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Carbamazepine (CBZ), phenytoin (PHT), and gabapentine (GBP) are classical antiepileptic drugs (AEDs)
that act through a variety of mechanisms. We have tested the in vitro effects of CBZ, PHT, and GBP at dif-
ferent concentrations on ectonucleotidase and acetylcholinesterase activities in zebrafish brain. CBZ
inhibited ATP hydrolysis at 1000 lM (32%) whereas acetylcholine hydrolysis decreased at 500 lM
(25.2%) and 1000 lM (38.7%). PHT increased AMP hydrolysis both at 500 lM (65%) and 1000 lM
(64.8%). GBP did not promote any significant changes on ectonucleotidase and acetylcholinesterase activ-
ities. These results have shown that CBZ can reduce NTPDase (nucleoside triphosphate diphosphohydro-
lase) and PHT enhance ecto 50-nucleotidase activities. Therefore, it is possible to suggest that the AEDs
induced-effects on ectonucleotidases are related to enzyme anchorage form. Our findings have also
shown that high CBZ concentrations inhibit acetylcholinesterase activity, which can induce an increase
of acetylcholine levels. Taken together, these results showed a complex interaction among AEDs, puriner-
gic, and cholinergic systems, providing a better understanding of the AEDs pharmacodynamics.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Epilepsy, a neurological disorder characterized by the occur-
rence of spontaneous recurrent seizures, is one of the most com-
mon pathologies of the central nervous system (CNS), affecting
individuals of all ages (Badawy et al., 2009; Banerjee et al., 2009).
Epilepsy damages the brain as a whole showing significant influ-
ence on dynamic and functional properties, mental development,
cognition, and behavior (Hamed, 2009). Classical AEDs such as
GBP, PHT, and CBZ work through a variety of mechanisms, often
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acting to suppress ion channels, promote gabaergic neurotransmis-
sion, and/or decrease glutamatergic neurotransmission. AEDs may
be used for the treatment of several types of epilepsy and GBP, PHT
and CBZ are treatments for partial and generalized tonic-clonic sei-
zures (Rogawski and Löscher, 2004). Studies have suggested that
AEDs can interfere in the purinergic (Borowicz et al., 1997, 2002)
and cholinergic systems in CNS (Boccia et al., 2001; D’Antuono
et al., 2007).

The purinergic system employs extracellular nucleotides as sig-
naling molecules. ATP is a neurotransmitter co-released with other
signaling molecules, such as glutamate, GABA, and acetylcholine in
different subpopulations of neurons in CNS. ATP acts through acti-
vation of G-protein-coupled P2Y receptors and P2X ionotropic
receptors, linked to Ca2+ channels (Burnstock, 2004, 2009; Pankra-
tov et al., 2009). Extracellular nucleotides can be hydrolyzed by a
variety of soluble or cell-surface-located enzymes named ectonu-
cleotidases (Zimmermann et al., 1998). Nucleoside 50-tri- and
diphosphates may be hydrolyzed by members of the ectonucleo-
side triphosphate diphosphohydrolase (E-NTPDase), ectonucleo-
side pyrophosphatase/phosphodiesterase (E-NPP) and alkaline
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phosphatase protein families. AMP may be hydrolyzed by the ecto-
50-nucleotidase family and alkaline phosphatases to produce the
nucleoside adenosine (for review see Abbracchio et al. (2009)). In
this way, ectonucleotidases control the availability of ligands
(ATP, ADP, AMP and adenosine) for both nucleotide and nucleoside
receptors and, consequently, the extent and duration of receptor
activation (Chen and Guidotti, 2001). Therefore, this is an enzy-
matic pathway with double function of removing one signaling
molecule, ATP, and generating a second one, adenosine, a well-
known neuromodulator (Zimmermann, 2006; Abbracchio et al.,
2009; Burnstock and Verkhratsky, 2009). Adenosine acts through
four known subtypes of P1 metabotropic receptors (A1, A2A, A2B

and A3) and reduces excessive neuronal activity through inhibitory
A1 receptors, acting as an endogenous anticonvulsant (Fredholm
et al., 2001; Sebastião and Ribeiro, 2009). Adenosine modulates
the acetylcholine release through A1 receptor-mediated inhibition
or by A2A receptor-mediated facilitation of release (Cunha, 2001).

