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A B S T R A C T   

Ticks are one of the main vectors of pathogens for humans and animals worldwide. However, they harbor non- 
pathogenic microorganisms that are important for their survival, facilitating both their nutrition and immunity. 
We investigated the bacterial communities associated with two neotropical tick species of human and veterinary 
potential health importance from Brazil: Amblyomma aureolatum and Ornithodoros brasiliensis. In A. aureolatum 
(adult ticks collected from wild canids from Southern Brazil), the predominant bacterial phyla were Proteo-
bacteria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actinobacteria (0.13%), and Acidobacteria 
(0.05%). The predominant genera were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), Candi-
datus Midichloria (0.25%), and Alkanindiges (0.13%). The predominant phyla in O. brasiliensis (adults, fed and 
unfed nymphs collected at the environment from Southern Brazil) were Proteobacteria (90.27%), Actinobacteria 
(7.38%), Firmicutes (0.77%), Bacteroidetes (0.44%), and Planctomycetes (0.22%). The predominant bacterial 
genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora (0.54%), Marmoricola (0.42%), and 
Staphylococcus (0.40%). Considering the genera with potential importance for human and animal health which 
can be transmitted by ticks, Coxiella sp. was found in all stages of O. brasiliensis, Francisella sp. in all stages of 
A. aureolatum and in unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of A. aureolatum from Banhado 
dos Pachecos (BP) in Viamão municipality, Brazil, and in females and unfed nymphs of O. brasiliensis. These 
results deepen our understanding of the tick-microbiota relationship in Ixodidae and Argasidae, driving new 
studies with the focus on the manipulation of tick microbiota to prevent outbreaks of tick-borne diseases in South 
America.   

1. INTRODUCTION 

The microbiome is a major factor in mammalian physiology (Ros-
shart et al., 2017). The microbiota of mammals is associated with obesity 
(Mulders et al., 2018), diabetes (Inoue et al., 2017), cancer (Kroemer 
and Zitvogel, 2018; Rosshart et al., 2017), viral infections (Oh et al., 
2014; Rosshart et al., 2017), multiple sclerosis (Dopkins et al., 2018), 
hypertension, chronic kidney disease (Sircana et al., 2019), and other 
metabolic, nervous, cardiovascular, and immune diseases. These asso-
ciations have been strengthened by several lines of evidence that link the 

effect of the microbiota to the physiology of mammals (mainly humans). 
However, all metazoans have partnered with a small or large consortium 
of microbes to enhance their health and survival, which is also valid for 
ticks (Narasimhan and Fikrig, 2015). 

Endosymbioses are interactions in which a smaller partner (the 
endosymbiont) lives inside the cell of a larger individual (the host). 
Examples of this relationship include the origin of mitochondria in 
eukaryotic cells (Dietel et al., 2018), and the Coxiella mutualist symbi-
ont, which is essential to the development of Rhipicephalus microplus 
(Guizzo et al., 2017). Ticks are among the main vectors of diseases for 
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humans and animals, but little is known about the interactions of these 
arthropods with their microbiota (Bonnet et al., 2017). It is well known 
that the microbiota plays a vital role in the physiology of its host, either 
by preventing infections by pathogens or by the synthesis of compounds 
necessary for the survival of the host organism (Bonnet et al., 2017; 
Gerhart et al., 2016). In addition to endosymbionts, pathogens of med-
ical and veterinary importance, such as species of the genera Anaplasma, 
Borrelia, Coxiella, Ehrlichia, Francisella, and Rickettsia, are present in ticks 
(Greay et al., 2018). Furthermore, arthropod microbiota could influence 
the presence and transmission of mammalian pathogens. For instance, 
commensal and symbiont bacteria can inhibit infection by Plasmodium 
spp., Trypanosoma spp. and the Dengue virus in Anopheles spp., Glossina 
spp., and Aedes aegypti, respectively (Weiss and Aksoy, 2011). In this 
sense, recently, several studies have addressed the microbiome of ticks 
of medical importance, such as Ixodes ricinus (Hernández-Jarguín et al., 
2018), Ixodes scapularis (Clow et al., 2018; Narasimhan et al., 2014), 
Ixodes pacificus (Kwan et al., 2017), Dermacentor andersoni (Clayton 
et al., 2015; Gall et al., 2016), Amblyomma americanum (Ponnusamy 
et al., 2014; Trout Fryxell and DeBruyn, 2016), Amblyomma maculatum 
(Budachetri et al., 2014), and Haemaphysalis longicornis (Nakao et al., 
2013; Zhang et al., 2019; Zhuang et al., 2018). 

