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a b s t r a c t

Xerostomia is commonly caused by antidepressant drugs and ATP can influence the saliva

production. Adenosine is the product of extracellular hydrolysis of adenine nucleotides in

submandibular gland cells, which occurs by the action of ectonucleotidases. In this study,

we have evaluated the effect of three different antidepressants in ecto-nucleotide pyropho-

sphatase/phosphodiesterase (E-NPP1–3) activities in cultured cells from salivary glands.

Rats received imipramine (10 mg/ml), fluoxetine (20 mg/ml) or moclobemide (30 mg/ml) by

oral gavage. The drugs were administered once a day for 14 days. Our results have shown

that the hydrolysis of p-nitrophenyl-50-thymidine monophosphate increased in all treat-

ments. These effects were not consequence of transcriptional control of E-NPP1–3 genes.

The results reported here can highlight the importance of ectonucleotidases in the most

common side effect caused by antidepressant therapy.
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1. Introduction

Several studies have discussed the role of adenosine tripho-

sphate (ATP) as an extracellular mediator and neurotransmitter

in various systems, including salivary glands.1,2 ATP and other

extracellular nucleotides influence epithelial cell functions via

P2 receptors.3 In the salivaryglands, ATP can regulate important

secretory processes by two distinct receptor families: P2X and

P2Y.4,5 Four ATP receptors have been identified in theductal and

acinar cells: P2Y1, P2Y2, P2X4, and P2X7.6,7 The inactivation of

ATP signalling is promoted by a cascade of cell-surface-bound

enzymes constituted by ecto-nucleoside triphosphate dipho-
* Corresponding author. Tel.: +55 51 3320 3545; fax: +55 51 3320 3568.
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sphohydrolases (E-NTPDases), ecto-nucleotide pyrophospha-

tase/phosphodiesterases (E-NPPs), alkaline phosphatases, and

ecto-50-nucleotidase (EC 3.1.3.5).1

The family of E-NPPs consists of seven structurally related

enzymes that are located at the cell surface, either expressed

as transmembrane proteins or as secreted enzymes.8 Only

NPP1–3, which have a common ancestor, have been impli-

cated in the hydrolysis of nucleotides9–12 whereas NPP6–7 are

only known to hydrolyse phosphodiester bonds in lysopho-

spholipids or other choline phosphodiesters.12

Current evidence suggests that E-NPPs have multiple

physiological roles, including nucleotide recycling, modula-
d.
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tion of purinergic receptor signalling, regulation of extra-

cellular pyrophosphate levels, stimulation of cell motility,

activity of ecto-protein kinases and probably regulation of

insulin receptor.13 These families of enzymes reveal not only

overlapping tissue distributions, but also overlapping sub-

strate specificities and functions.1

Various types of enzymes mediate the saliva production

and we have described in a previous study the presence of an

E-NTPDase, an ecto-50-nucleotidase14 and an E-NPP15 in acinar

cells. NTPDase1 showed weak immunoreactivity whereas

NTPDase2 activity was slightly higher in plasma membranes

of nerve terminals and membranes of nerve fibres in salivary

glands.2

Pharmacological therapy is the most common cause of

reduced salivation and the most frequently drugs implicated

in dry mouth are the tricyclic antidepressants, antipsychotics,

atropine, beta-blockers, and antihistamines.16 Dry mouth is a

common side effect caused by antidepressant therapy.17 The

main function of antidepressants is to increase the extra-

cellular neurotransmitter concentrations, inhibiting the meta-

bolism and reuptake.18 Antidepressants include monoamine

oxidase inhibitors, tricyclic compounds, selective serotonin,

and norepinephrine reuptake inhibitors as well as some

atypical drugs.19

Selective serotonin reuptake inhibitors (SSRIs) specifically

prevent the reuptake of serotonin (thereby increasing the level

of serotonin in synapses of the brain) whereas earlier mono-

amine oxidase inhibitors (MAOIs) block the degradation of

neurotransmitters by enzymes. Tricyclic antidepressants

(TCAs) prevent the reuptake of various neurotransmitters,

including serotonin, norepinephrine and dopamine.17 The

SSRIs, such as fluoxetine, tend to have fewer side effects than

other antidepressants. Some of the side effects that can be

caused by SSRIs include dry mouth, nausea, nervousness,

insomnia, sexual problems, and headache. Imipramine, a

tricyclic antidepressant, and moclobemide have also dry mouth

as a common side effect.20,21 Several studies have shown a

relationship between antidepressants and reduction of salivary

flow, but the mechanisms involved in this process remain

unclear.17,22–24 In this study wehaveevaluated theactivitiesand

expression of ecto-pyrophosphatase/phosphodiesterases from

salivary glands of rats submitted to antidepressant therapy.

