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Abstract

Depression is one of the most disabling diseases and causes a significant burden to both individual and society. Selective serotonin reuptake
inhibitors and tricyclic antidepressants, such as fluoxetine and nortriptyline, respectively, are commonly used in treatment for depression. These
antidepressants were tested on cerebral cortex and hippocampal synaptosomes after acute and chronic in vivo and in vitro treatments. In chronic
treatment, fluoxetine and nortriptyline decreased ATP hydrolysis (17.8% and 16.3%, respectively) in hippocampus. In cerebral cortex,
nortriptyline increased ATP (32.3%), ADP (51.8%), and AMP (59.5%) hydrolysis. However, fluoxetine decreased ATP (25.5%) hydrolysis and
increased ADP (80.1%) and AMP (33.3%) hydrolysis. Significant activation of ADP hydrolysis was also observed in acute treatment with
nortriptyline (49.8%) in cerebral cortex. However, in hippocampus, ATP (24.7%) and ADP (46.1%) hydrolysis were inhibited. Fluoxetine did not
alter enzyme activities in acute treatment for both structures. In addition, there were significant changes in NTPDase activities when fluoxetine and
nortriptyline (100, 250, and 500 µM) were tested in vitro. There was no inhibitory effect of fluoxetine and nortriptyline on AMP hydrolysis in
cerebral cortex and hippocampus. The findings showed that these antidepressant drugs can affect the ecto-nucleotidase pathway, suggesting that
the extracellular adenosine levels could be modulated by these drugs.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Depression is one of the most disabling diseases and causes
a significant burden to both individual and society. Moreover,
depression is a multifaceted disease in terms of symptoms, co-
morbidities and health complications and the treatment is dif-
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ficult due to the heterogeneity of the disease (Rosenzweig-
Lipson et al., 2007). Evidence suggests that brain regions as the
prefrontal cortex, amygdala, related parts of the striatum,
cingulate cortex, and hippocampus are involved in the
functional neuroanatomy of depression (Drevets et al., 1992;
Walsh et al., 2007; McEwen et al., 2002). The treatments for
depression comprise monoamine oxidase (MAO) inhibitors,
tricyclic antidepressants, serotonin reuptake inhibitors (SSRIs)
and both serotonin and noradrenaline reuptake inhibitors
(SNRIs) (Galeotti et al., 2002; Serra et al., 2006; Rosenzweig-
Lipson et al., 2007). Many investigators have reported that
administration of tricyclic antidepressants, such as nortriptyline,
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can result in inhibition of the presynaptic uptake of serotonin
(5-HT) and/or noradrenaline (NA) (Morishita and Aoki, 2002;
Stoll and Gentile, 2005; Su et al., 2007). In contrast, fluoxetine,
a selective inhibitor of serotonin reuptake, has little effects on
other neurotransmitters (Rossi et al., 2004; Cecconi et al., 2007;
Chen et al., 2007).

Serotonin and noradrenaline can be co-released with ATP,
which is considered a neurotransmitter and neuromodulator in
central nervous system (CNS) (Burnstock, 2004). Extracellular
ATP evokes responses by two subclasses of P2 purinoreceptors,
P2X and P2Y (Ralevic and Burnstock, 1998; Burnstock, 2007).
Inhibition of release via P2 receptors has been previously shown
for dopamine (neostriatum), noradrenaline (brain cortex and
hippocampus), and serotonin (cerebral cortex) (Koch et al.,
1997; von Kügelgen et al., 1997). The signaling actions induced
by extracellular ATP are directly correlated to the activity of
ecto-nucleotidases (Zimmermann, 2001; Robson et al., 2006).
Ecto-nucleotidases are involved in the control of nucleotide and
nucleoside levels in the synaptic cleft and include NTPDase
(nucleoside triphosphate diphosphohydrolase) family and ecto-
5′-nucleotidase (Zimmermann, 2001). Four members of the
NTPDase family (NTPDase1–3 and 8) are tightly bound to the
plasma membrane via two transmembrane domains, and have a
large extracellular region with an active site facing the
extracellular side (Bigonnesse et al., 2004; Robson et al.,
2006). These enzymes reveal a wide and partially overlapping
tissue distribution. Northern hybridization suggests that the three
related family members NTPDase1 to NTPDase3 are expressed
in mammalian brain (Zimmermann and Braun, 1999). More-
over, NTPDase1 is a major ecto-nucleotidase of both microglia
and blood vessels in the brain (Braun et al., 2000). Adenosine, a
product of ATP catabolism, can evoke its neuromodulatory
effects by four subtypes of P1-purinoreceptors named A1, A2A,
A2B and A3 (Brundege and Dunwiddie, 1997; Cunha, 2001;
Dunwiddie and Masino, 2001; Cunha, 2005). Studies have
shown that adenosine modulates cognitive states and is asso-
ciated with affective and mood disorders, such as anxiety and
depression (Ledent et al., 1997; Florio et al., 1998; Kaster et al.,
2004). Moreover, it has been shown that hippocampal
serotonergic neurotransmission is modulated by hippocampal
adenosine receptor subtypes (Okada et al., 1999).

