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ABSTRACT Several studies have suggested a role of extracellular ATP in synaptic plasticity. The signaling
actions induced by extracellular ATP are directly correlated to the activity of a group of ectonucleotidases,
which includes an ecto-ATPase (EC 3.6.1.3), an ATP diphosphohydrolase (apyrase, EC 3.6.1.5), and a 5′-
nucleotidase (EC 3.1.3.5). These ectoenzymes trigger enzymatic conversion of ATP to adenosine, an impor-
tant neuromodulator. Our studies have shown that ectonucleotidase activities are modulated in physiological
and pathological situations able to induce synaptic plasticity, such as memory, epilepsy, and ischemia.
Synaptosomal ectonucleotidase activities from hippocampus and entorhinal cortex were inhibited after the
training session in a step-down inhibitory avoidance task in rats. Considering that adenosine has anticon-
vulsant effects, ectonucleotidase activities were determined after the induction of epilepsy by several ani-
mal models, such as pilocarpine, kainic acid, and kindling models. ATP diphosphohydrolase and
5′-nucleotidase activities from synaptosomes of hippocampus and cerebral cortex of rats significantly and
differently increased after induction of status epilepticus by pilocarpine, kainic acid, or kindling models.
Furthermore, significant changes have been observed in ATP diphosphohydrolase and 5′-nucleotidase after
ischemia and reperfusion in hippocampal synaptosomes of rats. The demonstration that ectonucleotidases
presented the activities altered after a memory task, or the induction of animal models of epilepsy or
ischemia-reperfusion, suggests that these enzymes can act in the regulation of synaptic activity, controlling
ATP and adenosine levels, depending on the synaptic plasticity developed, in physiological or pathological
conditions. Drug Dev. Res. 52:57–65, 2001. © 2001 Wiley-Liss, Inc.
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SYNAPTIC PLASTICITY

Plasticity is a widespread concept that involves all
forms of reorganization in the mature brain. These reor-
ganizations can concern neurons or synapses. These pro-
cesses can be considered from the physiological
(functional properties acquired by neurons), morphologi-
cal (morphology of neurons and glia), or biochemical as-
pects (enzyme activities, signal transduction, and changes
in gene expression) [Au Lois et al., 1997].
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58 BONAN ET AL.

After its development, the nervous system should
be maintained and even modified to maintain its func-
tions. Once mature neurons do not divide, they request
repairs, through regeneration processes and migration.
Recent studies demonstrate that the brain has the extraor-
dinary capacity to develop plastic responses during life,
and the functional plasticity is coupled to structural
changes of long duration [Au Lois et al., 1997]. In the last
few years, studies indicate that the central nervous sys-
tem can exhibit subtle and specific synaptic plasticity in
response to a given activity, as, for instance, the learning
of a new task. Furthermore, the brain has the repair ca-
pacity after cellular loss caused by injury or a neurode-
generative disease [Cotman, 1998]. In the central nervous
system of mammals, two important plastic phenomena
have been described: long-term potentiation (LTP), con-
sidered as a possible mechanism involved in memory,
and epilepsy-induced plasticity [Au Lois et al., 1997].

ECTONUCLEOTIDASES

The ATP released by synapses can be hydrolyzed
by ectonucleotidases in a highly sophisticated pathway
composed by ectoenzymes that includes ecto-ATPase (EC
3.6.1.3) and ecto-apyrase (EC 3.6.1.5), both belonging to
the E-type ATPase family; ectonucleotide pyrophos-
phatase (EC 3.6.1.9); ectoadenylate kinase (EC 2.7.4.3);
and ectoalkaline phosphatase (EC 3.1.3.1), which can
transform ATP and ADP to AMP. There was a contro-
versy about the first step of the ectonucleotidase path-
way in regards to the existence of multiple enzymes that
can hydrolyze nucleosides di- or triphosphates in the ex-
tracellular space. However, the biochemical properties,
cellular localization, and functional properties of these
enzymes have now been well demonstrated [Zimmer-
mann, 1996]. Moreover, the molecular identity of these
proteins, recently established, demonstrated definitively
the existence and certainly of their participation in the
nucleotide degradation.

