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Chronic treatment with lithium increases the ecto-nucleotidase
activities in rat hippocampal synatosomes
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Abstract

Lithium is a mood-stabilizing treatment used in bipolar and other psychiatric disorders. The molecular mechanisms underlying lithium
action remain poorly understood. Adenosine is a neuromodulator that possesses anticonvulsant and neuroprotective properties and the ecto-
nucleotidase pathway is a metabolic source of the extracellular adenosine. Here we investigated the effect of lithium on the ecto-nucleotidase
p ith lithium
c d
A ith lithium
c lusion, the
m al lesions.
©

C

K

L
f
t
b
b
i
p

a
a
e
s
d
d

bi-
n
ecto-
h
vely

cto-

sy
this
TP
ical

ased
A
in

the
ase

0
d

athway in synaptosomes from hippocampus and cerebral cortex of adult rats. Male Wistar rats received standard rat chow w
hloride (2.5 mg/g of chow) and NaCl (17 mg/g of chow) during 4 weeks. The serum lithium levels were 1.18± 0.05 mEq./L. ATP an
MP hydrolysis was significantly increased (20 and 35%, respectively) in hippocampal synaptosomes of rats chronically treated w
hloride. No significant differences were observed in the hydrolysis of the three nucleotides by cortical synaptosomes. In conc
odulation of the ecto-nucleotidase pathway may be a new explanation for the potential neuroprotective lithium action in hippocamp
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ithium is one of the most commonly-used drugs employed
or the treatment of bipolar disorder and an increasing in-
erest in the neuronal protective effects of this cation has
een demonstrated in last few years[2,16,19]. Lithium has
een demonstrated to protect the hippocampus against lesions

n different ischemia models, suggesting its neuroprotective
roperties[9,21].

Adenosine is an endogenous neuromodulator that medi-
tes neuroprotection, by decreasing membrane excitability
nd/or neurotransmitter release, limiting calcium influx, and
xerting modulatory effects on glial cells[12,23]. Thus a pos-
ible role of adenosine has been suggested in several brain
isorders, including epilepsy[24], Parkinson’s disease[14],
epression[30] and mania[17].

∗ Corresponding author. Tel.: +55 51 3316 5554; fax: +55 51 3316 5535.
E-mail address:batas@terra.com.br (A.M.O. Battastini).

Extracellular adenosine can be derived from the
directional transporter system[13] or by the action of a
enzymatic chain consisting of the ecto-ATPase and/or
ATP-diphosphohydrolase and the ecto-5′-nucleotidase whic
hydrolyse ATP to AMP and AMP to adenosine, respecti
[31].

Previous studies have shown that alterations in e
nucleotidase activities are associated with ischemia[6,26],
learning, memory[4] and different models of epilep
[3,22]. These findings clearly indicate the importance of
enzymatic cascade in controlling extracellular levels of A
and adenosine in different physiological and patholog
conditions. Adenosine produced from catabolism of rele
adenine nucleotides preferentially activates excitatory2A
receptors[11], which are particularly involved in bra
disorders.

The objective of the present study is to investigate
effect of chronic lithium treatment on the ecto-nucleotid
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pathway in synaptosomes from hippocampus and cerebral
cortex of adult rats.

Five adult male Wistar rats (aged 60–90 days; weighing
220–260 g) were housed per cage and kept on a 12-h light:12-
h dark cycle (lights on at 7:00 a.m.) at a temperature of 23±
1◦C. The animals were divided into two groups: one group
received standard rat chow and the other group had lithium
chloride (2.5 mg/g of chow) and NaCl (17 mg/g of chow)
added to the food. This previously described treatment lasted
for 4 weeks[25], and the animals remained healthy and the
serum lithium levels at the end of the period were determined
by atomic absorption spectrometry. The serum lithium con-
centration were 1.18± 0.05 mEq./L (mean± S.E.M.,n =
18), which is in the range observed in lithium treated patients.
Rats were killed by decapitation and brain was isolated. Pro-
cedures for the care and use of animals were adopted accord-
ing to the regulations published by the Brazilian Society for
Neurosciences and Behavior (SBNeC).

