NTPDase family in zebrafish: Nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart

Denis Broock Roseberga,b, Eduardo Pacheco Ricoc,a, Andrei Silveira Langonid, Talita Carneiro Pereirae,d, Renato Dutra Dias c, Diogo Onofre Souza a,b, Carla Denise Bonan c,e,*, Mauro Reis Bogo d,e,*,

* Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
b Instituto Nacional em Excitotoxicidade e Neuroproteção (INCT-EN) 90035-003, Porto Alegre, RS, Brazil
c Instituto Nacional Translacional em Medicina (INCT-TM), 90035-003, Porto Alegre, RS, Brazil
d Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontíficia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
e Laboratório de Biologia Celômica e Molecular, Faculdade de Biociências, Pontíficia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
f Instituto Nacional Translacional em Medicina (INCT-TM), 90035-003, Porto Alegre, RS, Brazil

A R T I C L E I N F O

Article history:
Received 25 September 2009
Received in revised form 9 November 2009
Accepted 9 November 2009
Available online 14 November 2009

Keywords:
NTPDase
Zebrafish
Nucleotide hydrolysis
Phylogenetic analysis
Gene expression profiles

A B S T R A C T

The nucleoside triphosphate diphosphohydrolase (NTPDase) family cleaves tri- and diphosphonucleosides to monophosphonucleosides and is responsible for terminating purinergic transmission. Since the NTPDase family in zebrafish is poorly understood, here we evaluated the nucleotide hydrolysis in three tissues of adult zebrafish (brain, liver, and heart), confirmed the presence of distinct NTPDase members by a phylogenetic analysis and verified their relative gene expression profiles in the respective tissues. A different profile of ATP and ADP hydrolysis in the brain, liver, and heart as a function of time and protein concentration was observed. Sodium azide (20 mM), ARL 67156 (300 μM) and Suramin (300 μM) differently altered the nucleotide hydrolysis in zebrafish tissues, suggesting the contribution of distinct NTPDase activities. Homology-based searches identified the presence of NTPDase1-6 and NTPDase8 orthologs and the phylogeny also grouped three NTPDase2 and two NTPDase5 paralogs. The deduced amino acid sequences share the apyrase conserved regions, conserved cysteine residues, putative N-glycosylation, phosphorylation, N-acetylation sites, and different numbers of transmembrane domains. RT-PCR experiments revealed the existence of a distinct relative entpd1-6 and entpd8 expression profile in brain, liver, and heart. Taken together, these results indicate that several NTPDase members might contribute to a tight regulation of nucleotide hydrolysis in zebrafish tissues. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

The NTPDase family consists of enzymes that hydrolyze tri- and diphosphonucleosides into their monophosphate counterparts and thus plays a crucial role in nucleotide catabolism. After release into the synaptic cleft ATP and other nucleotides undergo rapid enzymatic degradation by ectonucleotidases, which are functionally important because ATP metabolites act as physiological ligands for various purinergic receptors (Burnstock, 2009). In this sense, NTPDase activities not only control the lifetime of nucleotides but, by degrading or interconverting the originally released ligands, they also produce ligands for additional P2 receptors and nucleosides (Zimmermann, 2001). The NTPDase family in zebrafish is poorly understood, here we evaluated the nucleotide hydrolysis in three tissues of adult zebrafish (brain, liver, and heart), confirmed the presence of distinct NTPDase members by a phylogenetic analysis and verified their relative gene expression profiles in the respective tissues. A different profile of ATP and ADP hydrolysis in the brain, liver, and heart as a function of time and protein concentration was observed. Sodium azide (20 mM), ARL 67156 (300 μM) and Suramin (300 μM) differently altered the nucleotide hydrolysis in zebrafish tissues, suggesting the contribution of distinct NTPDase activities. Homology-based searches identified the presence of NTPDase1-6 and NTPDase8 orthologs and the phylogeny also grouped three NTPDase2 and two NTPDase5 paralogs. The deduced amino acid sequences share the apyrase conserved regions, conserved cysteine residues, putative N-glycosylation, phosphorylation, N-acetylation sites, and different numbers of transmembrane domains. RT-PCR experiments revealed the existence of a distinct relative entpd1-6 and entpd8 expression profile in brain, liver, and heart. Taken together, these results indicate that several NTPDase members might contribute to a tight regulation of nucleotide hydrolysis in zebrafish tissues.
et al., 1998, 2000; Schetinger et al., 2007). It has been shown that NTPDase1 activity coordinates both hepatocyte and endothelial cell proliferation in mouse liver, suggesting that purines are involved in hepatic regeneration and vascular reconstitution (Beldi et al., 2008). Furthermore, NTPDase1 also promotes myocardial protection during cardiac ischemia/reperfusion injury (Köhler et al., 2007) and its activity and expression profile have been characterized in rat heart ventricle (Rücker et al., 2008). The prevention of excessive contractility in cardiomyocytes has been attributed to entpd3 expression, giving support to the suggestion that distinct NTPDase members act in a coordinated manner to maintain heart homeostasis (Barreto-Chaves et al., 2006).