Considering that (i) adenosine and ATP are able to modulate
5-HT release, (ii) 5-HTand NA can be co-released with ATP and
(iii) the action of ecto-nucleotidases represents one of the most
important sources of extracellular adenosine, the aim of this
study was to evaluate the effect in vivo and in vitro of fluoxetine
and nortriptyline on the ecto-nucleotidases in synaptosomes
from hippocampus and cerebral cortex of rats.

2. Materials and methods

2.1. Chemicals

Fluoxetine, nortriptyline, nucleotides, Trizma Base, mala-
chite green, ammonium molybdate, polyvinyl alcohol,
EDTA, EGTA, sodium citrate, Coomassie Blue G, bovine
serum albumin, calcium, and magnesium chloride were pur-
chased from Sigma (USA). All other reagents used were of
analytical grade.

2.2. Animals

Male Wistar rats (age around 90 days, with 260–320 g) from
our breeding stock were housed four to a cage, with food and
water ad libitum. The animal house temperatures were kept
between 22 and 23 °C with a 12-h light/dark cycle (lights on at
07:00). Animal care followed the Guide for the Care and Use of
Laboratory Animals (NIH, USA), the official governmental
guidelines in compliance with the Federation of Brazilian
Societies for Experimental Biology and was approved by the
Ethics Committee (CEP 06/03016) of the Pontificia Universi-
dade Católica do Rio Grande do Sul, Brazil.

2.3. In vivo treatments

2.3.1. Acute treatment
Animals received one single injection intraperitonially (i.p.)

(10 mg/kg) of fluoxetine or nortriptyline 1 h before they were
killed (Zanatta et al., 2001; Borelli et al., 2004; Ejsing and
Linnet, 2005; Drapier et al., 2006; Marx et al., 2006). Control
animals received saline injections (0.9% NaCl) in the same
volume as those applied to antidepressant-treated rats.

2.3.2. Chronic treatment
The antidepressant drugs were administered daily for 14 days

(10 mg/kg, i.p.) (Silva and Brandão, 2000; Zanatta et al., 2001;
Borelli et al., 2004; Bonanno et al., 2005). Control animals
received saline injections (0.9% NaCl) in the same volume as
those applied to antidepressant-treated rats.

2.4. In vitro treatments

Antidepressants, fluoxetine or nortriptyline, were added to
reaction medium before the preincubation with synaptosomal
preparation and maintained throughout the enzyme assays.
Antidepressants were tested at final concentrations of 100, 250,
and 500 µM (Dhalla et al., 1980; Zanatta et al., 2001; Pedrazza
et al., 2007).