2. Materials and methods

2.1. Materials

Dulbecco’s Modified Eagle Medium (DMEM) was purchased

from Grand Island Biological Company (Grand Island, NY,

USA). Collagenase I-S, nucleotides, Hepes and EDTA were

obtained from Sigma–Aldrich (St. Louis, MO, USA). Foetal

bovine serum (FBS) was purchased from Cultilab Ltda (São

Paulo, SP, Brazil). All the other chemical reagents were of the

highest available quality.

2.2. Animals

Male Wistar rats (n = 52/45-day-old rats) were maintained in

groups of four animals per cage. The animals were kept at
room temperature of 22 � 2 8C and light cycle from 7 a.m. to

7 p.m. receiving rat chow (Nutrilab1, Brazil) and water ad

libitum. Procedures for the care and use of animals were

adopted according to the Regulations of Colégio Brasileiro de

Experimentação Animal (COBEA) based on the Guide for the

Care and Use of Laboratory Animals (National Research

Council).

2.3. Antidepressant therapy

The animals were divided in four groups (with 13 animals for

each group): saline, imipramine (IMI; Tofranil1, Biogalênica)

10 mg/ml, fluoxetine (FLU; Prozac, Eli Lilly) 20 mg/ml or

moclobemide (MOC; Aurorix, Roche) 30 mg/ml, suspended

in saline. All solutions were administered by oral gavage, 1 ml/

kg. Antidepressant doses were chosen according to Kopittke

et al.24 Animals received the antidepressant treatment once a

day for 14 days and subsequently (15 days after the beginning

of therapy) they were euthanised for culture procedure.

2.4. Cell isolation and culture

Submandibular gland cell (SGC) clusters were obtained from

45-day-old rats. The animals were euthanised and the

submandibular glands were removed quickly, trimmed of

fat and fascia tissues and minced in a small volume of Hank’s

Buffer Saline Solution (HBSS), pH 7.4. The minced salivary

glands were dispersed in HBSS supplemented with collage-

nase I-S (1 mg/ml). The gland cells were dissociated by

pipetting 10 times every 20 min with a Pasteur pipette for

2 h. The collagenase was removed by centrifugation at 700 � g

(5 min) and the cell clusters were then washed with HBSS and

centrifuged twice at 40 � g (5 min) to remove the lysed cells

and contaminants (red and endothelial cells).

Clusters with 4–5 cells (as observed by phase-contrast

microscopy) were maintained in a water-saturated atmo-

sphere with 95% air and 5% CO2 in Dulbecco’s Modified Eagle

Medium (DMEM) with 5% foetal bovine serum (FBS), pH 7.4 for

24 h.25,26

2.5. Assay of ecto-nucleotide pyrophosphatase/
phosphodiesterase (E-NPP) activity

After 24 h in culture, the SGC were washed and centrifuged

three times at 1000 � g for 3 min with a medium containing

135 mM NaCl, 5.0 mM KCl, 10 mM glucose and 10 mM Hepes (pH

7.4). The cell clusters were filtered through a nylon filter (100

mesh) to homogenise the cluster size. The artificial substrate for

E-NPPs, p-nitrophenyl 50-thymidine monophosphate (p-Nph-

50-TMP), was used as a substrate marker to evaluate the

enzymatic activity, producing p-nitrophenol.27 The reaction

medium, containing 135 mM NaCl, 5.0 mM KCl, 10 mM glucose

and 50 mM Tris–HCl buffer (pH 8.9), was preincubated with

aliquots of 20 ml of cell suspension (approximately 10–15 mg of

protein per tube) at 37 8C for 10 min in a final volume of 200 ml.

The enzyme reaction was started by the addition of p-Nph-50-

TMP to a final concentration of 0.5 mM. After 6 min of

incubation, the reaction was stopped by the addition of 200 ml

0.2N NaOH and the samples were chilled on ice. Incubation

times and protein concentration were chosen to ensure the
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linearity of the reaction. In order to correct non-enzymatic

hydrolysis, we performed controls by adding the SGC after the

reaction was stopped with 0.2N NaOH. All assays were carried

out in triplicate. The amount ofp-nitrophenol released from the

substrate was measured at 400 nm using a molar extinction

coefficient of 18.8 � 10�3/M/cm. Enzyme activities were gen-

erally expressed as nmol p-nitrophenol released per minute per

milligram of protein.