Zebrafish (Danio rerio) have been used as an animal model for biomedical research of numerous pathologies, such as seizures (Baraban, 2007), liver failure (Rmahi et al., 2008), and cardiac malfunctions (Chico et al., 2008). The P2X receptor gene family and the nucleotide hydrolysis in brain membranes have already been characterized in zebrafish (Kucenas et al., 2003; Rico et al., 2003; Senger et al., 2004). In addition, the expression of entpd1, three entpd2, and entpd3 genes (Rico et al., 2006; Appelbaum et al., 2007) and the immunocytochemical localization of NTPDase1 and 2 in the neural retina of zebrafish (Ricatti et al., 2009) suggest the existence of a compartmentalized regulation of extracellular nucleotide/nucleoside concentration in this teleost.

Since the investigation of NTPDase family members in complementary vertebrate models is relevant to better understand this enzyme group, the study of the NTPDases in zebrafish is imperative and raises the perspective of performing structural and functional comparisons of distinct purinergic signaling parameters between fish and mammals. Although recent studies demonstrated the existence of NTPDase activities in zebrafish (Rico et al., 2006; Ricatti et al., 2009), the identification of cell surface-located and intracellular NTPDase members which might contribute to ATP and ADP hydrolysis in different tissues and the detection of their mRNAs have not yet been reported.

Here we assay the nucleotide hydrolysis and test the influence of distinct inhibitors of ATP and ADP hydrolysis in zebrafish brain, liver, and heart. To specifically verify whether different NTPDase members could be involved in nucleotide catabolism in these respective tissues, we used homology-based searches and a phylogenetic analysis to identify the zebrafish NTPDase sequences. Furthermore, we also evaluated some special features of the deduced amino acid sequence obtained using bioinformatics tools and analyzed the gene expression profile of the entpd members in these tissues.

2. Materials and methods

2.1. Animals

Adult males and females of the “wild type” (short fin — SF) zebrafish (Danio rerio) strain (3–6 months-old, weighing 0.32 ± 0.06 g) were obtained from a commercial distributor (Delphis, RS, Brazil) and acclimated for at least 2 weeks before the experiments. The animals were maintained in a 50-L thermostatated aquarium filled with continuously aerated unchlorinated water at a targeted temperature of 26 ± 2 °C under a 12-h light–dark photoperiod, and fed twice a day to satiety with commercial flake fish food. Before the experiments, the fish were cryoanaesthetized and euthanized by decapitation. Each independent experiment was performed using biological preparations from five different animals. The animals were raised and cared for according to the National Institute of Health Guide for Care and Use of Laboratory Animals.

2.2. Chemicals

Trizma Base, ammonium molybdate, polyvinyl alcohol, Malachite Green, nucleotides, EDTA, EGTA, sodium citrate, Coomassie Blue G, bovine serum albumin, calcium chloride, ouabain, Ap5A, NEM, orthovovanadate, levamisole, oligomycin, sodium azide, ARL 67156 (6-N,N-diethyl-D-β-dibromomethylene adenosine triphosphate) and Suramin were purchased from Sigma Aldrich (St. Louis, MO, USA). TRizol, SuperScript™ III First-Strand Synthesis SuperMix, Taq Platinum, GelRed and Low DNA Mass Ladder were purchased from Invitrogen (Carlsbad, CA, USA). All other reagents used were of high analytical grade.

2.3. Nucleotide hydrolysis assay

Tissues (brain, liver, and heart) were dissected and added to 1 mL of chilled Tris–citrate buffer (50 mM Tris–citrate, 2 mM EDTA, 2 mM EGTA, pH 7.4, adjusted with citric acid) as described by Barnes et al. (1993). This same buffer has been also used in previous studies (Rico et al., 2003; Senger et al., 2004) to exclude a possible interference of endogenous divalent cations (such as Ca2+ and Mg2+) during tissue preparation, which could influence the nucleotidase activities assayed. The samples were homogenized on ice in a motor-driven Teflon-glass homogenizer and centrifuged at 1000 g for 10 min at 4 °C to remove the nuclei and cell debris. The resultant supernatants were kept on ice and used for the enzyme assays.

The optimum conditions for ATP and ADP hydrolysis were determined for each tissue. Brain, liver, and heart samples (3–5 μg protein) were added to the reaction mixture containing 50 mM Tris–HCl (pH 8.0) and 5 mM CaCl2 in a final volume of 200 μL. The samples were preincubated for 10 min at 37 °C before starting the reaction with the addition of substrate (ATP or ADP) every 10 s to a final concentration of 1 mM. After incubation for 20 min (brain and liver) and 30 min (heart), the reactions were terminated with the addition of 200 μL of 10% trichloroacetic acid every 10 s for each sample to ensure the correct incubation time and immediately placed on ice for 10 min. Controls with the addition of the enzyme preparation after mixing with trichloroacetic acid were used to confirm non-enzymatic hydrolysis of substrates. The inorganic phosphate (Pi) released was measured spectrophotometrically at 630 nm using Malachite Green solution as color reagent (Chan et al., 1986) and KH2PO4 as standard after 4-fold dilution to ensure that the concentration of phosphate was within the linear range. Incubation times and protein concentrations were chosen in order to ensure the linearity of the reactions. All enzyme assays were run in triplicate and the specific activity was expressed as nmol Pi min−1 mg protein−1.