Despite the abundance of tick species and the impact of tick-borne 
diseases in South America, to date, there have been few research 
studies on the microbiome of South American native ticks. In recent 
years, microbiome studies of Neotropical ticks have become available, 
such as for Amblyomma cajennense sensu stricto and Amblyomma sculp-
tum. In these studies, the genera Coxiella, Francisella, and Rickettsia are 
consistently present (Binetruy et al., 2019; Binetruy et al., 2020). It is 
important to note that the genera Coxiella, Francisella, and Rickettsia 
contain both endosymbiont and pathogen species. Particularly, the 
genus Coxiella harbors a pathogen species, the Q fever agent Coxiella 
burnetii, and a plethora of closely related Coxiella endosymbionts. A 
similar pattern can be observed in Francisella and Rickettsia species 
(Binetruy et al., 2019, 2020). 

Brazil has a tick fauna composed of 70 species, of which 47 belong to 
the Ixodidae and 23 to the Argasidae (Dantas-Torres et al., 2019). 
Considering the Ixodidae, the Amblyomma aureolatum tick has been 
recognized as a vector of Spotted Fever Group (SFG) rickettsiae (Dal-
l’Agnol et al., 2018; Saraiva et al., 2014) and the protozoan Rangelia 
vitalii (Soares et al., 2018, 2014). On the other hand, among the Arga-
sidae ticks, Ornithodoros brasiliensis is associated with a toxicosis syn-
drome in humans and animals (Reck et al., 2013, 2011), and has been 
linked to the transmission of a Borrelia species (Davis, 1952). Therefore, 
the aim of this work was to investigate the bacterial communities 
associated with two neotropical tick species of human and veterinary 
health importance from Brazil: A. aureolatum and O. brasiliensis. 

2. MATERIALS AND METHODS 

2.1. Ticks 

From December 2014 to December 2016, A. aureolatum (Acari: Ixo-
didae) adult ticks were collected from their natural host, free-ranging 
crab-eating fox (Cerdocyon thous). Wild canids were captured using 
Tomahawk live-traps in two areas of environmental preservation, in the 
Pampa biome in the Rio Grande do Sul (RS) state, southern Brazil: 
Banhado dos Pachecos (BP) in Viamão municipality, and APA Ibirapuitã, 
in Santana do Livramento municipality. 

Specimens of O. brasiliensis (Acari: Argasidae) (fed adults, fed and 
unfed nymphs) were collected in July 2016 in their natural environment 
from the Atlantic Rainforest biome in the Jaquirana municipality, 
Southern Brazil highlands, RS. Ticks were manually collected by sifting 
the soil. Vertebrate hosts of O. brasiliensis include dogs, armadillos, and 
possibly skunks, besides humans (Reck et al., 2011; Reck et al., 2013). 

After the ticks were collected, they were immediately taken to the 
laboratory and washed thrice in 70% ethanol, followed by a final wash 

using sterile ultrapure water to remove debris and to disinfect the sur-
face. Ticks were identified up to species level by dichotomous keys 
(Barros-Battesti et al., 2006, 2012). Samples of A. aureolatum adults 
were discriminated by gender (males and females), whereas 
O. brasiliensis specimens were classified as fed adult males, fed adult 
females, and fed or unfed nymphs. 

2.2. DNA extraction, library preparation, and sequencing 

The DNA extraction procedures were performed in a biosafety cab-
inet to ensure sample protection from environmental contaminants and 
the protection of researchers from potential infectious pathogens. 
Genomic DNA was extracted from each individual whole tick using the 
PureLink Genomic DNA MiniKit (Invitrogen, Carlsbad, CA, USA), 
including treatment with 50 µL lysozyme (20 mg/mL) (Sigma-Aldrich, 
Dorset, UK) at 30 min/37 ◦C for peptidoglycan disruption. In all DNA 
extraction procedures, a negative control (ultrapure water) was 
included. Ticks were grouped by host (for A. aureolatum), sex, stage/ 
instar, and locality, as indicated in Table 1. 

