorder of pro-

line metabolism and hyperprolinemic patients can present

neurological manifestations, such as seizures, cognitive

dysfunctions, and schizoaffective disorders. However, the

mechanisms related to these symptoms are still unclear. In

the present study, we evaluated the in vivo and in vitro

effects of proline on acetylcholinesterase (AChE) activity

and gene expression in the zebrafish brain. For the in vivo

studies, animals were exposed at two proline concentra-

tions (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-

term treatments, respectively). For the in vitro assays, differ-

ent proline concentrations (ranging from 3.0 to 1000 lM)

were tested. Long-term proline exposures significantly

increased AChE activity for both treated groups when com-

pared to the control (34% and 39%). Moreover, the proline-

induced increase on AChE activity was completely reverted

by acute administration of antipsychotic drugs (haloperidol

and sulpiride), as well as the changes induced in ache
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expression. When assessed in vitro, proline did not promote

significant changes in AChE activity. Altogether, these data

indicate that the enzyme responsible for the control of ace-

tylcholine levels might be altered after proline exposure in

the adult zebrafish. These findings contribute for better

understanding of the pathophysiology of hyperprolinemia

and might reinforce the use of the zebrafish as a comple-

mentary vertebrate model for studying inborn errors of

amino acid metabolism. � 2013 IBRO. Published by Elsevier

Ltd. All rights reserved.
Key words: zebrafish, acetylcholinesterase, proline, inherited

diseases, hyperprolinemia, haloperidol, supiride.
INTRODUCTION

Hyperprolinemia can be caused by two distinct inherited

disorders of proline metabolism. Hyperprolinemia type I

(HPI) occurs due to the deficiency of proline oxidase

(POX; EC 1.5.1.2). The hyperprolinemia type II (HPII) is

caused by deficiency of D1-pyrroline-5-carboxylic acid

dehydrogenase (P5CDh; EC 1.5.1.12) activity. These

enzymatic defects cause proline accumulation in blood

and others tissues, such as the brain (Phang et al.,

2001). As a result, some hyperprolinemic patients can

present epilepsy and cognitive dysfunctions whereas

others are asymptomatic (Flynn et al., 1989; Phang

et al., 2001; Di Rosa et al., 2008). Although proline

metabolism seems to be specifically related to psychotic

disorders, such as schizophrenia (Phang et al., 2001;

Jacquet et al., 2005; Oresic et al., 2011), the

mechanisms underlying these neurological

manifestations still remain poorly understood.

Several reports proposed that high proline levels have

a detrimental effect on neuronal integrity, inducing

changes in different neurotransmitter systems. Studies

showed that proline may activate NMDA and AMPA

receptors, suggesting that it potentiates the

glutamatergic neurotransmission (Nadler, 1987; Nadler

et al., 1992; Cohen and Nadler, 1997). Moreover, high

proline levels were able to decrease glutamate uptake in

the rat brain, as well as the Na+, K+-ATPase and

creatine kinase activities, which are crucial enzymes for

normal brain function (Pontes et al., 1999, 2001;

Kessler et al., 2003; Delwing et al., 2007). Additionally,

proline also impaired memory (Bavaresco et al.,

2005; Delwing et al., 2006) and altered the
d.
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acetylcholinesterase activity in the rat brain (Delwing

et al., 2005; Ferreira et al., 2011).

It is currently accepted that the cholinergic

neurotransmission plays an important role in the CNS

by regulating many biological processes such as

learning, memory, sensory perception, and cortical

organization of movement (Mesulam et al., 2002; Sarter

and Bruno, 2004). At synaptic cleft, acetylcholine

triggers muscarinic (metabotropic) and nicotinic

(ionotropic) acetylcholine receptors. The inactivation of

cholinergic signaling is promoted by the cholinesterases,

which cleave acetylcholine into choline and acetate.

Two different types of cholinesterases hydrolyze

acetylcholine: acetylcholinesterase (AChE) (EC 3.1.1.7)

and butyrylcholinesterase (BuChE) (EC 3.1.1.8) (Soreq

and Seidman, 2001).

