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Melipona quadrifasciata is an eusocial stingless bee traditionally used for honey production in Brazil. In
the last decades, the species disappeared from the wild in Southern Brazil, being kept exclusively in man-
aged colonies for commercial and recreational purposes. Stingless beekeepers from this region report
annual losses of their colonies due to a syndrome of yet unknown causes. We investigate whether it is
associated to pathogenic microorganisms already known to cause disease in bees. These results provide
a starting point for future studies aimed at clarifying the relationship between the microbial community
of stingless bees and their colony collapses.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Stingless bees (Apidae, Meliponini) are the only highly social
bees other than the true honeybees. In Brazil and other parts of
South America stingless bees are by far the most abundant bee spe-
cies, suggesting that they have a prominent role as pollinators in
this region (Giannini et al., 2015; Heard, 1999). Before the intro-
duction of honey bees in the 19th century, colonies of stingless
bees and wasps were the only sources of honey used in Brazil
(Nogueira-Neto, 1997), and stingless bee culture represents an
old aboriginal tradition that helps to increase agricultural produc-
tion by maintaining ecological interactions (Garibaldi et al., 2016).
Melipona quadrifasciata is one of the most popular stingless bees
cultivated in Brazil (Jaffé et al., 2015), where it is called ‘‘man
daçaia”, which in the indigenous language means ‘‘beautiful vigi-
lant”, referring to the guard that permanently protects the nest
entrance. Two M. quadrifasciata subspecies that show significant
genetic divergence are recognized by their different abdomen col-
oration patterns, i.e., M. q. anthidioides, found in the southeast and
northern Brazil, and M. q. quadrifasciata, which occurs in the south
(Batalha-Filho et al., 2010; Tavares et al., 2013).

In the southernmost sate of Brazil, Rio Grande do Sul, which
corresponds to the southern limit of M. quadrifasciata’s geographic
distribution, wild populations disappeared since more than
50 years, and the species is now regarded as endangered
(Blochtein and Marques, 2003; Fundação Zoobotânica, 2014). Fur-
thermore, numerous beekeepers from Rio Grande do Sul have been
reporting annual losses of their M. quadrifasciata colonies. At the
end of summertime, between February and April, workers become
unable to fly and crawl with their proboscis everted, leading to
massive deaths that ultimately end with the colony collapse.
Although such collapses happen synchronously in many different
localities, they can’t be connected to a common environmental fac-
tor, such as a potentially toxic flower or pesticides. Deaths occur in
colonies from very dissimilar habitats.

Symbiotic bacteria are known to play an important role in bee
health (Hamdi et al., 2011; Vásquez et al., 2012). Pathogens, viruses
or other factors may interfere with the normal composition of bac-
teria associated to the bee gut epithelium (Cariveau et al., 2014;
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Cox-Foster et al., 2007) and in turn the bacterial colonization inter-
feres with subsequent susceptibility to infections (Koch and
Schmid-Hempel, 2012; Schwarz et al., 2016). The aim of the pre-
sent study is to investigate whether the syndrome that annually
leads toM. quadrifasciata colony collapses in Southern Brazil is cor-
related to infection with pathogenic bacteria. We describe, for the
first time, the bacterial symbiont communities of this stingless bee
species based on high throughput sequencing of 16S rDNA.
2. Materials and methods

2.1. Sampling and DNA extraction

M. quadrifasciata adult individuals manifesting symptoms of
disease, i.e., disorientation, flight incapacity or proboscis eversion
(unhealthy; n = 52) as well as without any detectable symptom
(healthy; n = 24) were removed from their colonies for DNA extrac-
tion using a clean forceps. Stingless bee colonies were sampled in
two summers (February/March) of 2014 and 2015 in two localities
of Rio Grande do Sul, i.e., Boqueirão do Leão (30�309.700S;
51�1106.0300W) and Porto Alegre (30�4030,300S; 51�804.500W). DNA
was extracted using the DNeasy Blood & Tissue Kit (QIAGEN, Hil-
den, Germany) from individual abdomens, which were separated
from bee bodies in aseptic conditions using sterile scalpels.