The AMP produced is subsequently hydrolysed to
adenosine by ecto-5′-nucleotidase (EC 3.1.3.5), a key
enzyme in this pathway [Zimmermann, 1992]. In con-
trast to the E-type ATPases, ecto-5′-nucleotidase is a
membrane protein anchored to the cell surface by a
phosphatidylinositol glycan. Cytosolic and secreted
forms of this enzyme have also been described
[Zimmermann, 1992]. The molecular properties and
physiological roles of ecto-5′-nucleotidase have been
extensively studied [for review see Zimmermann, 1992].
The role of this enzyme in neuromodulation mediated
by adenosine as well as the alterations of 5′-nucleoti-
dase levels in a considerable number of pathological con-
ditions have also been reviewed recently [Zimmermann,
1996; Zimermann et al., 1998].

During the last decade, we have been focused our

investigations on ATP diphosphohydrolase (ecto-apyrase)
activity in synaptosomes from central nervous system of
rats in physiological and pathological conditions
[Schadeck et al., 1989; Rocha et al., 1990; Battastini et
al., 1991; Müller et al., 1993; Wyse et al., 1994; Schetinger
et al., 1994; Bonan et al., 1997, 1998, 1999, 2000a; Bonan
et al., 2000b]. We have also solubilized the enzyme from
rat brain synaptic plasma membranes [Battastini et al.,
1995], demonstrated that ecto-apyrase from rat brain is a
transmembrane-polypeptide-anchored protein [Battastini
et al., 1998], and investigated the amino acids involved
in ATP and ADP hydrolysis [Wink et al., 2000].

ATP diphosphohydrolase (apyrase, ATPDase, EC
3.6.1.5) is an enzyme that catalyses the conversion of
nucleoside tri- and diphosphates to monophosphate and
inorganic phosphate in the presence of Ca2+ or Mg2+. It is
insensitive to inhibitors of various ATPase (P-type, F-type,
and V-type) and has an optimum pH of approximately 8.0.

We have shown that the enzyme ATP diphospho-
hydrolase is firmly associated with synaptic plasma mem-
brane [Battastini et al., 1998]. This can be explained by
the presence of two transmembrane domains at N- and
C-terminus [Kaczmarek et al., 1996], as was recently con-
firmed by the amino acid sequence analysis [Wang et al.,
1997; Kegel et al., 1997]. Recently, Wang et al. [1998] have
shown that the sensitivity of the enzyme to different de-
tergents as observed by us [Battastini et al., 1998] is caused
by the dissociation of the tetrameric structure of the pro-
tein. This feature of the enzyme makes the solubilization
and purification process difficult [Battastini et al., 1995].

Recently, considerable progress has been made in
the study of the molecular structure of ATP diphospho-
hydrolase of several sources [Kegel et al., 1997; Wang et
al., 1997; Smith and Kirley, 1998]. Wang et al. [1997] iso-
lated rat and mouse brain ecto-apyrase cDNAs and sug-
gested that there might be only a single copy of the
ecto-apyrase (APY/CD39) gene. Moreover, it was shown
that ATP diphosphohydrolase is a highly glycosylated
protein with six potential N-linked glycosylation sites
[Maliszewski et al., 1994; Christoforidis et al., 1995;
Kaczmarek et al., 1996; Kegel et al., 1997; Wang et al.,
1997]. Analysis of the amino acid sequences of apyrases
from different sources has shown several potential phos-
phorylation sites [Kegel et al., 1997; Wang et al., 1997;
Smith and Kirley, 1998], indicating that ecto-apyrase
could be regulated by phosphorylation. We have recently
shown that ecto-apyrase present in different brain tissue
preparations and cell culture can be detected as a phos-
phoprotein, with possible implications for the regulation
of the enzyme [Wink et al., 2000b]. In addition, the exist-
ence of alternative splicing in the ecto-ATPase family may
provide a regulatory mechanism that controls the extra-
cellular ATP hydrolysis, contributing to the diversity of
purinergic transmission [Vlajkovic et al., 1999].
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ECTONUCLEOTIDASES AND SYNAPTIC PLASTICITY 59