2.4. Protein measurement

Protein concentration for the enzyme assays was measured by the Coomassie blue method (Bradford, 1976), with bovine serum albumin as standard.

2.5. In silico confirmation of zebrafish NTPDase sequences

The well-known human and mouse NTPDase protein sequences were used as queries (Table 1) to perform a Basic Local Alignment Search (BLASTP function) via the GenBank, ENSEMBL, and ZFIN Danio rerio databases. The NTPDase protein sequences obtained were aligned through the ClustalX program (Thompson et al., 1997) and the phylogenetic tree was assayed. The samples were homogenized on ice in a motor-driven Teflon-glass homogenizer and centrifuged at 1000 g for 10 min at 4 °C to remove the nuclei and cell debris. The resultant supernatants were kept on ice and used for the enzyme assays.

The optimum conditions for ATP and ADP hydrolysis were determined for each tissue. Brain, liver, and heart samples (3–5 μg protein) were added to the reaction mixture containing 50 mM Tris–HCl (pH 8.0) and 5 mM CaCl2 in a final volume of 200 μL. The samples were preincubated for 10 min at 37 °C before starting the reaction with the addition of substrate (ATP or ADP) every 10 s to a final concentration of 1 mM. After incubation for 20 min (brain and liver) and 30 min (heart), the reactions were terminated with the addition of 200 μL of 10% trichloroacetic acid every 10 s for each sample to ensure the correct incubation time and immediately placed on ice for 10 min. Controls with the addition of the enzyme preparation after mixing with trichloroacetic acid were used to confirm non-enzymatic hydrolysis of substrates. The inorganic phosphate (Pi) released was measured spectrophotometrically at 630 nm using Malachite Green solution as color reagent (Chan et al., 1986) and KH2PO4 as standard after 4-fold dilution to ensure that the concentration of phosphate was within the linear range. Incubation times and protein concentrations were chosen in order to ensure the linearity of the reactions. All enzyme assays were run in triplicate and the specific activity was expressed as nmol Pi min−1 mg protein−1.

2.4. Protein measurement

Protein concentration for the enzyme assays was measured by the Coomassie blue method (Bradford, 1976), with bovine serum albumin as standard.

2.5. In silico confirmation of zebrafish NTPDase sequences

The well-known human and mouse NTPDase protein sequences were used as queries (Table 1) to perform a Basic Local Alignment Search (BLASTP function) via the GenBank, ENSEMBL, and ZFIN Danio rerio databases. The NTPDase protein sequences obtained were aligned through the ClustalX program (Thompson et al., 1997) and analyzed using bioinformatics tools available at CBS Prediction Servers (http://www.cbs.dtu.dk/services/). A phylogenetic tree was built with the MEGA 4.0 program (Tamura et al., 2007) and the statistical Neighbor-Joining method (Saitou and Nei, 1987) with proportional (p) distance was used. The percent identity and similarity between the zebrafish and mammalian NTPDase proteins were determined by the scoring matrix BLOSUM62 using MatGAT 2.01 software (Campanella et al., 2003). All NTPDase sequences identified are presented in Table 2.
2.6. Primer design and RT-PCR experiments

The entpd1, entpd2_mg, entpd2_mq, and entpd2_mv primers were designed as described previously (Rico et al., 2006). Zebrafish DNA sequences encoding each of the NTPDase members retrieved from the GenBank database were aligned using the ClustalX program. Regions with low scores for similarity among the sequences were used to search for specific primers, which were designed using the program Oligos 9.6. The primer specificities were checked by comparing each primer with the zebrafish genome to confirm that it would recognize only its specific target sequence. Thus, the strategy adopted to design the primers avoided cross-amplification. The β-actin primers employed were previously described by Chen et al. (2004) and the optimal PCR conditions for entpd amplifications were determined (Table 3).

Brain, liver, and heart were dissected under sterile conditions and immediately subjected to a total RNA extraction by the TRIzol method according to the manufacturer’s instructions. The purity of the RNA was spectrophotometrically quantified by calculating the ratio between absorbance values at 260 and 280 nm and its integrity was confirmed by electrophoresis through a 1.0% agarose gel. Afterwards, all samples were adjusted to 160 ng/μl and its integrity was spectrophotometrically quantified according to the manufacturer’s instructions. The purity of the RNA was also employed for PCR experiments on the three entpd genes. The same PCR conditions were used for entpd1 amplification. PCR assays for the entpd6 gene were carried out using 2.5 mM MgCl2, 0.2 mM dNTP and 1 U Taq Platinum. All PCR experiments were performed using 1 μl of template cDNA.

The following conditions were used for PCR reactions: 1 min at 94°C, 1 min at the annealing temperature (see Table 3), 1 min at 72°C for 30 cycles (for entpd3, entpd4, entpd5_me, and entpd6) and for 35 cycles (for β-actin, entpd1, entpd2_mg, entpd2_mq, entpd2_mv, entpd5_ms, and entpd6) with a further post-extension cycle at 72°C.

Table 1
Mammalian NTPDase orthologs used in phylogenetic analysis.