Synaptosomes from hippocampus and cerebral cortex
were isolated and ATP, ADP and AMP hydrolysis assayed
as described previously[1]. Released inorganic phosphate
was determined according to Chan et al.[7] and protein was
measured by the Coomassie Blue method[5] using bovine
serum albumin as standard. Differences in nucleotide hydrol-
ysis from hippocampal and cortical synaptosomes between
l ent’s
t

0%
(
A rats
t ats.
T the
s ups.
C s that
r e nu-
c the
c

ems
h mod-
e ain its
t e,
t lular
c ecto-
n ctive
f

ute
f ,
w ited
b rst
s may
r tly
c -
t not
y wing
t gu-
l hich

Fig. 1. Effect of chronic treatment with lithium on ATP, ADP (A) and AMP
(B) hydrolysis in hippocampal synaptosomes of rats. Bars represent mean
± S.E.M. (n = 12). Significantly different from the respective control group
for ∗P < 0.05 and∗∗P < 0.01 (Student’st-test).

involves cAMP response element binding protein (CREB)
[20,28,29]. Considering that chronic treatment with lithium
can regulate phosphorylated CREB levels[8,15]it is possible
to suggest that the enhancement on ecto-5′-nucleotidase by
lithium treatment may be through the control of gene expres-
sion.

Lithium is a multifocal drug, which acts on uptake and re-
lease of neurotransmitter involving synaptic and intracellular
mechanisms[27]. Considering that the enzymes involved in
adenosine formation are located in synaptic plasma mem-
branes, it is important to investigate the effect of chronic
treatment with lithium on the hydrolysis of nucleotides by
synaptosomal preparations.

Another important finding from this study is the specific
enhancement of ectonucleotidases in hippocampus compar-
ing with cerebral cortex. Although further studies will be
ithium treated and control rats were compared by Stud
-test.

As shown inFig. 1, there was an increase by nearly 2
n = 12,P < 0.05) in ATP and 35% (n = 12,P < 0.01) in
MP hydrolysis in synaptosomes from hippocampus of

reated with lithium chloride when compared to control r
here was no significant difference in ADP hydrolysis in
ame structure between lithium-treated and control gro
onversely, in synaptosomes from cerebral cortex of rat

eceived the same treatment, the hydrolysis of the thre
leotides was not significantly different in comparison to
ontrol rats (Fig. 2).

The effects of lithium on neuronal transduction syst
ave been extensively studied in experimental animals
ls and many hypotheses have been proposed to expl

herapeutic action[18]. At the moment, to our knowledg
here is no evidence of the involvement of the extracel
atabolism of released ATP to adenosine, through the
ucleotidase pathway, in the therapeutic and neuroprote

unctions of lithium.
The extracellular hydrolysis of ATP is an important ro

or the production of adenosine. The ecto-5′-nucleotidase
hich catalyzes the last step of this pathway is inhib
y ATP and ADP and activated by AMP. Thus, the fi
tep catalyzed by ecto-ATPase/ATPdiphosphohydrolase
egulate the [ATP + ADP/AMP] ratio and consequen
an regulate adenosine formation[10]. Although the regula
ion of ecto-ATPase/ATPdiphosphohydrolase activity has
et been established, there is a number of reports sho
hat the ecto-5′-nucleotidase gene is transcriptionally re
ated through a tissue-specific regulatory mechanism, w
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Fig. 2. Effect of chronic treatment with lithium on ATP, ADP (A) and AMP
(B) hydrolysis in cortical synaptosomes of rats. Bars represent mean±
S.E.M. (n = 6).

necessary to investigate the effect of lithium in other brain
regions, this specificity may reflect a different modulation
of the ecto-nucleotidases in hippocampus, which could be a
relevant target to the long-term effect of lithium.

In summary, we have shown for the first time, that chronic
treatment with lithium promoted an enhancement of ATP and
AMP hydrolysis in synaptosomes from the hippocampus of
rats. Thus, it seems that chronic lithium treatment can mod-
ulate the ecto-nucleotidase pathway in this brain structure,
with a consequent decrease in ATP and increase in adenosine
levels. These observations may represent a new mechanism
underlying the neuroprotective as well as the therapeutic ef-
fects of lithium.
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