2.2. Metabarcording of bacteria, and their possible link to disease

A segment of the bacterial 16S rDNA gene corresponding to the
V1-V3 variable region was amplified from the DNA samples with
modified barcoded versions of primers 27F (GAGTTTGATCNTGGCT-
CAG) (Lane, 1991) and 519R (GTNTTACNGCGGCKGCTG) (Turner
et al., 1999) and sequenced using Illumina MiSeq technology.
Reads were processed with Mothur v. 1.36.1 (Schloss et al.,
2009). After filtering out low quality sequences, chimeras were
removed with UCHIME (Edgar et al., 2011), as well non-bacterial
sequences, based on a preliminary classification using the SILVA
v123 nr database (Quast et al., 2013). Only samples containing at
least 500� coverage were retained in subsequent analyses
(n = 33; see Table S1). Sequences showing P95% identity were
clustered in Operational Taxonomic Units (OTUs). A non-metric
multidimensional scaling (NMDS) of Bray-Curtis dissimilarities
among bacterial communities was performed in PAST version
3.13 (Hammer et al., 2001). To investigate the dynamics of sting-
less bee microbiota we also performed a Permutational Multivari-
ate Analysis of Variance (PERMANOVA) of Bray-Curtis pairwise
distances, in which the factors ‘‘sampling year”, ‘‘colony” and
‘‘health status”, as well as their interactions, were tested as sources
of variation in bacterial community composition. The phylogenetic
affinities among principal bacterial OTUs was inferred by maxi-
mum likelihood using a dataset of known bee symbiont sequences
obtained from GenBank as reference. Alignment was made with
MAFTT v. 7.187 (Katoh and Standley, 2013), and phylogenetic anal-
ysis was performed with PhyML (Guindon and Gascuel, 2003)
using the GTR + G + Inv model (a = 0.5), which showed the best
AIC score in ModelTest (Darriba et al., 2012). Local support values
were estimated by nonparametric bootstrap based on 500
resamplings.
3. Results and discussion

The 16S rRNA amplicons from 33 M. quadrifasciata individuals
belonging to 11 colonies (Table S1) yielded a total of 52,545
sequences (mean ± SD = 1592 ± 770 per sample) that were binned
into 276 OTUs (mean ± SD = 29 ± 12 per sample). Rarefaction
curves reach OTU saturation, indicating a good sampling (Fig. S1).
The 32 OTUs with P100 sequences (GenBank accesion numbers
KX021311-KX021342) that represent 93.8% of the dataset were
used for further analyses. The M. quadrifasciata bacterial symbiont
OTUs were classified in 11 clades (Fig. 1), seven of them belonging
to Firmicutes, which correspond to 73.4% of the total sampling.

Overall, the seven clades of Firmicutes and 3 OTUs of Proteobac-
teria belonging to the family Acetobacteriaceae are the most repre-
sentative bacteria; Firmicutes Group U, Firmicutes Group Z and
Acetobacteraceae correspond respectively to 23%, 23% and 16% of
the total sampling. Though OTU frequencies show extensive varia-
tion acrossM. quadrifasciata individuals (Fig. 2), the factor that best
explains variations in microbiota composition is the colony
(F = 2.752; p = 0.0006); however no significant associations are
found between year of sampling (F = 1.112; p = 0.3405) or stingless
bee health status (F = 0.854; p = 0.4915) and microbiota composi-
tion. Interestingly, although main effects of sampling year and
health status are not statistically significant, their interaction effect
is (F = 1.146; p = 0.0218), suggesting that the effect of bee health
status on microbiota composition is not the same in both years.
Overall, there is a crossover effect of sampling year and health sta-
tus on microbiota composition, which is possibly caused by the
higher abundance of Firmicutes group U and Z bacteria in
unhealthy bees on 2014, but in healthy bees of 2015 (see Fig. 2).
This conclusion is also supported by NMDS, where unhealthy bees
of different sampling years fall on opposite sides of coordinate 1
(Fig. S2). Therefore, we tentatively suggest that the syndromeman-
ifested by M. quadrifasciata colonies may have a link to its micro-
biota composition, but we haven’t been able to detect it with this
preliminary study. Nevertheless, no pathogenic bacteria known
for the honeybee, such as Spiroplasma, Melissococcus and Paeni-
bacillus that cause foulbrood disease, and mostly affect honeybee
larvae (Bailey and Ball, 1991), were found in our samples.