To synthesize the sequencing libraries, the V4 region of the bacterial 
16S rRNA gene was amplified according to Kozich and coworkers (2013) 
and the 16S metagenomic sequencing library preparation guide (Illu-
mina Inc.) (https://support.illumina.com/documents/documentation 
/chemistry_documentation/16s/16s-metagenomic-library-prep-guide- 
15044223-b.pdf?_ga=2.236812035.389663062.1622237564- 
255547950.1622237564). In all PCR reactions, a negative control (ul-
trapure water) was included. Sequencing was performed on a MiSeq 
(Illumina) platform using a 500-cycle v2 kit generating 250-bp 
paired-end reads. A drawback of our study is that we are not able to 
include a mock control for library sequencing due to the high cost for the 
inclusion of additional samples. 

2.3. Bioinformatics analysis 

Raw FASTQ files were used as input for the Mothur MiSeq SOP 
(Kozich et al., 2013), and data analysis was performed in the statistical 
language R. The operational taxonomic units (OTU) generated were 
compared with the ribosomal RNA database Silva (https://www.arb- 
silva.de/). 

3. RESULTS 

The mean number of raw reads obtained per sample before and after 
quality control was 313,515.2 (100,548 to 765,590) and 276,052.3 
(91,728 to 665,380), respectively (Table 2). 

In A. aureolatum, the predominant bacterial phyla were Proteobac-
teria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actino-
bacteria (0.13%), and Acidobacteria (0.05%). The predominant genera 
were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), 
Candidatus Midichloria (0.25%), and Alkanindiges (0.13%), as shown in 
Fig. 1. Francisella was the predominant genus in all samples of 
A. aureolatum. In ticks from BP, Spiroplasma sp. was found in all samples, 
whilst in ticks from APA Ibirapuitã, it was found only in one female and 
in a small proportion. On the other hand, Wolbachia sp. was found only 
in samples from BP, at a larger proportion in males than in females. 
Candidatus Midichloria sp. was also found only in ticks from BP. Alka-
nindiges sp. was found only in males and Morganella sp. only in females 
from BP. Rickettsiella sp. was found only in male ticks from BP. A greater 
amount of unclassified Proteobacteria was found in APA Ibirapuitã than 
in BP. Mycobacterium sp. and Burkholderia sp. were also present in a 
larger amount in BP-collected ticks. 

The predominant phyla in O. brasiliensis were Proteobacteria 
(90.27%), Actinobacteria (7.38%), Firmicutes (0.77%), Bacteroidetes 
(0.44%), and Planctomycetes (0.22%). The predominant bacterial 
genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora 
(0.54%), Marmoricola (0.42%), and Staphylococcus (0.40%), as shown in 
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Fig. 2. In the immature stages (nymphs), Staphylococcus sp. and Escher-
ichia–Shigella were present in greater numbers compared to adults. Un-
classified Gammaproteobacteria were found in greater amounts in unfed 
nymphs, whilst the genera Rickettsiella, Nitrosospira, Rubrobacter, 

Planctomyces, and Acidibacter were present in greater quantity in adults 
(males and females). 

Bacterial diversity seemed to be higher in the A. aureolatum samples 
collected in BP compared to those from APA Ibirapuitã, and there was no 

Table 1 
Data about origin of the tick pool used in the DNA metabarcoding analysis.  