2.5. Synaptosomal preparation

The rats were killed by decapitation, and their cerebral cortex
and hippocampus were dissected, homogenized in 10 and 5
volumes, respectively, in an ice-cold medium consisting of
320 mM sucrose, 0.1 mM EDTA and 5.0 mM HEPES, pH 7.5.
The synaptosomes were isolated as described previously (Nagy
and Delgado-Escueta, 1984). Briefly, 0.5 ml of the crude
mitochondrial fraction was mixed 4.0 ml of an 8.5% Percoll
solution and layered onto an isoosmotic Percoll/sucrose dis-
continuous gradient (10/16%). The synaptosomes that banded
at the 10/16% Percoll interface were collected with wide tip
disposable plastic transfer pipettes. The synaptosomal fractions
were washed twice at 15,000 ×g for 20 min with the same ice-
cold medium to remove the contaminating Percoll and the



Fig. 1. Effect of acute treatment with fluoxetine or nortriptyline on ATP and
ADP and AMP hydrolysis in hippocampus (A and B) and cerebral cortex (C and
D) of rats. Bars represent the mean±S.D. of five different experiments. The
specific enzyme activities are reported as nanomole of inorganic phosphate
released per minute per milligram of protein. Data were analyzed by ANOVA
followed by a Tukey test (p≤0.01, when compared to control group).
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synaptosome pellet was resuspended to a final protein con-
centration of approximately 0.5 mg/ml. The material was
prepared fresh daily and maintained at 0–4 °C throughout
preparation.

2.6. Determination of ecto-nucleotidase activities

The reaction medium used to assay ATP and ADP hydrolysis
was essentially as described previously (Battastini et al., 1991),
and contained 5.0 mM KCl, 1.5 mM CaCl2, 0.1 mM EDTA,
10 mM glucose, 225 mM sucrose, and 45 mM Tris–HCl buffer,
pH 8.0, in a final volume of 200 μl. The reaction medium used
to assay 5′-nucleotidase activity contained 10 mM MgCl2,
0.1 M Tris–HCl, pH 7.5 and 0.15 M sucrose to final volume of
200 μl (Heymann et al., 1984). The synaptosomal fraction (10–
20 μg protein) was added to the reaction mixture and
preincubated for 10 min at 37 °C. The reaction was initiated
by the addition of 1 mM ATP, ADP or AMP as substrate and
stopped by the addition of 200 μl 10% trichloroacetic acid. The
samples were chilled on ice for 10 min and 100 μl samples were
taken to assess the released inorganic phosphate (Pi) (Chan
et al., 1986). In enzyme assays, incubation time and protein
concentration were chosen in order to ensure the linearity of the
reaction. Controls, with the addition of the enzyme preparation
after the addition of trichloroacetic acid, were used to correct
non-enzymatic hydrolysis of the substrates. All samples were
assayed in duplicate (in vitro assays) and triplicate (in vivo
assays). Enzyme activities were expressed as nanomoles of Pi
released per minute per milligram of protein.

2.7. Protein determination

Protein was measured by the Coomassie Blue method
(Bradford, 1976), using bovine serum albumin as a standard.

2.8. Analysis of gene expression by semi-quantitative RT-PCR

The analysis of the expression of NTPDase 1, 2, 3, and ecto-
5′-nucleotidase was carried out by a semi-quantitative reverse
transcriptase-polymerase chain reaction (RT-PCR) assay. After
acute and chronic treatments, hippocampus and cerebral cortex
of rats were isolated for total RNA extraction using Trizol
reagent (Invitrogen) in accordance with manufacturer instruc-
tions. RNA purity was quantified spectrophotometrically and
tested by eletrophoresis in a 1.0% agarose gel containing
ethidium bromide. The cDNA species were synthesized with
SuperScript™ III First-Strand Synthesis SuperMix (Invitrogen)
from 3 µg of total RNA following suppliers. RT reactions were
performed for 50 min at 42 °C. cDNA (1 µl) was used as a
template for PCR with specific primers for NTPDase1, 2, 3, and
5′-nucleotidase. β-actin was used for normatization as a
constitutive gene. PCR reactions have a volume of 25 µl using
a concentration of 0.4 µM of each primer indicated below and
200 µM and 1 U Taq polymerase (Invitrogen) in the supplied
reaction buffer. Conditions for all PCR were as follows: Initial
1min denaturation step at 94 °C, 1min annealing step (NTPDase
1, 3 and 5′-nucleotidase: 65 °C; NTPDase2: 66 °C; β-actin:
58.5 °C), 1 min extension step at 72 °C for 35 cycles and a
10min final extension a 72 °C. The amplification products were:
NTPDase1 — 543 bp; NTPDase2 — 331 bp; NTPDase3 —
267 bp; 5′-nucleotidase — 403 bp; β-actin — 210 bp. The
primers were described previously (Vuaden et al., 2007). For
each set of PCR reactions, negative controls were included. Five
microliters of the PCR reaction was analyzed on a 1% agarose
gel, containing ethidium bromide and visualized with ultraviolet
light. The relative abundance of each mRNAversus β-actin was
determined by densitometry using the freeware ImageJ 1.37 for
Windows. Each experiment was repeated four times using RNA
isolated from independent extractions. The expression analysis
was performed in replicate and representative findings were
shown.