In cholinergic neurotransmission, acetylcholine is synthesized
by cholineacetyltransferase in the presynaptic neuron, then re-
leased into the synaptic cleft and bound to muscarinic (metabotro-
pic) and nicotinic (ionotropic) acetylcholine receptors. After its
release, acetylcholine is degraded by the cholinesterases that
cleave acetylcholine into choline and acetate. Two different types
of cholinesterases are able to hydrolyze acetylcholine:acetylcholin-
esterase (AChE) (E.C.3.1.1.7) and butyrylcholinesterase (BuChE)
(E.C.3.1.1.8) (Soreq and Seidman, 2001). Cholinergic mechanisms,
in particular those related to the activation of muscarinic recep-
tors, regulate brain excitability and can promote and maintain syn-
chronous epileptiform discharges (Liu et al., 1994; Nagao et al.,
1996; Dickson and Alonso, 1997). Moreover, cholinergic agents,
such as pilocarpine, produce limbic seizures that are followed by
histopathological changes resembling that encountered in tempo-
ral lobe epileptic patients (Turski et al., 1989; Mello et al., 1993).

PHT and CBZ blocked the pilocarpine-induced increase on ATP,
ADP, and AMP hydrolysis in synaptosomes from hippocampus and
cerebral cortex in rats (Cognato et al., 2007). Moreover, CBZ inhib-
ited in vitro ATP hydrolysis from synaptosomal plasma membranes
(Horvat et al., 2006). GBP and other AEDs, when administered to-
gether with adenosine receptor antagonists, showed decreased ef-
fect in mice models of seizure (Zuchora et al., 2004). In rats, the
supraeffective dose of CBZ (100 mg/kg) inhibited the activities of
acetylcholinesterase (9.5%) and butyrylcholinesterase (24.7%)
whereas the effective dose of CBZ (25 mg/kg) did not alter acetyl-
choline degradation (Mizuno et al., 2000). Moreover, Sudha et al.
(1995) showed that PHT decreased acetylcholinesterase activity
in the hippocampus (50 and 75 mg/kg) and in the striatum
(75 mg/kg).

Zebrafish is a small freshwater teleost fish that has been used to
study learning and memory process, development, pharmacology,
toxicology, behavior, and teratology (Kosmehl et al., 2008; Bencan
et al., 2009; Gerlai et al., 2009; Ingham, 2009; Yang et al., 2009).
This specie has been used as a tool for the study of seizure and
to screen potential novel AEDs (Baraban et al., 2005; Baraban,
2007; Berghmans et al., 2007). NTPDase and ecto-50-nucleotidase
activities have been characterized in zebrafish in our laboratory
(Rico et al., 2003; Senger et al., 2004). Acetylcholinesterase is en-
coded by a single gene and butyrylcholinesterase was not found
in zebrafish genome (Clemente et al., 2004). Other drugs used for
neurological disorder treatments were tested in vitro (haloperidol,
olanzapine, and sulpiride) and inhibited NTPDase and acetylcholin-
esterase activities whereas did not change ecto-50-nucleotidase
activity in zebrafish brain (Seibt et al., 2009a,b). However, haloper-
idol significantly increased the acetylcholinesterase activity after
in vivo treatments (Seibt et al., 2009b).

Considering that zebrafish may be a model organism to study
human diseases and drug mechanisms, and purinergic and cholin-
ergic systems have been described in this specie, the aim of this
study was to evaluate the in vitro effects of different concentrations
of the antiepileptic drugs GBP, PHT, and CBZ on ectonucleotidase
and acetylcholinesterase activities of zebrafish brain.
2. Materials and methods

2.1. Animals

Adult wild-type zebrafish (Danio rerio) of both sexes were ob-
tained from a commercial supplier (Red Fish, RS, Brazil) and accli-
mated for 2 weeks before the experiments in a 50 l thermostated
aquarium filled with continuously aerated and unchlorinated
water. The fish were conditioned at 26 ± 2 �C under a 14–10 h
light/dark cycle photoperiod. The animals were maintained
healthy and free of any signs of disease and fed twice a day with
commercial food for fish. The use and maintenance of zebrafish
were according to the ‘‘Guide for the Care and Use of Laboratory
Animals” published by the US National Institutes of Health. The
protocol was approved by the Ethics Committee of Pontifical Cath-
olic University of Rio Grande do Sul (PUCRS) under the number
085/06-CEP.