<table>
<thead>
<tr>
<th>Species</th>
<th>GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human (Homo sapiens)</td>
<td></td>
</tr>
<tr>
<td>NTPDase1</td>
<td>NP_001767</td>
</tr>
<tr>
<td>NTPDase2</td>
<td>NP_982293</td>
</tr>
<tr>
<td>NTPDase3</td>
<td>NM_001248</td>
</tr>
<tr>
<td>NTPDase4</td>
<td>BCO0477</td>
</tr>
<tr>
<td>NTPDase5</td>
<td>NM_001249</td>
</tr>
<tr>
<td>NTPDase6</td>
<td>BCO2980</td>
</tr>
<tr>
<td>NTPDase7</td>
<td>NM_020354</td>
</tr>
<tr>
<td>NTPDase8</td>
<td>AAR04374</td>
</tr>
<tr>
<td>Mouse (Mus musculus)</td>
<td></td>
</tr>
<tr>
<td>NTPDase1</td>
<td>AAI11278</td>
</tr>
<tr>
<td>NTPDase2</td>
<td>OS5026</td>
</tr>
<tr>
<td>NTPDase3</td>
<td>AY176710</td>
</tr>
<tr>
<td>NTPDase4</td>
<td>BCO43134</td>
</tr>
<tr>
<td>NTPDase5</td>
<td>BCO15247</td>
</tr>
<tr>
<td>NTPDase6</td>
<td>BAE3807</td>
</tr>
<tr>
<td>NTPDase7</td>
<td>NM_053103</td>
</tr>
<tr>
<td>NTPDase8</td>
<td>AAQ4519</td>
</tr>
</tbody>
</table>

Table 2
Identified members of the NTPDase family in zebrafish.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Chromosome</th>
<th>Amino acid residues</th>
<th>ENSEMBL</th>
<th>Accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>entpd1</td>
<td>NTPDase1</td>
<td>12</td>
<td>492</td>
<td>ENSDARP00000006256</td>
<td>AAH78240</td>
</tr>
<tr>
<td></td>
<td>entpd2_mg</td>
<td>21</td>
<td>509</td>
<td>ENSDARP00000043258</td>
<td>XP_697600</td>
</tr>
<tr>
<td></td>
<td>entpd2_mq</td>
<td>5</td>
<td>497</td>
<td>ENSDARP000000051433</td>
<td>XP_677722</td>
</tr>
<tr>
<td></td>
<td>entpd2_mv</td>
<td>5</td>
<td>502</td>
<td>ENSDARP000000084026</td>
<td>AAU15509</td>
</tr>
<tr>
<td></td>
<td>entpd3</td>
<td>16</td>
<td>518</td>
<td>ENSDARP000000065073</td>
<td>NP_001002419</td>
</tr>
<tr>
<td></td>
<td>entpd4</td>
<td>8</td>
<td>611</td>
<td>ENSDARP00000007620</td>
<td>NP_001017862</td>
</tr>
<tr>
<td></td>
<td>entpd5_ms</td>
<td>17</td>
<td>450</td>
<td>ENSDARP00000006256</td>
<td>NP_001002379</td>
</tr>
<tr>
<td></td>
<td>entpd5_me</td>
<td>25</td>
<td>525</td>
<td>ENSDARP00000006256</td>
<td>NP_001002379</td>
</tr>
<tr>
<td></td>
<td>entpd6</td>
<td>17</td>
<td>442</td>
<td>ENSDARP00000006256</td>
<td>NP_001002379</td>
</tr>
</tbody>
</table>

1 M betain for PCR experiments on the three entpd2 genes. The entpd1 and entpd5_ms reactions were performed using 3 mM MgCl2 and 1 M betain was also employed for entpd1 amplification. PCR assays for the entpd8 gene were carried out using 2.5 mM MgCl2, 0.2 mM dNTP and 1 U Taq Platinum. All PCR experiments were performed using 1 μl of template cDNA.

The following conditions were used for PCR reactions: 1 min at 94°C, 1 min at the annealing temperature (see Table 3), 1 min at 72°C for 30 cycles (for entpd3, entpd4, entpd5_me, and entpd6) and for 35 cycles (for β-actin, entpd1, entpd2_mg, entpd2_mq, entpd2_mv, entpd5_ms, and entpd6) with a further post-extension cycle at 72°C.
for 10 min. A negative control was included for each set of PCR reactions. PCR products were separated on a 1.0% agarose gel with GelRed 10× and visualized with ultraviolet light. The fragment lengths expected for the PCR reactions were confirmed using Low DNA Mass Ladder and β-actin was determined as an internal standard. Band intensities were analyzed by optical densitometry using the software ImageJ 1.37 for Windows after running all PCR products in a single gel.

2.7. Statistical analysis

All assays were performed in triplicate and means ± S.E.M. of at least three independent experiments were presented. Data were analyzed by one-way analysis of variance (ANOVA). Post-hoc comparisons were made using Tukey’s HSD test (for gene expression data) or Dunnett’s Multiple Comparison Test (for the experiments with inhibitors) and differences were considered statistically significant at a P ≤ 0.05 level.