Sample origin Biome latitude longitude Tick species NCBI taxon id of 
the tick 

Library 
name 

Life stage Sex Number of 
ticks 

APA Ibirapuitã Pampa 30◦20′32.5′′S 55◦41′09.7′′W Amblyomma 
aureolatum 

187,763 B Adult Male 5 

APA Ibirapuitã Pampa 30◦20′32.5′′S 55◦41′09.7′′W Amblyomma 
aureolatum 

187,763 C Adult Female 5 

APA Ibirapuitã Pampa 30◦20′32.5′′S 55◦41′09.7′′W Amblyomma 
aureolatum 

187,763 D Adult Female 5 

Banhado dos 
Pachecos 

Pampa 30◦05′37.9′′S 50◦51′01.5′′W Amblyomma 
aureolatum 

187,763 E Adult Male 5 

Banhado dos 
Pachecos 

Pampa 30◦05′37.9′′S 50◦51′01.5′′W Amblyomma 
aureolatum 

187,763 F Adult Male 5 

Banhado dos 
Pachecos 

Pampa 30◦05′37.9′′S 50◦51′01.5′′W Amblyomma 
aureolatum 

187,763 G Adult Female 5 

Banhado dos 
Pachecos 

Pampa 30◦05′37.9′′S 50◦51′01.5′′W Amblyomma 
aureolatum 

187,763 H Adult Female 5 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 J Adult Male 1 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 K Adult Female 1 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 L Adult Female 1 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 M Fed nymph Immature 5 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 N Fed nymph Immature 5 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 P Unfed 
nymph 

Immature 15 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 Q Unfed 
nymph 

Immature 15 

Jaquirana Atlantic 
rainforest 

29◦01′09.8′′S 50◦25′54.3′′W Ornithodoros 
brasiliensis 

888,526 R Unfed 
nymph 

Immature 15  

Table 2 
Data on the metagenomic sequencing process, and analysis of bacterial diversity based on the different OTUs.  

Sample origin Tick species Library 
name 

Life stage Sex Number of 
raw reads 

Number of reads 
after quality control 

Shannon 
index 

Simpson 
index 

invSimpson 
index 

APA Ibirapuitã Amblyomma 
aureolatum 

B Adult Male 294,424 277,238 0.097180283 0.019209686 1.019585882 

APA Ibirapuitã Amblyomma 
aureolatum 

C Adult Female 346,018 327,598 0.055127549 0.013924067 1.014120674 

APA Ibirapuitã Amblyomma 
aureolatum 

D Adult Female 100,548 91,728 0.080087477 0.024767218 1.025396194 

RVS Banhado dos 
Pachecos 

Amblyomma 
aureolatum 

E Adult Male 318,006 298,018 0.752314061 0.28020152 1.389274852 

RVS Banhado dos 
Pachecos 

Amblyomma 
aureolatum 

F Adult Male 312,700 285,202 1.597470598 0.561248189 2.279160929 

RVS Banhado dos 
Pachecos 

Amblyomma 
aureolatum 

G Adult Female 144,174 131,514 0.11195518 0.02694269 1.027688625 

RVS Banhado dos 
Pachecos 

Amblyomma 
aureolatum 

H Adult Female 239,878 207,742 2.084659654 0.694184435 3.269807541 

Jaquirana Ornithodoros 
brasiliensis 

J Adult Male 148,164 119,234 1.116713161 0.267420311 1.365030238 

Jaquirana Ornithodoros 
brasiliensis 

K Adult Female 368,288 323,768 1.125283115 0.25330364 1.33922674 

Jaquirana Ornithodoros 
brasiliensis 

L Adult Female 429,368 376,904 1.046095937 0.239096409 1.314222253 

Jaquirana Ornithodoros 
brasiliensis 

M Fed 
nymph 

Immature 381,608 319,306 1.58776802 0.392536779 1.646172909 

Jaquirana Ornithodoros 
brasiliensis 

N Fed 
nymph 

Immature 234,072 200,520 1.581527038 0.391100196 1.642283497 

Jaquirana Ornithodoros 
brasiliensis 

P Unfed 
nymph 

Immature 346,760 294,182 0.611494688 0.136234093 1.157719706 

Jaquirana Ornithodoros 
brasiliensis 

Q Unfed 
nymph 

Immature 765,590 665,380 0.85484268 0.197547578 1.246177156 

Jaquirana Ornithodoros 
brasiliensis 

R Unfed 
nymph 

Immature 273,130 222,450 0.750464292 0.176728503 1.214663905  
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evident difference between males and females (Fig. 3). Since 
O. brasiliensis ticks were collected in only one location, diversity evalu-
ation only allowed a comparison among different stage, with a greater 
diversity in fed nymphs (Fig. 3). 

Considering the genera with potential importance for human and 
animal health that can be transmitted by ticks, Coxiella sp. was found in 

all stages of O. brasiliensis, Francisella sp. in all stages of A. aureolatum 
and unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of 
A. aureolatum from BP and females and unfed nymphs of O. brasiliensis. 