2.6. Protein determination

Protein was measured by the Comassie Blue method, accord-

ing to Bradford,28 using bovine serum albumin as standard.

2.7. Statistical analysis

The data obtained are expressed as means � S.D. of at least

five experiments. The results of antidepressant treatments

were analysed by Student’s t-test or one-way ANOVA followed

by Tukey test as post hoc. Values of P < 0.05 were considered

significant.

2.8. Analysis of gene expression by semi-quantitative RT-
PCR

Rat DNA sequences encoding to E-NPP1 (NM_022587.1), E-NPP2

splice isoforms (Q64610), and E-NPP3 (NM_178106) was

retrieved from GenBank database and aligned using ClustalX

program. Regions with low scores of similarity among

sequences were used for searching specific primers, which

were designed using the program Oligos 9.6. NPP2 splice

isoforms were identified using primers localised upstream and

downstream of the splice junction resulting in different PCR

products. NPP2 isoform 1 PCR product is 587 bp long (with the

intron) whereas NPP2 isoform 2 PCR product is 512 bp long

(without the intron) (Table 1). In order to confirm the primers

specificity, each primer was blasted against rat genome and it

was able to recognise only its specific target sequence. Thus,

the strategy adopted to construct the primers did not allow

cross-amplification.

The analysis of the expression of E-NPP1, E-NPP2, and E-

NPP3 was carried out by a semi-quantitative reverse tran-

scriptase-polymerase chain reaction (RT-PCR) assay. Fourteen

days after treatment with different antidepressants, the
Table 1 – PCR primer design.

NPP GenBank accession number

NPP1a NP_445987 F 50-GA

R 50-CT

NPP2 (1)b Q64610 F 50-CC

NPP2 (2) R 50-CC

NPP3 AAH97326 F 50-GA

R 50-TC

b-Actin NP_112406 F 50-TA

R 50-TA

a Primer sequences were obtained from Vollmayer et al.48

b Splice isoforms of NPP2.
salivary glands of rats were dissected and immediately frozen

with liquid nitrogen for storage in �80 8C freezer. The total

RNA extraction, free of protein and DNA contamination, were

obtained using TRIzol1 Reagent (Invitrogen) in accordance

with the manufacture instructions. The cDNA species were

synthesised with SuperScript First-Strand Synthesis System

for RT-PCR from 1 mg of total RNA and oligo (dT) primer in

accordance with the suppliers. RT reactions were performed

for 50 min at 50 8C. cDNA (1 ml) was used as a template for PCR

with specific primers for E-NPP1, E-NPP2, and E-NPP3. b-Actin

PCR was performed as a control for cDNA synthesis. PCR

conditions were optimised in order to determine the number

of cycles that would allow product detection within the linear

phase of mRNA transcripts amplification. PCR reactions were

performed (total volume of 25 ml) using a concentration of

0.4 mM of each primer indicated below and 200 mM and 1 U Taq

polymerase (Invitrogen) in the supplied reaction buffer.

Conditions for all PCRs were as follow: Initial 1 min denatura-

tion step at 94 8C, 1 min at 94 8C, 1 min annealing step (NPP1:

60 8C; NPP2: 67 8C; NPP3: 65 8C; b-actin: 58.5 8C), 1 min exten-

sion step at 72 8C for 35 cycles and a final 10 min extension at

72 8C. PCR products were submitted to electrophoresis using a

1% agarose gel. The relative abundance of each mRNA versus

b-actin was determined by densitometry using the freeware

ImageJ 1.37 for Windows.

Each experiment was repeated three times using RNA

isolated from independent extractions. The expression ana-

lysis was performed in replicate and representative findings

were shown. The normalised expression levels of E-NPP1–3

genes were expressed as mean � S.E.M. and statistically

compared by Student’s t-test. P values �0.05 were considered

significant.