Fig. 2. Effect of chronic treatment with fluoxetine or nortriptyline on ATP and
ADP and AMP hydrolysis in hippocampus (A and B) and cerebral cortex (C and
D) of rats. Bars represent the mean±S.D. of five different experiments. The
specific enzyme activities are reported as nanomole of inorganic phosphate
released per minute per milligram of protein. Data were analyzed by ANOVA
followed by a Tukey test (p≤0.01, when compared to control group).

Fig. 3. In vitro effect of nortriptyline on NTPDase activities in hippocampus (A)
and cerebral cortex (B) of rats, respectively. Bars represent the mean±S.D. of
five different experiments. The specific enzyme activities are reported as
nanomole of inorganic phosphate released per minute per milligram of protein.
Data were analyzed by ANOVA followed by a Tukey test (p≤0.01, when
compared to control group).
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2.9. Statistical analysis

Data were expressed by mean+S.D and analyzed by one-
way analysis of variance (ANOVA) followed by the Tukey
multiple range test considering pb0.05 as significant. All
analyses were performed using the Statistical Package for the
Social Sciences (SPSS) software in a PC compatible computer.

3. Results

We evaluated the effect in vivo (acute and chronic treatments)
and in vitro of antidepressant drugs on ATP, ADP, and AMP
hydrolysis from hippocampus and cerebral cortex of rats.

In acute treatment with nortriptyline, ATP (24.7%) and ADP
(46.1%) hydrolysis were inhibited in hippocampus (Fig. 1A).
However, a significant activation of ADP hydrolysis was ob-
served in acute treatment with nortriptyline (49.8%) in cerebral
cortex (Fig. 1C). AMP hydrolysis was not affected by nortripty-
line (Fig. 1B and D). Fluoxetine did not alter enzymes activities in
acute treatment for both structures (Fig. 1 A, B, C and D).

In chronic treatment, nortriptyline and fluoxetine decreased
ATP hydrolysis (17.8% and 16.3%, respectively) (Fig. 2A) in
hippocampus, but these drugs did not alter ADP and AMP
hydrolysis in both structures (Fig. 2A, B). However, in cerebral
cortex, these drugs promote different effects on nucleotide
hydrolysis. Nortriptyline increased ATP, ADP, and AMP hydro-
lysis (32.3%, 51.8% and 59.5%, respectively) (Fig. 2C, D) and
fluoxetine decreased ATP (25.5%) hydrolysis and increased ADP
(80.1%) and AMP (33.3%) hydrolysis.

The effect in vitro of nortriptyline on nucleotide hydrolysis
was also tested in cortical and hippocampal synaptosomes. A
significant inhibition in ATP hydrolysis (21.1–74.5%) was
observed in hippocampal synaptosomes for all concentrations
tested, but ADP hydrolysis was inhibited only at 250 and
500 µM (39.8%–60.4%) (Fig. 3A). A similar decrease of
cortical NTPDase activity was observed in the all concentra-
tions tested (37.5–73% for ATP hydrolysis and 41.4–80.3% for
ADP hydrolysis) (Fig. 3B). Nortriptyline failed to inhibit AMP
hydrolysis in both brain regions tested (data not shown).