2.2. Chemicals

PHT, GBP, CBZ, acetylthiocholine, 5,50-dithiobis-(2-nitrobenzoic
acid) (DTNB), Trizma Base, EDTA, EGTA, sodium citrate, Coomassie
blue, bovine serum albumin, malachite green, ammonium molyb-
date, polyvinyl alcohol, nucleotides, calcium, and magnesium chlo-
ride were purchased from Sigma Chemical Co. (St. Louis, MO, USA).
All other reagents used were from analytical grade.

2.3. In vitro treatments

PHT, GBP, and CBZ were tested at 10, 50, 100, 500, and 1000 lM.
PHT and GBP were diluted in deionized water. CBZ was diluted in
2% ethanol. Control treatments with equal volume of vehicle were
performed to exclude the ethanol effect on the enzyme activities.
Antiepileptic drugs were added to the reaction medium before
the preincubation with the enzyme and were maintained during
the enzyme assays.

2.4. Determination of ectonucleotidase activities

The brain membranes for the ectonucleotidase assays were pre-
pared as described previously by Barnes et al. (1993). For each
membrane preparation, a pool of five whole brains was obtained
and briefly homogenized in 60 vol. (v/w) of chilled Tris–citrate buf-
fer (50 mM Tris, 2 mM EDTA, 2 mM EGTA, pH 7.4) in a glass-Teflon
homogenizer. This homogenate was centrifuged at 1000g for
10 min and the pellet was discarded in order to remove cell debris.
The supernatant was centrifuged for 25 min at 40,000g. The resul-
tant pellet was frozen in liquid nitrogen and thawed in order to en-
sure the lysis of the brain membranes. The pellet was resuspended
in Tris–citrate buffer and centrifuged for 20 min at 40,000g. The fi-
nal pellet was resuspended and used in the enzyme assays. The
samples were maintained at 2–4 �C throughout preparation.

NTPDase and 50-nucleotidase assays were performed as de-
scribed previously (Rico et al., 2003; Senger et al., 2004). Brain
membranes of zebrafish (3 lg protein for NTPDase and 5 lg pro-
tein for 50-nucleotidase) were added to the reaction medium con-
taining 50 mM Tris–HCl (pH 8.0) and 5 mM CaCl2 (for the
NTPDase activity) or 50 mM Tris–HCl (pH 7.2) and 5 mM MgCl2

(for the 50-nucleotidase activity) at a total volume of 200 ll. The
samples were preincubated for 10 min at 37 �C and the reaction



Fig. 1. In vitro effect of carbamazepine on ATP hydrolysis evaluated in different
concentrations (10–1000 lM). Bars represent the mean ± S.D. The symbol (�)
indicates significantly difference when compared to the ethanol group. The specific
enzyme activity is reported as nanomole of inorganic phosphate released per
minute per milligram of protein.

Fig. 2. In vitro effect of carbamazepine on acetylcholine hydrolysis evaluated in
different concentrations (10–1000 lM). Bars represent the mean ± S.D. The symbol
(�) indicates significantly difference when compared to the ethanol group. The
specific enzyme activity is reported as micromole of thiocholine released per hour
per milligram of protein.
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was initiated by the addition of substrate (ATP, ADP or AMP) to a
final concentration of 1 mM. After 30 min the reaction was stopped
by the addition of 200 ll 10% trichloroacetic acid and the samples
were kept on ice during 10 min. In order to determine the inor-
ganic phosphate released (Pi) 1 ml of a colorimetric reagent com-
posed of 2.3% polyvinyl alcohol, 5.7% ammonium molybdate, and
0.08% malachite green was added to the samples for 20 min (Chan
et al., 1986). The quantification of inorganic phosphate (Pi) re-
leased was determined spectrophotometrically at 630 nm and
the specific activity was expressed as nanomole of Pi released
per minute per milligram of protein. In order to correct non-enzy-
matic hydrolysis of the substrates we used controls with the addi-
tion of the enzyme preparation after the addition of trichloroacetic
acid. Incubation times and protein concentrations were chosen to
ensure the linearity of the reactions. All enzyme assays were per-
formed in at least four different experiments, each one performed
in triplicate.