The main bacterial OTUs identified in our study are phylogenet-
ically related to other known bee symbionts (Fig. 1). Firmicutes
group U is related to Lactobacillus kunkeii, and belongs to a clade
of common symbionts of stingless bee species such as Tetragonula
carbonaria and Austroplebeia australis (Fig. S3; Leonhardt and
Kaltenpoth, 2014). Firmicutes group Z clusters with the so-called
Firm-5 clade of lactic acid bacteria (Martinson et al., 2011). Differ-
ent species from this clade were found in Melipona panamica (Koch
et al., 2013), Bombus sp. (Praet et al., 2015) and Apis mellifera
(Olofsson et al., 2014). The Lactobacillales and the Acetobacter-
aceae are mostly found in the honeybee stomach and rectum as
well as in its hive products (Moran, 2015). Proteobacteria that
are dominant in the honeybee ileum, such as Gilliamella and
Frischella (Gammaproteobacteria) or Snodgrassella (Betaproteobac-
teria) are absent in our samples, concordant with previous studies
of Meliponini microbiota (Koch et al., 2013). However, a clade of
bacteria belonging to the Enterobacteriaceae (Gammaproteobacte-
ria), which are common symbionts of the honeybee ileum, appears
in low frequency in our dataset (2% of total sampling), but surpris-
ingly in only four unhealthy individuals (Fig. 2; Table S1). The 16S
sequence of this bacterium clusters with another found in the gut
of Eulaema sp. (Euglossini) from Panama (Fig. 1), and is close to
Yokenella regensburgei (Koch et al., 2013). Firmicutes group W,
which represents 15% of our sampling, is phylogenetically related
to Streptococcus, a bacterial genus known for causing opportunistic
infections in larvae affected by foulbrood disease (Bailey et al.,
1973). However, its previously reported presence in M. panamica
(Koch et al., 2013), as well as the occurrence in healthy and
unhealthy M. quadrifasciata individuals of the present study sug-
gests a non-pathogenic interaction of Streptococcus and Melipona.
Likewise, we haven’t been able to detect other well-known eukary-
otic bee pathogens (Nosema or Crithidia) by PCR (data not shown).

The lack of any direct evidence leaves the question of what is
killing M. quadrifasciata colonies in Southern Brazil still open. Bee-
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Fig. 1. Phylogenetic reconstruction based on bacterial 16S rRNA sequences. Thirty-two Melipona quadrifasciata symbiont OTUs belonging to 11 major clades (shown in bold)
are compared to sequences from bacteria previously characterized for other bees, identified by their respective accession numbers. Bootstrap support values larger than 70%
are shown at the respective branch nodes.
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keepers learned that by preventing bees from leaving the colony, or
by moving the colony to another locality, it is often possible to
avoid the collapse, which makes them suspect that a toxic plant
is poisoning their bees, but we observed that the pollen types in
the crop of both healthy and unhealthy adults are indistinguish-
able (data not shown). M. quadrifasciata adults seem to forage
mostly on Eucalyptus spp. – an observation corroborated by other
studies on Melipona feeding habits in Southern Brazil (Hilgert-
Moreira et al., 2014) – and on native Asteraceae, such as Vernonan-
thura tweediana, that bloom in the region in this time of the year.
We think that, as already suggested for colony collapses of honey-
bees (Goulson et al., 2015; Nazzi et al., 2012; VanEngelsdorp et al.,
2010), a synergistic effect of multiple factors, such as environmen-
tal stresses caused by climatic change, intensive management and
the use of pesticides, as well as biological factors that haven’t been
assessed in the present study, such as viruses or other pathogens,
may be at the heart of the problem.
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