3. Results

3.1. Nucleotide hydrolysis in zebrafish tissues

The ability of different zebrafish tissues to hydrolyze both ATP and ADP was tested as a function of time and protein concentration in order to determine the correct assay conditions (Fig. 1). The incubation with the respective nucleotides (1 mM) showed that the time courses for ATP and ADP hydrolysis were linear up to 40 min for the brain and liver (Fig. 1A and B) and up to 60 min for the heart (Fig. 1C). Furthermore, nucleotide hydrolysis increased as a function of protein concentration and product formation was linear in the range of 3–10 μg protein in the incubation medium for the brain and liver (Fig. 1D and E) and 3–5 μg protein for the heart (Fig. 1F).

Concerning nucleotide preference, further experiments using 3–5 μg protein and an incubation time of 20 min (brain and liver) and 30 min (heart) demonstrated that ADP hydrolysis was significantly lower than ATP hydrolysis in the brain (36%) and heart (49%), whereas no significant difference was found in the liver (data not shown).

The correlation between NTPDase activities with ATPases and alkaline phosphatase was also evaluated. The classical inhibitors of Na+–K+–ATPase (ouabain and orthovanadate), Ca2+–Mg2+-ATPase (NEM), alkaline phosphatase (levamisole), and adenylate kinase (P1,P5-di(adenosine 5′-)-pentaphosphate, Ap5A) did not induce significant changes in nucleotide hydrolysis in zebrafish tissues (data not shown). However, some compounds associated with an inhibitory effect on NTPDase activities did alter the nucleotide hydrolysis in brain (Fig. 2A), liver (Fig. 2B) and heart (Fig. 2C). Sodium azide (20 mM), which has been considered an inhibitor of ATP diphosphohydrolase from several sources, significantly inhibited ATP and ADP hydrolysis in brain (34% and 63%, respectively), liver (34% and 30%, respectively), and heart (45% and 40% respectively).

Fig. 1. Time courses (A–C) for Ca2+-ATP and Ca2+-ADP hydrolysis in 3–5 μg fractions of zebrafish brain (A), liver (B), and heart (C). Effect of different protein concentrations (D–F) on Ca2+-ATP and Ca2+-ADP hydrolysis in zebrafish brain (D), liver (E), and heart (F). Data represent means ± S.E.M of four different experiments, each in duplicate.
distinct zebrafish NTPDase family members was investigated. The well-known Homo sapiens and Mus musculus NTPDase proteins were used as queries to obtain the zebrafish NTPDase orthologs. Searches in GenBank, ENSEMBL, and ZFIN databases led to the identification of ten putative NTPDase sequences (Table 2). The phylogeny constructed resulted in eight well-resolved terminal clades confirming the presence of ten NTPDase orthologs for zebrafish. The graphic depiction of a multiple sequence alignment of zebrafish and mammalian members of the NTPDase family illustrates the subdivision of the family into surface-located and intracellular enzymes (Fig. 3). Among all identified sequences, five members (NTPDase1, three NTPDase2 paralogs, and NTPDase3) had been previously shown to exist (Rico et al., 2006; Appelbaum et al., 2007). However, two NTPDase5 paralogs (NTPDase5_ms and NTPDase5_sh), NTPDase6, and NTPDase8 orthologs were identified by phylogenetic analysis for the first time. The putative NTPDase8 sequence was obtained only when mammalian orthologs were compared to the zebrafish protein database at ENSEMBL. The searches performed did not allow the identification of a zebrafish NTPDase7 sequence.

3.3. Properties of the NTPDase members in zebrafish

The chromosome location, accession numbers (GenBank, ENSEMBL, and ZFIN), and number of amino acid residues of the distinct zebrafish NTPDase members are presented in Table 2. In order to compare the zebrafish proteins with their mammalian orthologs, the deduced amino acid sequences were aligned and the percent identity and similarity were determined.

The relatedness between the surface-located and intracellular NTPDase members is shown in Table 4A and 4B, respectively. Zebrafish sequences generally have a percent identity of around 50% when compared to mouse and human NTPDase orthologs. Nevertheless, NTPDase4 exhibits a percent identity of around 70% when compared to the respective mouse and human orthologs. The high percent identity and similarity among vertebrate NTPDase proteins indicate that this enzyme family is highly conserved within organisms. The deduced amino acid alignment among zebrafish NTPDase sequences allowed the identification of the five apyrase conserved regions (ACRs), conserved cysteine residues, transmembrane domains, possible signal peptides, and putative regulatory sites related to posttranslational modifications (Fig. 4).

The presence of two hydrophobic domains was predicted for most zebrafish NTPDase ortholog sequences. However, NTPDase2_sh presented a single transmembrane domain at the C-terminal region. Meanwhile, analysis of zebrafish NTPDase5_sh, NTPDase6 and NTPDase8 showed the presence of one transmembrane domain at the N-terminal region, whereas the predicted NTPDase5_sh sequence did not contain a characteristic hydrophobic domain at all. Several predicted cysteine residues and putative posttranslational modification sites were aligned consistently among the enzymes, suggesting a possible conservation of these amino acid residues in the zebrafish NTPDase family (Fig. 4).