Thus, the participation of this enzyme in the “en-
zyme chain” together with a 5′-nucleotidase for the com-
plete hydrolysis of ATP to adenosine in the synaptic cleft
during neurotransmission is well established [Battastini
et al., 1991; Zimmermann, 1996; Kegel et al., 1997]. These
two enzymes have a dual function controlling the avail-
ability of ligands (ATP, ADP, AMP, and adenosine] for ei-
ther nucleotide or nucleoside receptors. By the hydrolysis
of the nucleotide, they might be involved in controlling
activation of receptor [Zimmermann, 1996]. Therefore,
it will be the purpose of this review to present findings
with regard to the involvement of ecto-apyrase and ecto-
5′-nucleotidase in some physiological and pathological
conditions potentially related to synaptic plasticity.

ATP, ADENOSINE, AND MEMORY

It is accepted that the neurophysiological basis for
memory and learning should involve alteration in the
synaptic efficiency between neurons integrated in a net-
work. Although the activation of glutamate receptors and
intracellular cascades controlled by protein kinases are
events considered to be necessary for the induction of
LTP and formation of memory in the hippocampus, other
factors, such as arachidonic acid [Bliss et al., 1991], NO,
CO [Zhuo et al., 1993], and extracellular ATP [Wieraszko
and Ehrlich, 1994], may be involved in the synaptic plas-
ticity induced by learning.

In the central nervous system, ATP induces fast syn-
aptic currents in cultured neurons from the hippocampus
and in slices from the medial habenula [Inoue et al., 1992;
Edwards et al., 1992]. Furthermore, ATP is able to induce
LTP, recording in hippocampal slices from mouse and
guinea pig [Wieraszko and Seyfried, 1989; Fujii et al., 1999].
These results suggested that extracellular ATP might be
involved in the modulation of synaptic efficiency. Studies
have shown that the release of ATP was greater at a brief,
high-frequency stimulation (LTP stimulation paradigm),
whereas the release of adenosine was slightly greater at a
more prolonged low-frequency stimulation (long-term de-
pression stimulation paradigm) [Cunha et al., 1996].

The involvement of purinergic system in LTP in-
duced electrically and by ATP was investigated [Wierazsko
and Ehrlich, 1994]. This study showed that extracellular
ATP and its analogue, ATP-γ-S, amplify the magnitude of
population spike. However, this effect was not observed
in the presence of other ATP analogues, such as AMPPNP,
2MeSATP, α-β-methylene ATP, or a purinergic recep-
tor antagonist Cibacron Blue 3G [Wieraszko and Ehrlich,
1994]. It has been proposed that the removal of the γ-
phosphate of ATP by an ecto-protein kinase or by ecto-
ATPase could be necessary for the facilitatory effect on
LTP [Wieraszko and Ehrlich, 1994].

Among ligands of P2 receptors, suramin has been
used as a nonselective antagonist of P2 receptors [Ralevic

and Burnstock, 1998], presenting an inhibitory effect on
the enzyme activities involved in ATP degradation [Bonan
et al., 1999]. Despite its antagonist action, suramin pro-
duced a facilitatory effect on the synaptic responses re-
corded in hippocampal slices [Wieraszko, 1995], using
mechanisms that also participate in the induction and
maintenance of LTP. However, it has been shown that
suramin impairs fear-conditioned responses in rats [Zou
et al., 1998]. Recently, our laboratory has shown that
suramin, a noncompetitive inhibitor of ecto-apyrase, pro-
duced an amnesic effect in the step-down inhibitory avoid-
ance task, when administered intrahippocampally [Bonan
et al., 1999]. Such an effect probably occurs because
suramin can act as an antagonist of N-methyl-D-aspartate
(NMDA) receptors [Ong et al., 1997]. The dissociation
observed between the effects of suramin on LTP and be-
havioral data is probably because of the broad spectrum of
biological effects promoted by this drug.