In addition, for in vitro treatment, fluoxetine inhibited both
ATPase and ADPase activities in all concentrations tested
(100 to 500 µM). The inhibition promoted by fluoxetine in hip-
pocampal synaptosomes varied from 66.8% to 82.2% for ATP
hydrolysis and from 54.7% to 68.3% for ADP hydrolysis
(Fig. 4A). The inhibitory effect in cortical synaptosomes varied



Fig. 4. In vitro effect of fluoxetine on NTPDase activities in hippocampus
(A) and cerebral cortex (B) of rats, respectively. Bars represent the mean±S.D.
of five different experiments. The specific enzyme activities are reported as
nanomole of inorganic phosphate released per minute per milligram of protein.
Data were analyzed by ANOVA followed by a Tukey test (p≤0.01, when
compared to control group).

Fig. 5. Gene expression patterns after acute treatment with nortriptyline (A and B)
hippocampus of rats. C represents control group and T represents treated group. Th
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from 34.7% to 86.9% in ATP hydrolysis and from 31.2% to
76.4% for ADP hydrolysis (Fig. 4B). There was no observed
effect of fluoxetine on AMP hydrolysis in both hippocampus
and cerebral cortex (data not shown).

The effects promoted by antidepressant drugs could be a
consequence of transcriptional control. We have evaluated the
gene expression for NTPDase1, NTPDase2, NTPDase3, and 5′-
nucleotidase. The constitutive gene was normalized to β-actin
expression to allow the comparison in different experimental
conditions. The semi-quantitative RT-PCR analyses were per-
formed when kinetic alterations had occurred. For this reason,
NTPDases and 5′-nucleotidase were not analyzed after acute
treatment with fluoxetine in hippocampus and cerebral cortex.
The acute treatment with nortriptyline produced an increase in
the NTPDase3 transcript levels in hippocampus (Fig. 5A, B).
Interestingly, NTPDase1 and NTPDase 2 demonstrated an in-
crease in the transcript levels in cerebral cortex (Fig. 6A, B).

The chronic treatment with nortriptyline promoted a decrease in
NTPDase1, NTPDase2, and NTPDase3 transcript levels in hippo-
campus (Fig. 5C, D). In contrast, NTPDase1 and 5′-nucleotidase
presented an increase of gene expression for NTPDase1 and 5′-
nucleotidase in cerebral cortex (Fig. 6C, D). The chronic treatment
with fluoxetine produced an enhancement for NTPDase1 and
NTPDase3 transcript levels in hippocampus (Fig. 5E, F) and
and chronic treatment with nortriptyline (C and D) and fluoxetine (E and F) in
ree independent experiments were performed, with entirely consistent results.



Fig. 6. Gene expression patterns after acute treatment with nortriptyline (A and B) and chronic treatment with nortriptyline (C and D) and fluoxetine (E and F) in
cerebral cortex of rats. C represents control group and T represents treated group. Three independent experiments were performed, with entirely consistent results.
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NTPDase 1 and NTPDase2 transcript levels were increased in
cerebral cortex (Fig. 6E, F).

4. Discussion

NTPDase and ecto-5′-nucleotidase activities were sensitive
to fluoxetine and nortriptyline during chronic treatment in
cerebral cortex. In contrast, in acute treatment, ATP and ADP
hydrolysis was decreased after administration of nortriptyline in
hippocampus whereas only ADP hydrolysis was increased in
cerebral cortex. In addition, for in vitro treatment, fluoxetine and
nortriptyline inhibited the NTPDase activities in both structures
tested. Furthermore, antidepressant drugs promoted changes in
the transcript levels for NTPDase1, NTPDase2, NTPDase3, and
5′-nucleotidase.