3.4. Transcriptional analysis of entpd genes

Considering the presence of NTPDase activity in zebrafish tissues and the identification of distinct members of this enzyme family in this species, the relative entpd gene expression profile in the brain, liver, and heart was determined by RT-PCR experiments (Fig. 5). The PCR products obtained for each entpd primer were specific, displayed the expected fragment sizes and were identical to their respective sequences retrieved from databases. Higher amounts of entpd1 and entpd3 transcripts were detected in brain, with an intermediate expression level in liver, while less abundant mRNA was found in heart. Concerning the three entpd2 paralogs, it was found that all these genes are differently expressed in zebrafish tissues. The
entpd2_mg and entpd2_mq genes were less expressed in liver when compared to brain, and large amounts of transcripts of entpd2 paralogs were detected in heart. Brain and liver had similar levels of entpd4 transcripts, whereas a lower entpd4 expression was detected in heart. In relation to entpd5 expression, the entpd5_ms was highly expressed in brain and less expressed in heart. The expression of the entpd5_me gene was also investigated and the results demonstrated that a similar amount of mRNA was present in brain and liver, with a lower abundance in heart. Expression of the entpd6 gene was similar in the three tissues tested, while a lower mRNA level for entpd8 was detected in brain when compared to liver and heart. Representative RT-PCR experiments demonstrating the β-actin amplification (Fig. 5A) and entpd expression profile of the surface-located enzymes (Fig. 5B) and intracellular NTPDase members (Fig. 5C) are shown.

4. Discussion

In the present report we describe some biochemical and molecular features of the NTPDase family in zebrafish. Although the presence of ATP and/or ADP hydrolyzing activity had been described for several decades in distinct cell types, the molecular identity of the first member of the NTPDase family (entpd1) remained unknown until the mid-1990s (Robson et al., 2006). Since the structural and functional characterization of the ionotropic P2X receptor from zebrafish suggested that ATP-mediated responses were selected early in the vertebrate phylogeny (Boüé-Grabot et al., 2000), several studies have shown the importance of purinergic signaling in this species (Kucenas et al., 2003; Rico et al., 2003; Senger et al., 2004; Ricatti et al., 2009). However, besides the identification and confirmation of different NTPDase sequences by a phylogenetic analysis, this is the first study to demonstrate the mRNA expression profile of all the entpd family members identified so far in the brain, liver, and heart of zebrafish. Thus, it appears that these tissues are able to hydrolyze both ATP and ADP in a divalent cation-dependent manner.

Here we demonstrate an easy and rapid tissue preparation useful for studying the nucleotide hydrolysis and the influence of several inhibitors on NTPDase activities in different zebrafish organs that require a small amount of protein for enzyme assays (3–5 μg). The distinct ATPase inhibitors tested did not cause any significant changes in ATP and ADP hydrolysis in zebrafish brain, liver, and heart. Therefore, a possible contamination with classical ATPases in our fraction did not significantly influence nucleotide hydrolysis in the tissues analyzed. Moreover, Ca²⁺-ATP was chosen as the substrate in this study because it can also eliminate interference by P-type ATPases, which are not activated by Ca²⁺ alone. Sodium azide is a well-known inhibitor of the mitochondrial ATPase, acting on both F₀F₁ and soluble F₁, indicating that the inhibitory site for azide is on F₁, with an I₅₀ of 0.04 mM (Pullman et al., 1960). However, it has been reported that high concentrations of this compound are able to inhibit ATP diphosphohydrolase activity from several sources, including the ATP and ADP hydrolysis in zebrafish brain membranes (Plesner, 1995; Rico et al., 2003; Rücker et al., 2008). In our experiments, 20 mM sodium azide significantly decreased both ATP and ADP hydrolysis in the brain, liver, and heart. Meanwhile, ARL 67156 and Suramin, two
A

<table>
<thead>
<tr>
<th>DrD1</th>
<th>HsD1</th>
<th>MmD1</th>
<th>DrD2_mg</th>
<th>DrD2_mq</th>
<th>DrD2_mv</th>
<th>HsD2</th>
<th>MmD2</th>
<th>DrD3</th>
<th>HsD3</th>
<th>MmD3</th>
<th>DrD8</th>
<th>HsD8</th>
<th>MmD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD1</td>
<td>68.5</td>
<td>75.0</td>
<td>40.5</td>
<td>42.1</td>
<td>42.1</td>
<td>41.0</td>
<td>38.9</td>
<td>43.1</td>
<td>40.5</td>
<td>40.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>DrD4</th>
<th>HsD4</th>
<th>MmD4</th>
<th>DrD5_m</th>
<th>HsD5</th>
<th>MmD5</th>
<th>DrD6</th>
<th>HsD6</th>
<th>MmD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD4</td>
<td>64.8</td>
<td>70.1</td>
<td>20.1</td>
<td>18.8</td>
<td>20.1</td>
<td>20.6</td>
<td>20.6</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Note: The percentage of amino acid identity (black boxes) and similarity (gray boxes) between the proteins was determined by the scoring matrix BLOSUM62 using MatGAT 2.01 software.

A — Comparison between surface-located NTPDase members.
B — Comparison between intracellular NTPDase members.