Zebrafish (Danio rerio) have gained popularity as an

organism for neurobehavioral studies. This species has

several features that complement the existing

mammalian models such as low maintenance,

translucent embryos, rapid development, and high

fecundity. Zebrafish has also been used for drug

screening and toxicological assays (reviewed in Lele

and Krone, 1996; Parng et al., 2002; Kari et al., 2007;

Mathur and Guo, 2010). In this sense, it can be easily

and continuously exposed to different concentrations of

amino acids for different periods (Rosemberg et al.,

2010; Savio et al., 2012a). Furthermore, zebrafish

genes present a high degree of conservation sharing a

70–80% homology with human genes, which is an

additional attractive feature to study genetic and

biochemical mechanisms of neurological diseases

(Barbazuk et al., 2000; Dooley and Zon, 2000; Best and

Alderton, 2008). Parameters of cholinergic signaling

have already been characterized in the zebrafish brain

(Clemente et al., 2004; Rico et al., 2006). It has been

shown that AChE is encoded by a single gene, while

BuChE has not been detected in the zebrafish genome

(Clemente et al., 2004; Ninkovic et al., 2006). Thus, the

effects of high amino acid concentrations on the gene

expression and neurochemical changes can be

evaluated in this species, as well as several parameters

of neurotoxicity during development, including

teratogenicity, cell death, and selected neuronal

subtypes (Ton et al., 2006; Parng et al., 2007; David

and Pancharatna, 2009; Long et al., 2011; Pan et al.,

2011). Previous study from our group had already

characterized the effects of proline exposure on

behavioral parameters in the zebrafish (Savio et al.,

2012a). We demonstrated that proline-induced

behavioral changes are reverted by acute administration

of antipsychotic drugs in this species; however, there is

no evidence regarding the neurochemical mechanisms

that may contribute to these behavioral responses.

Considering that: (i) the hyperprolinemic patients

can present neurological dysfunctions, (ii) the cholinergic

system is associated with several neurological disorders,

(iii) recent studies suggest an influence of proline on

cholinergic neurotransmission, and, finally, (iv) the

zebrafish has become a prominent vertebrate to study

neurological disorders related to human inherited
diseases, here, we sought to investigate the effects of

short- and long-term proline exposure on AChE activity

and gene expression in the zebrafish brain. Furthermore,

we also verified whether typical and atypical antipsychotic

drugs, such as haloperidol and sulpiride, are able to

revert the proline-induced changes in biochemical and

molecular parameters of cholinergic signaling.

EXPERIMENTAL PROCEDURES

Animals

Adult males and females (approximately in the ratio of

1:1) of the ‘‘wild type’’ (short fin – SF) zebrafish (D.

rerio) strain (6–8-months-old) were obtained from a

commercial supplier (Redfish, RS, Brazil). Animals were

kept in 50 L housing tanks with tap water previously

treated with Tetra’s AquaSafe� (to neutralize chlorine,

chloramines, and heavy metals present in the water that

could be harmful to fish) and continuously aerated

(7.20 mgO2/L) at 28 ± 2 �C, under a 14–10 h-light/dark

photoperiod. The fish were kept at a density of up to

five animals per liter (Westerfield, 2007). Animals were

acclimated for at least 2 weeks before the experiments

and fed three times a day to satiety with TetraMin

Tropical Flake Fish�. All protocols were approved by the

Ethics Committee of Federal University of Rio Grande

do Sul (UFRGS) under License No.: 19636 and followed

Brazilian legislation, the guidelines of the Brazilian

Collegium of Animal Experimentation (COBEA), and the

Canadian Council for Animal Care (CCAC) Guide on the

care and use of fish in research, teaching, and testing.

Chemicals

L-Proline, Trizma Base, EDTA, EGTA, sodium citrate,

Coomassie Blue, bovine serum albumin, acetyl-

thiocholine, 5,50-dithiobis-2-nitrobenzoic acid (DTNB)

were obtained from Sigma–Aldrich (St. Louis, MO,

USA). All reagents used were of analytical grade.

In vivo treatments

For the in vivo studies, animals were exposed at two

proline concentrations (1.5 and 3.0 mM) during 1 h

(short-term exposure) or 7 days (long-term exposure).

During the treatments, the animals were maintained in

4 L test tanks (30 � 15 � 10 cm, length � height �
width) with 3 L of water (control group) or water plus

proline (1.5 or 3.0 mM) and were kept in the same

environmental conditions of the housing tanks. To

ensure a similar amount of amino acid present in the

aquarium, the tank water was replaced daily.