Since these enzymes contribute to maintenance of physiolo-
gical effects of extracellular ATP, ADP, AMP, and adenosine, the
influence of the enzymatic cascade involved in the control of
these nucleotides and nucleosides have been proposed in several
pathophysiological situations (Agteresch et al., 1999). Chronic
treatment with antidepressant drugs was able to alter the nucle-
otide hydrolysis in cerebral cortex whereas only ATP hydrolysis
was inhibited in hippocampus. This effect shows a modulatory
role of fluoxetine and nortriptyline on nucleotidase pathway in
cerebral cortex, suggesting that the increase in the ATP, ADP
and AMP hydrolysis could induce an increase in the levels of
extracellular adenosine. However, fluoxetine and nortryptiline
decrease ATP hydrolysis in hippocampus, which could induce an
increase of ATP levels and a delayed production of adenosine.
Okada et al. (1999) clearly showed that hippocampal serotonergic
neurotransmission is modulated by hippocampal adenosine
receptor subtypes. Tricyclic antidepressants are potent inhibitors
of neuronal uptake of adenosine, whichmay raise the endogenous
adenosine levels (Phillis and Wu, 1982; Phillis, 1984). Moreover,
a dysregulation of the adenosine A2A receptor may be present in
depression, since a blunted intracellular calcium response to A2A

receptor stimulation is present in platelets in patients with de-
pression (Berk et al., 2001). Recent findings have demonstrated
that adenosine A2A receptor antagonists produce an antidepres-
sant-like effect in two models predictive of clinical antidepressant
activity, the forced swimming test and the tail suspension test
(El Yacoubi et al., 2001). Studies have shown that adenosine ad-
ministration produces an antidepressant-like effect in the forced
swimming test (FST) and in the tail suspension test, mediated
through an interaction with A1 and A2A receptors (Kaster et al.,
2004). Therefore, changes in the ecto-nucleotidase pathway in-
duced by antidepressant drugs could modulate the adenosine
levels and, consequently, the neuromodulation promoted by this
nucleoside in depressive patients treated with these drugs.

In order to verify the direct effect of antidepressant drugs on
ecto-nucleotidase activities, in vitro assays were performed in
synaptosomes from hippocampus and cerebral cortex of rats.
All drugs promoted significant changes on NTPDase activi-
ties after in vitro exposure. Previous studies demonstrated that
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imipramine and fluoxetine decreased Na+, K+-ATPase activity
in synaptic plasma membranes from the cerebral cortex of rats
in a dose-dependent manner (Zanatta et al., 2001). Moreover,
our laboratory has shown that NTPDase, but not ecto-5′-
nucleotidase activities from cerebral cortex and hippocampus
are decreased by the antidepressants sertraline and clomipra-
mine after in vitro exposure (Pedrazza et al., 2007). Barcellos
et al. (1998) have demonstrated that imipramine, desipramine
and amitriptyline in vitro decreased ATP and ADP hydrolysis in
synaptosomes from cerebral cortex of rats. It has been suggested
that changes in membrane bilayer environment promoted by the
interaction with antidepressant may be able to promote the
inhibitory effect observed on NTPDase activity. The different
effects promoted by antidepressant drugs on NTPDase and ecto-
5′-nucleotidase activities can be related to the differences in
membrane anchorage of these enzymes.

The kinetic effect promoted by antidepressant drugs could be a
consequence of transcriptional control and/or post-translational
mechanisms. For acute treatment, nortriptyline promoted an
increase of ADP hydrolysis and a simultaneous increase of
NTPDases transcript levels. However, some changes on nucleo-
tide hydrolysis promoted by chronic treatment with fluoxetine are
not in accordance with the changes observed in the transcript
levels for NTPDases and ecto-5′-nucleotidase. The transcription
machinery is continuously controlled by a complex signaling
system, creating a set of signals able to adjust gene expression
profile of the cell. This signal transduction can be exerted by
proteins, products of enzyme reactions or even toxins able
to regulate transcription factors (Krishna et al., 2006). The phe-
nomena known as positive feedback loop (Pomerening et al.,
2003, 2005), which is situated at the interface of genetic and
metabolic networks, could explain the concomitant decrease of
ATP hydrolysis and the increase of NTPDase1, NTPDase2, and
NTPDase3 mRNA levels after chronic fluoxetine treatment.

In summary, we have shown that fluoxetine and nortriptyline
can affect the ecto-nucleotidase pathway, suggesting that the
extracellular adenosine levels could be modulated by these
drugs.
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