Fig. 1. The relative abundance of bacterial genera in Amblyomma aureolatum ticks. Bars represent the proportion of main bacterial genera found in the A. aureolatum 
microbiome, each bar is one different sample (replicate). Different genera are shown as different colors in the bars. Below the bars, the main bacterial genera are 
shown. Note the comparison among male and female ticks from two different locations (APA, APA do Ibirapuitã; BP, RVS Banhado dos Pachecos). 

Fig. 2. The relative abundance of bacterial genera in Ornithodoros brasiliensis ticks. Bars represent the proportion of main bacterial genera found in O. brasiliensis 
microbiome, each bar is one different sample (replicate). Different genera are shown as different colors in the bars. Below the bars, the main bacterial genera are 
shown. Note the comparison among male, female, fed and unfed nymph ticks. 
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4. DISCUSSION 

Ticks are one of the main vectors of pathogens for humans and ani-
mals worldwide. However, they harbor non-pathogenic microorganisms 
that are important for their survival, helping in both their nutrition and 
immunity. Ticks depend on bacteria, such as Coxiella-like and Franci-
sella-like endosymbionts, that probably provide nutrients that are lack-
ing in their diet. In addition to endosymbionts, ticks may also be present 
and transmit pathogens to mammals, including C. burnetii and Francisella 
tularensis. However, the evolutionary relationship between endosymbi-
otic and pathogenic species of the same genus is puzzling (Duron et al., 
2015; Gerhart et al., 2016). Analyzing the genome of Coxiella-like en-
dosymbionts (CLE) of Rhipicephalus sanguineus sensu lato and Rhipice-
phalus turanicus, Tsementzi et al. (2018) observed that both genomes 
encode numerous pseudogenes, consistent with an ongoing genome 
reduction process. Similarly, Francisella-like endosymbionts (FLEs) 
contain pseudogenized versions of virulence genes present in 
F. tularensis, indicating that the common ancestor of FLEs and 
mammalian pathogens were equipped to function as a pathogen (Ger-
hart et al., 2018). In silico flux balance metabolic analysis (FBA) revealed 
the excess production of L-proline for CLE genomes, indicating a 
possible proline transport from Coxiella to the tick. Additionally, CLE 
genomes encode multiple copies of the proline/betaine transporter proP 
gene (Tsementzi et al., 2018). Moreover, FLE genomes contain intact 
pathways for the synthesis of several B vitamins and cofactors lacking in 
vertebrate blood (Gerhart et al., 2018). This possible symbiotic mech-
anism of B vitamin provisioning by FLE has formally been demonstrated 
by Duron et al. (2018) through genomic and microbiome studies. 

The active search for new microorganisms harbored in ticks should 
ideally be coordinated to prevent new cases of diseases, since tick- 
associated microorganisms of unknown pathogenicity may be identi-
fied first, and then an association with human or animal diseases could 
be found (Varela-Stokes et al., 2017). For instance, Rickettsia parkeri was 
recovered from Amblyomma maculatum in Texas approximately 60 years 
prior to the index case in humans, which was only reported in 2004. In 
addition, the spirochete Borrelia miyamotoi, first identified in Ixodes 
persulcatus in Japan, was considered as a non-pathogenic microorganism 
until the first human cases were reported only 15 years later (Vare-
la-Stokes et al., 2017). 