ATPase inhibitors, differentially altered the nucleotide hydrolysis assayed. In comparison to ARL 67156, Suramin was a more potent inhibitor of nucleotide hydrolysis in zebrafish tissues even though ARL 67156 had a partial, but significant inhibitory effect on ADP hydrolysis in brain. It has been recently reported that ARL 67156 is a weak competitive inhibitor of human NTPDase1 and NTPDase3, and partially inhibits the mouse and human forms of these enzymes in the micromolar range, being less effective against NTPDase2 and NTPDase8 (Lévesque et al., 2007). In another work Suramin was also observed to strongly inhibit both ecto-ATPase and -ADPase hydrolytic activities in recombinant *Trypanosoma cruzi* NTPDase-1 and in live trypomastigotes (Santos et al., 2009) at the same concentrations assayed. In comparison to ARL 67156, Suramin was a more potent inhibitor of nucleotide hydrolysis in zebra.

Relatedness between the *Danio rerio* (Dr) NTPDase (D) proteins and their *Homo sapiens* (Hs) and *Mus musculus* (Mm) orthologs.

<table>
<thead>
<tr>
<th>A</th>
<th>DrD1</th>
<th>HsD1</th>
<th>MmD1</th>
<th>DrD2_mg</th>
<th>DrD2_mq</th>
<th>DrD2_mv</th>
<th>HsD2</th>
<th>MmD2</th>
<th>DrD3</th>
<th>HsD3</th>
<th>MmD3</th>
<th>DrD8</th>
<th>HsD8</th>
<th>MmD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD1</td>
<td>68.5</td>
<td>75.0</td>
<td>40.5</td>
<td>42.1</td>
<td>42.1</td>
<td>41.0</td>
<td>38.9</td>
<td>43.1</td>
<td>40.5</td>
<td>40.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>DrD4</th>
<th>HsD4</th>
<th>MmD4</th>
<th>DrD5 m</th>
<th>HsD5</th>
<th>MmD5</th>
<th>DrD6</th>
<th>HsD6</th>
<th>MmD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD4</td>
<td>64.8</td>
<td>70.1</td>
<td>20.1</td>
<td>18.8</td>
<td>20.1</td>
<td>20.6</td>
<td>20.6</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Note: The percentage of amino acid identity (black boxes) and similarity (gray boxes) between the proteins was determined by the scoring matrix BLOSUM62 using MatGAT 2.01 software.

A — Comparison between surface-located NTPDase members.
B — Comparison between intracellular NTPDase members.

ATPase inhibitors, differentially altered the nucleotide hydrolysis assayed. In comparison to ARL 67156, Suramin was a more potent inhibitor of nucleotide hydrolysis in zebrafish tissues even though ARL 67156 had a partial, but significant inhibitory effect on ADP hydrolysis in brain. It has been recently reported that ARL 67156 is a weak competitive inhibitor of human NTPDase1 and NTPDase3, and partially inhibits the mouse and human forms of these enzymes in the micromolar range, being less effective against NTPDase2 and NTPDase8 (Lévesque et al., 2007). In another work Suramin was also observed to strongly inhibit both ecto-ATPase and -ADPase hydrolytic activities in recombinant *Trypanosoma cruzi* NTPDase-1 and in live trypomastigotes (Santos et al., 2009) at the same concentrations assayed. In comparison to ARL 67156, Suramin was a more potent inhibitor of nucleotide hydrolysis in zebra.

Relatedness between the *Danio rerio* (Dr) NTPDase (D) proteins and their *Homo sapiens* (Hs) and *Mus musculus* (Mm) orthologs.

<table>
<thead>
<tr>
<th>A</th>
<th>DrD1</th>
<th>HsD1</th>
<th>MmD1</th>
<th>DrD2_mg</th>
<th>DrD2_mq</th>
<th>DrD2_mv</th>
<th>HsD2</th>
<th>MmD2</th>
<th>DrD3</th>
<th>HsD3</th>
<th>MmD3</th>
<th>DrD8</th>
<th>HsD8</th>
<th>MmD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD1</td>
<td>68.5</td>
<td>75.0</td>
<td>40.5</td>
<td>42.1</td>
<td>42.1</td>
<td>41.0</td>
<td>38.9</td>
<td>43.1</td>
<td>40.5</td>
<td>40.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>DrD4</th>
<th>HsD4</th>
<th>MmD4</th>
<th>DrD5 m</th>
<th>HsD5</th>
<th>MmD5</th>
<th>DrD6</th>
<th>HsD6</th>
<th>MmD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrD4</td>
<td>64.8</td>
<td>70.1</td>
<td>20.1</td>
<td>18.8</td>
<td>20.1</td>
<td>20.6</td>
<td>20.6</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Note: The percentage of amino acid identity (black boxes) and similarity (gray boxes) between the proteins was determined by the scoring matrix BLOSUM62 using MatGAT 2.01 software.