Immediately after the treatments, the fish were

cryoanesthetized and further euthanized by

decapitation. The whole brains were dissected and the

homogenates were prepared.

In order to verify the effects of antipsychotics on

proline-induced effects on AChE activity and gene

expression, fish were exposed to proline (1.5 and

3.0 mM) during 7 days (long-term exposure) or water

(control group). Afterward, the following acute
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treatments were performed in a beaker for 15 min: (i) a

control group plus water; (ii) a control group plus DMSO

(5%); (iii) a proline group (1.5 mM) plus DMSO (5%);

(iv) a proline group (3.0 mM) DMSO (5%); (v) a control

group plus haloperidol (9 lM); (vi) a control group plus

sulpiride (250 lM); (vii) a proline group (1.5 mM) plus

water; (viii) a proline group (3.0 mM) plus water; (ix) a

proline group (1.5 mM) plus haloperidol (9 lM); (x) a

proline group (3.0 mM) plus haloperidol (9 lM); (xi) a

proline group (1.5 mM) plus sulpiride (250 lM); and (xii)

a proline group (3.0 mM) plus sulpiride (250 lM). DMSO

(5%) per se did not affect the proline-induced

changes in AChE parameters (group iii and iv; data not

shown). Importantly, the proline and antipsychotic

concentrations, as well as the protocols of exposure,

have already been described in a previous study from

our group, which evaluated the effects of proline on

zebrafish behavior (Savio et al., 2012a). The proline

concentrations were tested based on plasma proline

levels verified in human hyperprolinemic patients (0.5–

3.0 mM) in order to mimic the conditions promoted by

hyperprolinemia (Phang et al., 2001).
In vitro treatments

For the in vitro assays, proline (final concentrations of 3,

30, 500, and 1000 lM) was added directly to the

reaction medium (described below), preincubated with

the brain samples and maintained throughout the

enzyme assay. For the control group, the experiments

were performed in the absence of proline (no drug

added in the reaction medium). The in vitro assays were

performed based on the cerebrospinal fluid proline

concentration verified in hyperprolinemic patients

(Phang et al., 2001; Savio et al., 2012b).
Determination of AChE activity

A pool of three whole zebrafish brains was used to

prepare each homogenate fraction. The brains were

gently homogenized on ice in 60 volumes (v/w) of Tris–

citrate buffer (50 mM Tris, 2 mM EDTA, 2 mM EGTA,

pH 7.4, with citric acid) using a Potter–Elvehjen-type

glass homogenizer. AChE activity was measured

according to Ellman et al. (1961) by determining the rate

of hydrolysis of acetylthiocholine iodide (0.88 mM) in

300 lL, with 33 lL of 100 mM phosphate buffer, pH 7.5

mixed to 33 lL of 2.0 mM DTNB. Briefly, samples

containing 5-lg protein and the reaction medium

described above were preincubated for 10 min at 25 �C.
The hydrolysis of acetylthiocholine iodide was monitored

by the formation of thiolate dianion of DTNB at 412 nm

for 2–3 min (intervals of 30 s). Controls without the

homogenate preparation were performed in order to

determine the non-enzymatic hydrolysis of the

substrate. Importantly, the linearity of absorbance

toward time and protein concentration was previously

determined. All reactions were performed in

quadruplicate. AChE activity was expressed as

micromole of thiocholine (SCh) released per hour per

milligram of protein (lmol thiocholine. h�1. mg protein�1).
Protein determination

Protein was measured by the Coomassie Blue method

using bovine serum albumin as standard (Bradford,

1976).
Gene expression analysis by quantitative real-time
RT-PCR (RT-qPCR)