In A. aureolatum ticks, the principal genus found was Francisella. This 

corroborates the results from Pavanelo and coworkers (2020), who 
found a dominance of the genus Francisella in the A. aureolatum midgut 
microbiota. Budachetri and coworkers (2014) and Varela-Stokes and 
coworkers (2018) also reported Francisella as the main genus in 
A. maculatum (another Amblyomma species restricted to the Americas). 
Additionally, the presence of Francisella sp. has been reported in high 
abundance in Dermacentor species, including Dermacentor variabilis, 
Dermacentor andersoni, Dermacentor hunteri, Dermacentor nitens, Derma-
centor occidentalis, and Dermacentor albipictus (Budachetri et al., 2014; 
Niebylski et al., 1997; Scoles, 2004; Sun et al., 2000). On the other hand, 
the most abundant genera in Amblyomma variegatum (an Afrotropical 
tick species) were Clavibacter (13.4%) in males and Borrelia (8.6%) in 
females (Nakao et al., 2013). In Amblyomma testudinarium (an 
Oriental-Paleartic tick species) nymphs, the predominant genus was 
Pseudoalteromonas (17.2%) (Nakao et al., 2013). In Amblyomma ameri-
canum (a Neartic tick species), Coxiella was found in a greater amount in 
nymphs (26%), whereas Bradyrhizobium and Phenylobacterium were 
predominant in adults (28 to 45%) (Menchaca et al., 2013). However, 
Ponnusamy and coworkers (2014) observed that three of the most 
common genera found in A. americanum were Rickettsia, “Candidatus 
Midichloria mitochondrii”, and Ehrlichia, all members of the order 
Rickettsiales, representing 53% (median; interquartile range, 31 to 
75%) of the reads. Trout Fryxell and DeBruyn (2016) found that the 
most dominant OTUs were highly variable among specimens of 
A. americanum, but the most abundant ones (> 1% relative abundance) 
across all specimens were Flavobacterium (24.4 ± 13.3%), an unclassi-
fied Gammaproteobacteria (2.22 ± 12.4%), Rickettsia (9.1 ± 14.5%), 
Sphingomonas (4.6 ± 3.6%), Singulisphaera (1.91 ± 1.81%), Hymeno-
bacter (1.95 ± 3.00%), and Bacillus (1.86 ± 11.7%). In Amblyomma 
tuberculatum (a Neartic tick species), the main genera found were Rick-
ettsia (55.8%) and Francisella (35.2%) (Budachetri et al., 2016). Buda-
chetri and coworkers (2017) determined the microbiomes of 
Amblyomma longirostre, Amblyomma nodosum, Amblyomma maculatum, 
and Haemaphysalis juxtakochi collected from migratory bird species and 
found that the most prevalent genera observed, with abundance levels 
above 1%, were Lactococcus, Raoultella, Wolbachia, Francisella, Propio-
nibacterium, Ewingella, Elizabethkingia, Rickettsia, Massilia, and 
Methylobacterium. 

Besides Francisella, the main genera found in A. aureolatum were 
Spiroplasma, Wolbachia, Candidatus Midichloria, and Alkanindiges. 

Fig. 3. The different indexes of alpha diversity of bacterial microbiomes of Amblyomma aureolatum and Ornithodoros brasiliensis. Panel. (A) Bacterial diversity by 
Shannon Index. (B) Bacterial diversity by Simpson Index. The horizontal lines show the mean of the replicates, and the symbols (circles, squares, triangles, diamonds) 
represent each sample analyzed. Abbreviations: APA, APA do Ibirapuitã; BP, Banhado dos Pachecos. 
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Spiroplasma is common in arthropods (for a comprehensive review, see 
Bonnet et al., 2017 and O. Duron et al., 2017) and, although their effect 
in ticks is unknown, these bacteria showed a male-killer effect in diverse 
insect species (Engelstädter and Hurst, 2009). The genus Wolbachia is 
highly common in arthropods and is also present in ticks (Bonnet et al., 
2017). The effect of this genus on ticks is largely unknown, but it is 
responsible for reproductive alterations in many arthropods 
(Engelstädter and Hurst, 2009). It is a facultative mutualist (defensive 
symbiosis) in mosquitoes (Brownlie and Johnson, 2009; Hamilton and 
Perlman, 2013) and an obligate symbiont in bed bugs (Hosokawa et al., 
2010; Nikoh et al., 2014). At least in the case of I. ricinus, it has been 
demonstrated that the detection of Wolbachia sp. was due to contami-
nation by a hymenopteran parasitoid (Plantard et al., 2012). In several 
ticks, Candidatus Midichloria sp. resides in high numbers in female 
reproductive tissues. It lives inside tick mitochondria, but its effects on 
tick physiology and metabolism remain unknown (Buysse and Duron, 
2018; Epis et al., 2013). Nevertheless, it has recently been suggested that 
Candidatus Midichloria sp. is an obligate nutritional symbiont providing 
B vitamins (O. Duron et al., 2017) since its genome encodes pathways for 
the synthesis of major B vitamins and cofactors (Buysse and Duron, 
2018; Sassera et al., 2011). Male I. holocyclus ticks also appear to inherit 
and harbor Candidatus Midichloria sp.; however, I. ricinus males fail to 
establish stable bacterial populations. In addition, Candidatus Midi-
chloria sp. is found in I. ricinus salivary glands, from where it is intro-
duced to vertebrate hosts, including humans, during feeding. However, 
the consequences of Midichloria infection in vertebrate hosts, if any, are 
unknown (Gofton et al., 2015; Mariconti et al., 2012; Serra et al., 2018). 
Alkanindiges sp. is not commonly found in high proportions in ticks, 
although R. microplus eggs have been described to present a relative 
abundance of 0.2% (Andreotti et al., 2011). It seems that Alkanindiges sp. 
are found in oilfield soils (Bogan et al., 2003; Chang et al., 2011; Fuentes 
et al., 2016; Sun et al., 2015; Zheng et al., 2018), patients with parotid 
abscesses (Woo et al., 2005) and with, bone and joint infections 
(Fenollar et al., 2006), patients with asthma (Fazlollahi et al., 2018), 
activated sludge systems (Klein et al., 2007), tonsils of healthy pigs 
(Lowe et al., 2012), lettuce (Erlacher et al., 2014; Rastogi et al., 2012), 
and drinking water wells (Karwautz and Lueders, 2014). 