2.5. Determination of acetylcholinesterase activity

Zebrafish were euthanized and their whole brains were re-
moved by dissection. The brains (five whole brains for each sam-
ple) were homogenized on ice in 60 vol. (v/w) of 50 mM Tris–
HCl, pH 8.0, in a glass-Teflon homogenizer. Acetylcholinesterase
activity was measured as the method described previously (Ellman
et al., 1961) determining the rate of hydrolysis of acetylthiocholine
(ACSCh, 0.8 mM) in 2 ml assay solutions with 100 mM phosphate
buffer, pH 7.5, and 1.0 mM DTNB. Samples containing protein
(10 lg) and the reaction medium described above were preincu-
bated during 10 min at 25 �C followed by starting of reaction with
addition of substrate. The hydrolysis of substrate was monitored
by the formation of thiolate dianion of DTNB at 412 nm every
30 s for 2–3 min. The linearity of absorbance towards time and
protein concentration was previously determined. Acetylcholines-
terase activity was expressed as micromole of thiocholine (SCh) re-
leased per hour per milligram of protein. All enzyme assays were
performed in at least four different experiments, each one per-
formed in triplicate.

2.6. Protein determination

Protein was measured by the Coomassie blue method (Bradford,
1976) and bovine serum albumin was used as standard.

2.7. Statistical analysis

Results are expressed as means ± S.D. Data were analyzed by
one-way ANOVA followed by Duncan post-hoc test, considering
P < 0.05 as significant. SPSS 16.0 was used for statistical analysis.
Fig. 3. In vitro effect of phenytoin on AMP hydrolysis evaluated in different
concentrations (10–1000 lM). Bars represent the mean ± S.D. The symbol (�)
indicates significantly difference when compared to the control group. The specific
enzyme activity is reported as nanomole of inorganic phosphate released per
minute per milligram of protein.
3. Results

The in vitro effect of GBP, PHT, and CBZ (at concentrations rang-
ing from 10 to 1000 lM) was tested on acetylcholinesterase, NTP-
Dase, and ecto-50-nucleotidase activities in zebrafish brain. CBZ
significantly decreased (32%; P < 0.05) ATP hydrolysis at 1000 lM
(285 ± 63.06 nmol Pi min�1 mg�1 of protein) when compared to
the ethanol group (419.54 ± 111.17 nmol Pi min�1 mg�1 of protein)
(Fig. 1) whereas this drug did not alter both ADP and AMP hydro-
lysis (data not shown). The results demonstrated that CBZ inhib-
ited (25.2% and 38.7%, respectively; P < 0.05) acetylcholinesterase
activity at 500 lM (24.13 ± 5.35 lmol SCh h�1 mg�1 of protein)
and at 1000 lM (19.75 ± 3.76 lmol SCh h�1 mg�1 of protein) when
compared to the ethanol group (32.25 ± 6.49 lmol SCh h�1 mg�1 of
protein; Fig. 2).
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PHT significantly increased (65%; P < 0.05 and 64.8%; P < 0.05)
AMP hydrolysis at 500 lM (31.31 ± 7.42 nmol Pi min�1 mg�1 of pro-
tein) and 1000 lM (31.28 ± 6.14 nmol Pi min�1 mg�1 of protein)
when compared to the control group (18.98 ± 3.98 nmol
Pi min�1 mg�1 of protein; Fig. 3). However, PHT did not change
ATP, ADP, and acetylcholine hydrolysis (data not shown). Similarly,
GBP did not alter ATP, ADP, AMP, and acetylcholine hydrolysis (data
not shown).
4. Discussion

The interactions of AEDs and ectonucleotidases have been
investigated and these drugs have demonstrated different effects
in several studies. Cognato et al. (2007) observed the in vitro and
in vivo effects of PHT, valproate, and CBZ on ectonucleotidase activ-
ities in synaptosomes from hippocampus and cerebral cortex of
rats. These results have shown that these drugs did not alter the
ectonucleotidase activities both in vitro and in vivo experiments
in hippocampus and cerebral cortex. However, the authors ob-
served that previous treatment with CBZ and PHT can modulate
plastic events associated to the nucleotidase activities preventing
the pilocarpine-induced increase on ATP, ADP, and AMP hydrolysis
(Cognato et al., 2007). Horvat et al. (2006) observed ecto-ATPase
inhibition in rat brain synaptosomal plasma membranes treated
with CBZ. This effect may represent a potential neuromodulatory
action of this drug given that by inhibiting ecto-ATPase activities,
CBZ may increase the extracellular ATP content and decrease the
production of adenosine.