Analysis of the ache gene expression was performed by a

quantitative real-time reverse transcription polymerase

chain reaction (RT-qPCR) assay. RT-qPCR was

performed on a 7500 Real-Time PCR System (Applied

Biosystems) with SYBR green fluorescent label. The

ache primers were designed using the Oligos 9.6

program. The EF1a and b-actin primers were used as

constitutive genes for data analysis, as described

previously (Tang et al., 2007). After 7 days of proline

and/or antipsychotics treatments, the animals were

euthanized and the brains were removed for total RNA

extraction with Trizol
�

reagent (Invitrogen, Carlsbad,

California, USA) in accordance with the manufacturer’s

instructions. Three independent experiments were

performed and a pool of three whole zebrafish brains

was used for each independent experiment. The total

RNA was quantified spectrophotometrically and the

cDNA was synthesized with ImProm-II Reverse

Transcription System (Promega) from 1 lg of total RNA,

following suppliers. Quantitative PCR was performed

using SYBR� Green I (Invitrogen) to detect double-

strand cDNA synthesis. Reactions were carried out in a

volume of 25 lL using 12.5 lL of diluted cDNA (1:50 for

EF1a and 1:20 for b-actin), containing a final

concentration of 0.2 � SYBR� Green I (Invitrogen),

100 lM dNTP, 1� PCR Buffer, 3 mM MgCl2, 0.25 U

Platinum� Taq DNA Polymerase (Invitrogen) and

200 nM of each reverse and forward primers (Table 1).

The PCR cycling conditions were: an initial polymerase

activation step for 5 min at 95 �C, 40 cycles of 15 s at

95 �C for denaturation, 35 s at 60 �C for annealing and

15 s at 72 �C for elongation. At the end of cycling

protocol, a melting-curve analysis was included and

fluorescence measured from 60 to 99 �C. The efficiency

per sample was calculated using LinRegPCR 11.0

Software (http://LinRegPCR.nl) and the stability of the

references genes, EF1a and b-actin (M-value) and the

optimal number of reference genes according to the

pairwise variation (V) were analyzed by GeNorm 3.5

Software (http://medgen.ugent.be/genorm/). Relative

RNA expression levels were determined using the

2�DDCT method.
Statistical analysis

Results were expressed as means ± standard error of

mean (S.E.M.). Statistical analysis was performed by a

one-way analysis of variance (ANOVA), followed by a

Tukey multiple range test as post-hoc. Statistically

significant differences between groups were considered

for a p< 0.05.

http://LinRegPCR.nl
http://medgen.ugent.be/genorm/


Table 1. PCR primers design.

Genes Primer sequences (50–30) GenBank Accession Number (mRNA)

EF1a* F-CTGGAGGCCAGCTCAAACAT

R-ATCAAGAAGAGTAGTACCGCTAGCATTAC

NSDART00000023156

b-Actin* F-CGAGCTGTCTTCCCATCCA

R-TCACCAACGTAGCTGTCTTTCTG

ENSDART00000055194

ache** F-GCTAATGAGCAAAAGCATGTGGGCTTG

R-TATCTGTGATGTTAAGCAGACGAGGCAGG

NP_571921

* According to Tang et al. (2007).
** Designed by authors.
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RESULTS

In vivo and in vitro effects proline on AChE activity in
the zebrafish brain

After the short-term exposure (1 h), proline did not cause

significant changes in AChE activity (p> 0.05) (Fig. 1A).

However, after long-term exposure (7 days), both 1.5 and

3.0 mM proline significantly increased AChE activity (34%

and 39%) when compared to control group (p < 0.001)

(Fig. 1B). In order to evaluate whether this amino acid

could act directly on AChE activity, we tested the effect

of different proline concentrations (ranging from 3.0 to

1000 lM) added in the reaction medium. The results
Fig. 1. In vivo effect of short-term (1 h) (A) and long-term (7 days) (B)

proline exposure (1.5 and 3.0 mM) on AChE activity in zebrafish

brain. Data are expressed as means ± S.E.M. of five independent

experiments (n= 8 at least). Results were analyzed statistically by a

one-way ANOVA followed by Tukey test as post-hoc. The asterisks

(⁄) represent significant differences when compared to untreated

group (white bars) (p< 0.001).
showed that proline did not alter AChE activity

(p> 0.05) when tested in vitro (Fig. 2).

Antipsychotic drugs revert the increase of AChE
activity induced by long-term proline exposure

Since long-term proline exposure increased AChE

activity, we investigated whether typical (haloperidol)

and atypical (sulpiride) antipsychotic drugs are able to

revert this effect. Our data showed that only sulpiride

reverted the effect promoted by 1.5 and 3.0 mM proline

on AChE activity as compared to the untreated group

(p> 0.05). On the other hand, haloperidol was able to

revert the increase on AChE activity only at 3.0 mM

proline (p< 0.05) (Fig. 3).