A — Comparison between surface-located NTPDase members.
B — Comparison between intracellular NTPDase members.
anchorage stability and enzyme activity. Although further studies are still required to clarify the involvement of hydrophobic domains in zebrafish NTPDase activities it is possible to speculate that NTPDase5_me might act as a soluble enzyme or even possess another membrane anchorage mechanism since its sequence did not present a characteristic transmembrane domain. Posttranslational processes are responsible for regulating several enzyme activities and modulate metabolic pathways. Although there

Fig. 4. Alignment of deduced amino acid sequences for the zebrafish NTPDase family members. The conserved apyrase domains (ACRs) are represented in the boxes. The transmembrane domains are underlined and the signal peptide from NTPDase5_ms is in bold face. Potential N-glycosylation and N-acetylation sites are shown by dotted lines and double underline, respectively. Conserved cysteine residues are bold face in black boxes. Putative PKA and PKC phosphorylation sites are marked in gray boxes with white and black letters, respectively. The asterisks (*) indicate similarities among all zebrafish NTPDase members after ClustalX alignment.
are no experimental data for phosphorylation mechanisms on ecutonucleotidas as so far, PKC target residues for zebrafish NTPDase members were also aligned with other putative PKC regulatory sites on mammalian orthologs, such as human Lys62 and Asn64 from the NTPDase2 sequence (data not shown). Given that both regions have been described as essential structural elements for the enzyme (Javed et al., 2007) the conservation of these phosphorylation sites could indicate that PKC activity may be important for the mediation of posttranslational events in vertebrate NTPDase members. In the same way, a previous study reported that N-termini of NTPDases also contain consensus sequences for protein phosphorylation by PKC (Kegel et al., 1997).

Here we also verified that conserved asparagine residues from zebrafish NTPDase1, NTPDase2, NTPDase3, and NTPDase8 (Asn69, Asn71, Asn61, Asn68, Asn85, and Asn 54, respectively) were predicted as putative N-glycosylation sites. A recent study showing asparagine-to-glutamine mutation at six individual potential N-linked glycosylation sites from human NTPDase2 established the importance for protein function and expression of Asn64, which is conserved in all cell surface NTPDases (Javed et al., 2007). The proximity of these respective residues with Asn64 from human NTPDase2 obtained by alignment of the sequences (data not shown), associated with the separation of NTPDase1-3 and 8 from NTPDase4-6 clades corroborated by our phylogenetic analysis, strongly supports the idea that these members act as ecto-enzymes in zebrafish.

The RT-PCR assays in the present study showed a distinct expression profile for the three entpd2 paralogs (entpd2_mg, mg, and mw) in zebrafish brain, as previously reported (Rico et al., 2006, 2008). Despite the lower entpd5_ms expression in heart, large amounts of entpd2 paralogs and entpd6 transcripts could be detected in this tissue. These data are in accordance with the literature, since NTPDase activity in rat left ventricle is associated with a high entpd2 expression and NTPDase6 may participate in homeostasis by playing a role in ADP hydrolysis in heart (Yeung et al., 2000; Rücker et al., 2008). Interestingly, in contrast to mammals, entpd8 transcripts were detected in zebrafish brain, even though at lower levels than in the liver and heart. The high entpd8 expression level detected in liver could indicate a possible relevance of this enzyme to the hepatic physiology of zebrafish since the main hepatic ecto-ATPase activity in mammals has been attributed to the canalicular entpd8 expression, which is involved in the regulation of bile secretion and/or nucleoside salvage (Fausther et al., 2007). In addition, the differential entpd1, entpd2, and entpd3 expression observed in zebrafish liver could be important for the regulation of several metabolic pathways since there is evidence that extracellular nucleotides play a role in the control of glycogenolysis and in the activation of JNK signaling (Keppens et al., 1989; Thevananther et al., 2004; Robson et al., 2006). Furthermore, the presence of at least two members of the surface-located NTPDase family has been observed in intact goldfish hepatocytes, suggesting that distinct enzymes may account for the hydrolysis of extracellular nucleotides in the liver of this teleost (Alleva et al., 2002). Despite the identification of ten distinct entpd transcripts, the possibility remains that splice variants exist for the NTPDase members, since transcript variants from NTPDases have already been demonstrated in different organisms (Vlajkovic et al., 1999; Biederbick et al., 2000; Mateo et al., 2003). Thus, the involvement of possible NTPDase isoforms in nucleotide hydrolysis in zebrafish tissues still requires further investigation.

In conclusion, our findings demonstrate that several NTPDase members may hydrolyze tri- and diphosphonucleosides in zebrafish tissues. Our data reinforce the idea that zebrafish represent a useful vertebrate model for studying distinct purinergic signaling parameters. The elucidation of zebrafish NTPDase members should certainly contribute to better understanding of this enzyme family in this species.

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amaro à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and by the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)” #01.06.0842-00. D.B.R was a recipient of a fellowship from CAPES; E.P.R and A.S.L were recipients of fellowships from CNPq; J.T.S. was a recipient of a fellowship from FAPERGS. The authors would like to thank to Dr. Gareth Cuttle for the English correction and editing of the manuscript.

References

Fig. 5. Relative expression profiles of the entpd genes in different adult zebrafish tissues. The figure shows representative RT-PCR experiments and the optical densitometry analysis for β-actin (A) and entpd members (surface-located enzymes (B) and intracellular NTPDases (C)). Four independent experiments were performed, with entirely consistent results (ANOVA, followed by Tukey HSD test as post-hoc, P≤0.05).