Ectonucleotidases modulate activation of P2 or P1 receptors by
controlling extracellular concentrations of ATP and adenosine.
NTPDase family, which hydrolyzes both nucleoside triphosphates
and diphosphates, comprises cell-surface-enzymes with an extra-
cellular active site, anchored to the membrane via two transmem-
brane domains that are essential to catalytic activity and substrate
specificity (Grinthal and Guidotti, 2006; Robson et al., 2006). The
ectonucleotidase chain is also constituted by ecto-50-nucleotidase,
which is able to promote the hydrolysis of nucleoside monophos-
phates to adenosine. Unlike NTPDases, ecto-50-nucleotidase is at-
tached to the extracellular membrane by a glycosyl
phosphatidylinositol (GPI) anchor (Sträter, 2006).

Changes in membrane constituents can affect membrane-
bound enzymes activity. Cholesterol depletion from membranes
of NTPDase1-expressing cells reduces ATPase activity to the same
extent as solubilization does (Papanikolaou et al., 2005). Intra
and intermolecular oxidative cross-linking decreases ATPase activ-
ity (Chiang and Knowles, 2008). These results showed that changes
at the balance between stability and mobility of the transmem-
brane domains can alter NTPDase activity (Grinthal and Guidotti,
2006).

Our findings demonstrated that CBZ decreased NTPDase
whereas did not change ecto-50-nucleotidase activities. A study
with human erythrocyte have shown that CBZ perturbed outer
moiety lipids inducing a disordering effect on the polar head
groups and acyl chains of the membrane lipid showing that CBZ
can lead interactions in membrane bilayer (Suwalsky et al.,
2006). Therefore, it is possible to suggest that the effects on NTP-
Dase activities induced by CBZ may be due to changes promoted
in the bilayer membrane. Previous studies from our laboratory
have shown that other drug classes, such as antidepressant (Pedr-
azza et al., 2007) and antipsychotic drugs (Seibt et al., 2009a) also
promoted different effects on NTPDase when compared with ecto-
50-nucleotidase activities, probably by modifying plasma
membranes.

PHT did not change NTPDase while significant increase of ecto-
50-nucleotidase activity was observed. Ecto-50-nucleotidase has
several functions, including generation of adenosine leading to
the activation of adenosine receptors (Hunsucker et al., 2005). This
enzymatic effect may represent further ways by PHT modulate the
neuronal activity. Adenosine is known to be very effective in the
suppression of seizures. Binding of adenosine to the high affinity
A1 receptor reduces excitability of the cells by modulation of Ca2+

and K+ fluxes and inhibits the release of various neurotransmitters,
such as glutamate, dopamine, serotonin, and acetylcholine (Boison,
2005, 2008).

Our results showed that CBZ and PHT can increase ATP and
adenosine levels, respectively. It is possible to suggest that these
effects are involved, at least partially, in the antiepileptic mecha-
nisms of these AEDs. Although it has been shown that adenosine
inhibits neurotransmission (Dunwiddie and Masino, 2001; Fred-
holm et al., 2005; Boison, 2008), some studies indicate that ATP
can also inhibit synaptic transmission (Yoshioka and Nakata,
2004; Nakata et al., 2005). The colocalization of A1 and P2Y1 recep-
tors in several regions in the brain suggests a potential heterodi-
merization and functional interaction mechanism between these
receptors. A1/P2Y1 heterodimerization forms an ATP-sensitive
adenosine receptor and ATP can work as an A1 agonist to inhibit
neurotransmission (Yoshioka and Nakata, 2004; Nakata et al.,
2005). Furthermore, a cross-talk of A1–P2Y1 receptors might be a
mechanism by which low and high concentrations of adenosine
or purines could regulate glutamate release (Tonazzini et al., 2007).