Effects of proline on ache gene expression in the
zebrafish brain: reversal by antipsychotic drugs

We performed a quantitative RT-PCR analysis in order to

evaluate the influence of long-term proline exposure on

ache gene expression in the zebrafish brain. As

depicted in Fig. 4, ache gene expression was decreased

after long-term treatment at both concentrations tested

(1.5 and 3.0 mM) (p< 0.05). The treatment with

antipsychotic drugs showed that both sulpiride and

haloperidol revert the proline-induced effects on ache
transcripts in comparison to the untreated group

(p> 0.05).

DISCUSSION

The present report showed that long-term, but not short-

term proline exposure induces changes in AChE activity

and gene expression in the zebrafish brain. We also

showed that these effects were reverted by acute

administration of antipsychotic drugs. However, proline

added directly to the reaction medium did not promote

significant changes in AChE activity, suggesting that it

may act indirectly in the zebrafish brain.

Although the underlying mechanisms which lead to

abnormal brain function in hyperprolinemic patients still

remain poorly understood, studies have demonstrated

that hyperprolinemia induces neurochemical and

behavioral changes mainly affecting the glutamatergic

neurotransmission (Vorstman et al., 2009; Wyse and

Netto, 2011). Authors have reported that high proline

concentrations activate NMDA and AMPA receptors,

suggesting that proline may potentiate the glutamatergic

neurotransmission, consequently, increasing glutamate



Fig. 2. In vitro effect of proline on AChE activity in zebrafish brain. Data are expressed as means ± S.E.M. of four independent experiments

(n= 4). Results were analyzed statistically by a one-way ANOVA.

Fig. 3. Effects of haloperidol and sulpiride on proline-induced increase in AChE activity. Fish were exposed to proline (1.5 and 3.0 mM) during

7 days (long-term exposure). Afterward, acute treatments with antipsychotic drugs (haloperidol – 9 lM and sulpiride – 250 lM) were performed in a

beaker for 15 min. Data are expressed as mean ± S.E.M. of four independent experiments performed in quadruplicate (n= 6 at least). Results

were analyzed by a one-way ANOVA followed by followed by Tukey test as post-hoc. The symbols represent statistical differences when compared

to control (white bar) (p< 0.001, ⁄) and proline-exposed groups (p< 0.05, #).
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release (Nadler, 1987; Nadler et al., 1992; Cohen and

Nadler, 1997). The increased glutamate levels induced

by proline seem to lead to secondary dopamine (DA)

release, inducing schizophrenia-like symptoms in animal

models. Therefore, high proline concentrations appear

to mimic the neurobehavioral effects induced by NMDA

receptor antagonists, such as dizocilpine (MK-801) and

phencyclidine (PCP) (Paterlini et al., 2005; Vorstman

et al., 2009; Savio et al., 2012a). Interestingly, studies

have demonstrated that the blockade of NMDA

receptors increases the extracellular DA and

acetylcholine concentrations in the brain as well as

motor activity (Del Arco and Mora, 2005; Del Arco et al.,

2008). Considering the effects of proline on ionotropic

glutamate receptors, is possible to hypothesize that high

concentrations of this amino acid increase the

acetylcholine release, inducing behavioral changes,

such as hyperlocomotion (Savio et al., 2012a). In

addition, we showed a significant increase on AChE

activity in the zebrafish brain after long-term proline
exposure (at 1.5 and 3.0 mM). Our data are in

agreement with a previous study performed in rodents

which reported that chronic proline administration

significantly increased hippocampal AChE activity

(Ferreira et al., 2011). Therefore, these findings could

be related to a compensatory response decreasing the

acetylcholine levels at synaptic cleft in order to minimize

the effects triggered by this neurotransmitter in the

brain. On the order hand, the enhancement on AChE

activity could be also associated to detrimental effects

on cognitive functions, such as learning and memory

processes, after chronic proline exposure (Ferreira

et al., 2011).

Antipsychotic drugs are widely used for the treatment

of neuropsychiatric disorders (Terry et al., 2007; Tadori

et al., 2011). In a previous study, we showed that

sulpiride, an atypical antipsychotic drug, completely

reverted the hyperlocomotion and social deficits induced

by proline exposure, whereas a typical antipsychotic

(haloperidol) has only attenuated the social interaction



Fig. 4. Effects of haloperidol and sulpiride on proline-induced changes in ache gene expression. Fish were exposed to proline (1.5 and 3.0 mM)

during 7 days (long-term exposure). Afterward, acute treatments with antipsychotic drugs (haloperidol – 9 lM and sulpiride – 250 lM)/were

performed in a beaker for 15 min. Data are expressed as mean ± S.E.M. of three independent experiments performed in triplicate (n= 3 at least).