To the best of our knowledge, there are only few studies on the 
microbiome characterization of Argasidae. Ticks of this family could 
exhibit characteristics remarkably different from those of Ixodidae, for 
instance, fast feeding (minutes) and a long life (some species may live for 
several years). They can also induce severe injuries directly associated 
with the tick bite (tick toxicosis), may have several nymphal stages, and 
females do not die after oviposition (Ramirez et al., 2016; Reck et al., 
2013). In Ornithodoros tholozani collected from buffaloes from Pakistan, 
the main bacterial genera found were Ralstonia (40.0%), Staphylococcus 
(22.8%), Enterococcus (13.9%), Saccharomonospora (4.5%), and Bacillus 
(4.3%) (Karim et al., 2017). The most predominant genus found in 
O. brasiliensis was Coxiella. This bacterium was also the main symbiont of 
Rhipicephalus spp. (Bernasconi et al., 2002; Guizzo et al., 2017). Guizzo 
and coworkers (2017) showed that, in Rhipicephalus microplus, 99 and 
98.3% of bacteria present in eggs and larvae, respectively, were Coxiella 
sp. The levels of Coxiella sp. were affected in fully engorged females 
injected with tetracycline; the development of larva with reduced levels 
of the Coxiella sp. was arrested at the metanymph stage. In Argasidae, 
the endosymbiont Coxiella sp. was found in Carios capensis (Reeves, 
2005), Argas monolakensis (Reeves, 2008), Ornithodoros rostratus 
(Almeida et al., 2012), Ornithodoros muesebecki (Al-Deeb et al., 2016), 
and in at least 10 other soft tick species, including O. brasiliensis (O. 
Duron et al., 2017). 

Besides Coxiella sp., the main genera found in O. brasiliensis were 
Nocardioides, Saccharopolyspora, Marmoricola, and Staphylococcus. 
Nocardioides was a symbiont of ants and was involved in ant-plant mu-
tualisms (Hanshew et al., 2015; Reyes and Cafaro, 2015); it was also 
isolated from the water flea Daphnia cucullata (Crustacea: Cladocera) 
(Toth et al., 2008). Saccharopolyspora was also found associated with 

ants (Reyes and Cafaro, 2015) and was isolated from the gut of a termite 
(Speculitermes sp.) (Sinma et al., 2011). Members of the genus Saccha-
ropolyspora are a potentially rich source of natural products, but only 
erythromycin, produced by Saccharopolyspora erythraea, and spinosad, 
an insecticide based on chemical compounds found in the bacterial 
species Saccharopolyspora spinosa, are currently commercially available 
(Prabhu et al., 2011; Sinma et al., 2011). The genus Marmoricola was 
also found in spiders from Japan (Iwai et al., 2009) and ants from the 
USA (Ishak et al., 2011). Andreotti and coworkers (2011) showed that 
the genus Staphylococcus was relatively abundant in males (32%) and in 
the eggs (18%) of R. microplus ticks, but not in adult females (0.7%). 