Acetylcholine is a neurotransmitter involved in essential brain
functions, including memory and learning (Shaked et al., 2008).
Acetylcholinesterase, the key enzyme that hydrolyzes and inacti-
vates acetylcholine, modulates also non-cholinergic functions,
such as glutamatergic and dopaminergic systems (Soreq and Seid-
man, 2001; Zimmermann and Soreq, 2006; Shaked et al., 2008).
Several studies have shown the cholinergic system is also involved
in the mechanisms related to epilepsy and acetylcholinesterase
inhibitors lead to an increase in acetylcholine levels inducing sei-
zures (Friedman et al., 2007; Pernot et al., 2009). Different studies
have demonstrated the effect of AEDs on acetylcholinesterase
activity and acetylcholine levels. Previous studies showed that cor-
tical injury and enhanced neural excitability are associated with
modifications in the isoform of acetylcholinesterase. The variation
in distribution patterns suggested a possible isoform shift of ace-
tylcholinesterase enzyme in epileptic brains from membrane ad-
hered AChE-S protein, located in cellular layers, to the soluble
AChE-R monomers, which may diffuse to extrasynaptic regions.
The results suggested an increased production of AChE-R mono-
mers, which may access the synaptic microenvironment and
potentially protect the epileptic tissue from cholinergic hyperexci-
tation (Zimmermann et al., 2008). In another study with rats,
chronic treatment with PHT (ranging from 5 to 75 mg/kg) did not
modify significantly the acetylcholinesterase activity in the motor
cortex, pyriform cortex, and olfactory bulb when compared to con-
trol group. On the other hand, PHT decreased acetylcholinesterase
activity in the hippocampus (50 and 75 mg/kg) and also in the stri-
atum (75 mg/kg) (Sudha et al., 1995). Likewise, in rats, acute treat-
ment with effective dose of CBZ (25 mg/kg) enhances acetylcholine
synthesis without affecting the degradation, increasing acetylcho-
line levels. The supraeffective tested dose of CBZ (100 mg/kg) de-
creased the activity of acetylcholinesterase and
butyrylcholinesterase and also inhibited acetylcholine synthesis,
reducing the levels of this neurotransmitter. Therefore, effective
dose of CBZ increased acetylcholine levels, which were reduced
by increasing of CBZ dose (Mizuno et al., 2000). It also has been re-
ported that CBZ had biphasic effects on acetylcholine release and
synthesis (Zhu et al., 2002).

Previous studies have shown the IC50 of CBZ for acetylcholines-
terase and butyrylcholinesterase activities were more than 300 lM
(Mizuno et al., 2000). The authors suggest that the inhibitory ef-
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fects of supraeffective CBZ concentrations on cholinesterase activ-
ities may not play a role in acetylcholine transmission (Mizuno
et al., 2000). In contrast, both toxic concentration of acetylcholine
receptor agonists, antagonists and cholinesterase inhibitor have
been shown to have proconvulsant activities, whereas low doses
of cholinesterase inhibitor reduced seizure activities (Bhattacharya
et al., 1991; Cruickshank et al., 1994). This evidence supports the
hypothesis that drastic elevation of cholinergic function induces sei-
zure activity. The therapeutic ranges of serum concentration of CBZ
are from 15 to 45 lM (Loiseau and Duche, 1995). Our results showed
an inhibitory effect on acetylcholinesterase only at high CBZ concen-
trations (500 and 1000 lM). Therefore, the inhibitory effect on ace-
tylcholinesterase at these high doses of CBZ could promote an
increase of acetylcholine levels, which could induce a seizure activ-
ity or a neurotoxic effect promoted by CBZ high concentrations. Here,
the CBZ biphasic profile also was observed in purinergic system. Our
results demonstrated a trend to increase ATP hydrolysis in the pres-
ence of low doses of CBZ (10 and 50 lM) and a decreased hydrolysis
of this neurotransmitter in high CBZ dose (1000 lM). Such results
demonstrate that CBZ induces a complex set of effects characterized
by a biphasic profile. Additional studies are required to verify the
in vivo effect of the high CBZ doses in the seizure activity and puriner-
gic and cholinergic transmission.

These findings indicate that AEDs could show different pharma-
cokinetic profile depending on relevant end points, such as route of
administration, dose of the drug tested and animal model used in
the study. However, there are some limitations about the side ef-
fects and resistance developed of AEDs. The discovery and screen-
ing of new molecular targets and AEDs may increase the treatment
spectrum, which will be reached with pharmacology studies focus-
ing to this issue (Stefan and Feuerstein, 2007; Bialer and White,
2010; Luna-Tortós et al., 2010). In summary, this study highlight
that enzymes related to purinergic and cholinergic systems can
be modulated by antiepileptic drugs in zebrafish. Furthermore,
these findings can contribute to a better understanding about the
pharmacology of classical AEDs and their interaction with puriner-
gic and cholinergic neurotransmission.
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