Results were analyzed by a one-way ANOVA followed by followed by Tukey test as post-hoc. The symbols represent statistical differences when

compared to control (white bar) (p< 0.001, ⁄) and proline-exposed groups (p< 0.05, #).
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impairment (Savio et al., 2012a). In the current report, we

demonstrated that the proline-induced increase on AChE

activity was completely reverted by sulpiride. However,

haloperidol kept the AChE activity at control levels only

at 3.0 mM proline. These data are in agreement with our

previous study, which showed that haloperidol failed to

revert the hyperlocomotion induced by long-term proline

exposure (at 1.5 mM) in the zebrafish (Savio et al.,

2012a), suggesting that, similarly to what occur in

rodent models, the cholinergic and dopaminergic

signaling may play a role in the locomotor effects of

proline in this species.

Several neuronal pathways could be involved in the

actions of antipsychotic drugs on the enhancement of

AChE activity induced by proline administration.

Ichikawa et al. (2002) reported that olanzapine,

rispiridone, and ziprasidone increased acetylcholine

release in the rat medial prefrontal cortex, whereas

haloperidol and sulpiride were unable to induce such

effect. Moreover, Del Arco et al. (2008) showed that the

administration of D1 and D2 antagonists reduced the

motor effects induced by the blockade of NMDA

receptors in the prefrontal cortex. Therefore, considering

that haloperidol acts via DA D2 receptor blockade

(Heusler et al., 2008) and sulpiride acts preferentially via

D2 and D3 DA receptor blockade (Jaworski et al., 2001;

Tadori et al., 2011), it is possible that these drugs revert

the proline-induced enhancement on AChE activity by a

similar mechanism, reducing the acetylcholine

availability. However, it is also important to emphasize

that atypical antipsychotics have affinity for a wide

range of other receptors, such as serotonergic 5-HT2A

and 5-HT6, adrenergic a1, histaminergic H1, and

muscarinic M1 (Jones et al., 2008). In this regard, the

involvement of different mechanisms associated to the

effects of antipsychotics and proline in the zebrafish

brain cannot be ruled out and further studies are still

required to elucidate the contribution of dopaminergic

and serotoninergic systems in this model.
We also investigate whether long-term proline

exposure alters ache gene expression by performing

quantitative RT-PCR assays. Our results demonstrated

a significant decrease on ache mRNA levels at 1.5 and

3.0 mM proline, which were reverted by typical and

atypical antipsychotic treatments. Importantly, the

antipsychotics drugs per se did not induce significant

changes in ache expression. Although, Seibt et al.

(2009) demonstrated that the haloperidol (9 lM)

treatment increases the ache expression in the

zebrafish brain, in their study, the animals were exposed

to haloperidol for 2 h. Moreover, the apparent

discrepancies between the results of molecular and

biochemical experiments could be attributed to the

various factors that regulate gene expression, which

involve cell machinery and signal transduction

pathways. Thus, enzyme activity cannot be directly

correlated with the gene expression pattern or with

protein levels due to the existence of several post-

translational events, such as phosphorylation

(Nedeljkovic et al., 2005). It has been previously shown

that long-term methionine exposure could influence

AChE post-translational modulation, increasing ACh

hydrolysis, that in turn down regulates its own

expression, via a phenomenon known as negative

feedback loop (Salgado et al., 2001; Keseler et al.,

2005; Vuaden et al., 2012) in the zebrafish brain.

Therefore, post-translational events could contribute, at

least in part, to the distinct effects on AChE activity and

gene expression profile after proline exposure.
CONCLUSIONS

Our findings demonstrate that long-term proline exposure

alters AChE activity and gene expression in the zebrafish

brain. Furthermore, the proline-induced increase in AChE

activity was completely reverted by acute administration

of antipsychotic drugs, as well as the changes in ache
gene expression pattern. These findings might facilitate
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the use of the zebrafish for studying metabolic diseases

due to its pharmacological validity and contribute to

elucidate the mechanisms underlying cognitive and

psychiatry dysfunctions observed in hyperprolinemic

patients.
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