In our study, among the genera with potential importance for human 
and animal health that can be transmitted by ticks, the presence of 
Coxiella, Francisella, and Rickettsia is noteworthy. We found Rickettsia sp. 
in A. aureolatum, which corroborates the studies regarding its impor-
tance as a vector of spotted fever in Brazil (Dall’Agnol et al., 2018; 
Saraiva et al., 2014). We also found Rickettsia sp. in O. brasiliensis. 
Bacteria of the genus Rickettsia have never been reported in 
O. brasiliensis and have only recently been found in argasid ticks in Brazil 
(Labruna et al., 2014; Luz et al., 2019; Muñoz-Leal et al., 2019; Peixoto 
et al., 2021). In recent years, the number of reports of Rickettsia spp. in 
Argasidae has increased, including the description of novel species (Duh 
et al., 2010; Karim et al., 2017; Lafri et al., 2015; Milhano et al., 2014; 
Moreira-Soto et al., 2017; Pader et al., 2012; Sánchez-Montes et al., 
2016; Socolovschi et al., 2012; Tahir et al., 2016). Therefore, 
tick-transmitted rickettsioses may be a neglected subject that may have 
an impact on public health, considering the amount of human cases of 
parasitism by Argasidae, mainly by O. brasiliensis (Martins et al., 2011; 
Reck et al., 2013). Further studies may clarify the potential roles of 
Rickettsia spp. in the syndrome associated with the O. brasiliensis bite. 

Finally, it was not possible to detect Borrelia spp. in O. brasiliensis. 
Several species of Ornithodoros (such as Ornithodoros hermsi, Ornitho-
doros sonrai, Ornithodoros turicata, Ornithodoros erraticus, Ornithodoros 
moubata, and Ornithodoros rudis), especially those presenting a public 
health impact, have been associated with the transmission of Borrelia 
spp., belonging to the relapsing fever group (Boyle et al., 2014; Lopez 
et al., 2011; McCoy et al., 2010; Muñoz-Leal et al., 2018; Schwan et al., 
2012; Trape et al., 2013). Conversely, Davis (1952) reported the isola-
tion of Borrelia sp. in samples of O. brasiliensis. This difference corrob-
orates the results found in this study, as we were able to describe 
significant differences in the bacteriome composition within individuals 
of a single species and found that the factors sex, developmental stage, 
mammal host, and environment may influence it. Additionally, these 
data show the importance of investigating pathogen presence, specif-
ically since bacterial genera present in small proportions in a sample 
may not appear in the analysis of rRNA 16S gene metabarcoding (Frey 
et al., 2014). Abundant bacterial endosymbionts limit the effectiveness 
of next-generation 16S bacterial community profiling in arthropods by 
masking less abundant bacteria, including pathogens (Gofton et al., 
2015). In addition, the samples of O. brasiliensis were collected only from 
one place. The presence of Borrelia spp. in samples from different loca-
tions and using techniques with a higher sensitivity could help to clarify 
this issue (Boyle et al., 2014; Muñoz-Leal et al., 2018). 

In A. aureolatum, bacterial diversity was higher in samples collected 
in BP compared to those from APA Ibirapuitã. The BP is a wildlife 
conservation refuge surrounded by small farms, with stray dogs carrying 
ticks in and out. The APA Ibirapuitã has an extremely low human pop-
ulation and animal density in comparison to the BP. In O. brasiliensis, fed 
nymphs had a greater microbial diversity than unfed nymphs, most 
likely because the former enters into contact with the host’s microbiota 
during the blood meal. Males and females also had a lower diversity 
compared to fed nymphs; this difference may be due to the fact that the 
adult ticks were analyzed individually and the fed nymphs in pools of 
five individuals. There may also be variation among specimens. 

In this study, we determined the bacteriomes of two tick species 
native to Brazil. Furthermore, we were able to compare the 
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A. aureolatum bacterial diversity from specimens of different ecological 
characteristics. These results facilitate our understanding of the tick- 
microbiota relationship in Ixodidae and Argasidae and may drive new 
studies with a focus on the manipulation of tick microbiota to prevent 
outbreaks of tick-borne diseases in South America. 
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