3. Results

In order to verify if male Wistar rats undergo biochemical

changes induced by antidepressant therapy, we have studied

the influence of this treatment on p-Nph-50-TMP hydrolysis

from cells of SGC. Fig. 1 demonstrates the p-Nph-50-TMP

nucleotide hydrolysis in cells cultured of salivary subman-

dibular glands for three different antidepressants. The p-Nph-

50-TMP hydrolysis (Fig. 1) was significantly enhanced for all

treatments (P < 0.05). The treatment of IMI, FLU and MOC
Primers sequences PCR product

ATTCTTGAGTGGCTACAGCTTCCTA-30 410 bp

CTAGAAATGCTGGGTTTGGCTCCCGGCA-30

ATGCCAGACGAAGTCAGCCGACC-30 587 bp

AAACACGTTTGAAGGCGGGGTAC-30 512 bp

GAAGACAAATTTGCCATTTGGGAGG-30 301 bp

TCATTATTTCCTTTGATTGCGGGAG-30

TGCCAACACAGTGCTGTCTGG-30 210 bp

CTCCTGCTTCCTGATCCACAT-30



Fig. 1 – Effect of antidepressant drugs on E-NPP activity in

submandibular gland cells. Bars represent mean W S.D. for

five different experiments. *Represents significant

statistical difference by one-way ANOVA followed by

Tukey test as post hoc.
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induced an increase of 29% (314 � 72 nmol Pi min�1 mg�1),

35% (329 � 68 nmol Pi min�1 mg�1) and 34% (326 � 41

nmol Pi min�1 mg�1) when compared to the control

(244 � 47 nmol Pi min�1 mg�1).
Fig. 2 – Relative gene expression patterns after imipramine (IM

treatment for NPP1 (A and B), NPP2 (C and D), NPP3 (E and F), an

experiments were performed, with entirely consistent results.
The upregulation of E-NPPs activities could be consequence

of transcriptional control and/or post-translational modifica-

tions. We evaluated E-NPP1–3 transcripts in SGC cells after

antidepressant treatments. Although the mRNAs of both NPP2

splice isoforms could be easily identified in different brain

structures with the strategy adopted (data not shown), it was

not possible to detect NPP2 isoform 1 (587 bp) in SGC cells. The

transcriptional control of E-NPP1–3 genes was not contributing

to the upregulation of E-NPP1–3 observed after antidepressant

treatments since their transcripts were not increased. Inter-

estingly, the NPP1 mRNA was slightly decreased after FLU

treatment (Fig. 2). These results suggest that the increased

activity observed after IMI, FLU and MOC treatments in SGC

cells could be consequence of changes in phosphorylation

state. In order to verify this hypothesis, the E-NPP1

(NP_445987), E-NPP2 splice isoform 2 (Q64610) and E-NPP3

(AAH97326) amino acid sequences were analysed in NetPhosk,

a kinase-specific prediction of protein phosphorylation sites

tool (http://www.cbs.dtu.dk). The results obtained from E-

NPP1 sequence indicated the residues Ser271 and Thr713 as

potential Protein Kinase C phosphorylation sites. The same

approach with E-NPP2 splice isoform 2 sequence indicated the

residues Ser176, Thr412, Thr493 and Thr866 for Protein Kinase

C and Ser396 for Protein Kinase B phosphorylation sites. The
I), fluoxetine (FLU), and moclobemide (MOC) chronic

d b-actin in salivary glands of rats. Three independent

http://www.cbs.dtu.dk/
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residues Ser17, Thr647 and Ser786 as potential Protein Kinase

C phosphorylation were recognised in E-NPP3 sequence. The

residues were identified with high prediction scores in E-

NPP1–3 sequences. The potential phosphorylation sites

identified suggest that increase of E-NPP1–3 activities observed

in SGC cells induced by antidepressant treatments could

involve post-translational regulation by phosphorylation.

4. Discussion

The results of the present study demonstrated that IMI, FLU

and MOC are able to alter the activities whereas the E-NPP1–3

genes expression was not changed in salivary gland.

Antidepressants have been frequently studied in the

central nervous system, but in other organs their effects

remain unclear. A common side effect caused by antidepres-

sant treatment is dry mouth.17 Systemic diseases, radiation

therapy, prescription and non-prescription drugs are impor-

tant causes of salivary gland disturbances.29 Saliva compo-

nents are critical in maintaining oral health and supporting

other oral functions. It is well known that several neuro-

transmitters, such as acetylcholine, substance P, vasoactive

intestinal polypeptide, and ATP are co-released in salivary

glands.30,31 Besides the ACh and ATP co-release following

parasympathetic stimulation, extracellular ATP also functions

as a regulator of salivary gland function, probably by the action

in four distinct subtypes of P2 receptors identified in the ductal

and acinar cells: P2Y1, P2Y2, P2X4, and P2X7.6

Degradation of ATP and other nucleotides can occur

through a cascade of cell-surface-bound enzymes named

ectonucleotidases, including E-NTPDase family, E-NPP family

and ecto-50-nucleotidase.3 Extracellular hydrolysis of ATP to

adenosine promoted by ectonucleotidases has been reported

for several cell types,32–34 including salivary glands.14,15

Tricyclic antidepressants have shown common side

effects, that can occur indirectly (central nervous system)

and/or directly (salivary glands).22,35 In this study, we observed

an increase in enzyme activity when p-Nph-50-TMP was used

as substrate in rats submitted to IMI treatment. However,

there was no significant changes on the expression of E-NPPs.

Scarpace et al.36,37 observed that the tricyclic antidepressant

desipramine altered signal transduction in rat parotid and

submandibular glands. It has been observed that salivary flow

was significantly decreased when rats were submitted to IMI

treatment.24 In addition, it has been demonstrated that IMI

alters cortical membrane fluidity for in vitro and in vivo studies,

and that chronic IMI treatment affects brain membrane

architecture and enzyme activities, such as Na+,K+-ATPase.38

Our findings have also shown that fluoxetine and moclobe-

mide treatment induced an increase on p-Nph-50-TMP hydro-

lysis in acinar cells. Similar results were observed in

evaluating the effect of fluoxetine on Na+,K+-ATPase activity.38

It has been suggested that activation of purinergic receptors by

ATP is a more effective stimulus than activation of muscarinic

receptors in terms of elevating [Ca2+]i. Thus, ATP can

effectively regulate secretory processes in salivary glands.5,39

Therefore, considering that ATP and adenosine are important

signalling molecules, it is possible to suggest that the control

of ATP levels by ectonucleotidases during antidepressant
therapy can be involved in the regulation of salivary flow. One

possible hypothesis could involve the activation of ectonu-

cleotidases, leading to an enhanced degradation of extra-

cellular ATP and its metabolites ADP and AMP. For this reason,

the stimulus for Ca2+ entrance in the acinar cells is

diminished, promoting a reduction in the salivary flow.

The alterations observed in ectonucleotidases could be a

consequence of transcriptional control and/or post-transla-

tional mechanisms. The antidepressant drugs have been

studied in the central nervous system and it is known that

chronic treatment by various classes of these drugs may result

in a common, final pathway of changes in gene expression in

the brain.40 We have studied the relative expression of E-NPP

1, 2, 3 from salivary glands of antidepressant-treated rats,

since this pharmacological therapy seems to affect the kinetic

of the ectonucleotidases. The results have shown that animals

submitted to antidepressant treatments did not present

significant changes in the relative expression for E-NPP1, E-

NPP2 and E-NPP3 in SGC. However, a slight decrease of E-NPP1

expression was observed for the fluoxetine treatment (Fig. 2A

and B).

The plausible explanation for the changes in the enzyme

activities after antidepressant treatment may involve post-

translational events. According to analysis performed in

NetPhosk, E-NPP1–3 sequences showed high prediction scores

for PKC phosphorylation sites. In fact, accumulating evidence

suggested that signal transduction cascade including protein

phosphorylation is implicated in the neurochemical action of

antidepressant agents.41,42 In addition, chronic antidepressant

therapy has been shown to induce changes in the function of

protein kinase C, cyclic AMP-dependent protein kinase, and

calcium/calmodulin-dependent protein kinase in the brain.43 In

addition, there is some evidence that the expression of protein

kinaseC (PKC) is upregulated byfluoxetine.44 The activityof PKA

can be altered in rat cerebral cortex following 2 or 3 weeks of

treatment with different antidepressant agents such as

tricyclics, monoamino oxidase inhibitors and selective seroto-

nin reuptake inhibitors.45–47 Despite all data cited above are

related to the rat brain, it could lead us to the hypothesis that

phosphorylation may exert a modulation on these enzyme

activities in the salivary glands of antidepressant treated rats.

The effects of nucleotides on second messenger levels, ion

fluxes, and protein secretion in salivary cells suggest important

roles for P2 receptors in modulating the production and

composition of saliva.7 Recent studies have demonstrated that

ATP-sensitive P2X(7) receptor regulates fluid secretion in the

mouse submandibular gland.48 ATP and other nucleotides can

promote an increase in membrane conductance, and this fact

contributes to the production of saliva. In our study, nucleotide

hydrolysis by E-NPPs was enhanced; this fact can modify the

membrane conductance and may be influencing the common

side effects of antidepressant therapy, including the xerosto-

mia. Further studies are necessary to understand the different

extracellular signalling pathways involved in salivary secretion.
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