Adenosine, a product of extracellular ATP metabo-
lism, is an endogenous nucleoside that also exerts an
important role in the regulation of neuronal excitability.
It has previously been shown that adenosine may modu-
late synaptic plasticity in rats [De Mendonça and Ribeiro,
1997]. The endogenous adenosine is able to modulate
LTP, because this phenomenon was facilitated in the pres-
ence of the selective A1 adenosine receptor antagonist,
1,3-dipropyl-8-cyclopentylxanthine, and it was reduced
in the presence of the adenosine uptake blocker, nitro-
benzylthioinosine, suggesting that the endogenous ad-
enosine exerts an inhibitory effect on LTP [De Mendonça
and Ribeiro, 1994]. The inhibitory effects of adenosine
on LTP are mediated by the activation of A1 receptors,
and this effect is observed during or a few seconds after
high-frequency stimulation, suggesting that adenosine
affects the LTP induction [De Mendonça and Ribeiro,
1997]. Furthermore, it has been shown that the activa-
tion of A1 and A2 adenosine receptors can modulate the
performance in the retention of responses, controlling
mechanisms of memory and learning [Hooper et al., 1996;
Kopf et al., 1999].

Because LTP is generally recognized as a possible
mechanism of memory and evidence indicate that ATP
and adenosine may play a role in the modulation of LTP,
a study of the possible effect of memory tasks on ATP-
metabolizing enzymes would be interesting. Recently, our
laboratory observed that one-trial inhibitory avoidance
training is associated with a learning-specific, time-depen-
dent decrease in hippocampal ectonucleotidase activities
[Bonan et al., 1998]. The results showed a significant de-
crease in ATP diphosphohydrolase and 5′-nucleotidase
activities immediately after training session in a step-
down inhibitory avoidance task. In the test session, no
significant changes were observed in the enzyme activi-
ties studied [Bonan et al., 1998].
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60 BONAN ET AL.

To further explore the participation of the ecto-
nucleotidase pathway in different brain structures in-
volved in the formation of inhibitory avoidance memory,
our laboratory evaluated the effect of training session on
ectonucleotidase activities from hippocampus, entorhinal
cortex, and parietal cortex of rats. ATP diphospho-
hydrolase presented a significant decrease in hippocam-
pal synaptosomes of rats killed at 180 min, but not at 360
min after training [Bonan et al., 2000a]. In synaptosomes
from entorhinal cortex of rats, a decrease in ATP diphos-
phohydrolase activity was observed immediately, but not
at 180 and 360 min after training [Bonan et al., 2000a].

Extracellular ATP is associated with memory for-
mation, probably by interaction with purinergic recep-
tors [Wieraszko and Ehrlich, 1994], ectonucleotidases
[Bonan et al., 1998; 2000a] and ecto-protein phosphory-
lation [Fujii et al., 1995; Chen et al., 1996]. The signifi-
cant inhibition observed on ectonucleotidase pathway in
hippocampus and in entorhinal cortex after training could
represent an important biochemical mechanism related
to memory acquisition and consolidation, but has no in-
fluence in the retrieval [Bonan et al., 1998; 2000a].

Among several biochemical mechanisms triggered
immediately after training, it is possible to observe an
enhanced activity of protein kinase G, calcium-calmodu-
lin-dependent protein kinase II, protein kinase C cas-
cades, and an increase in protein kinase A activity at 0
and 3 h after training [Izquierdo and Medina, 1997]. Re-
cently, our laboratory has presented evidence pointing
to a possible modulation of rat brain ecto-apyrase by phos-
phorylation [Wink et al., 2000b]. Although the mecha-
nism by which ecto-apyrase decreases its activity after
training has not been elucidated, it is possible that its
phosphorylation represents an important regulatory
mechanism, controlling extracellular ATP levels, which
could be used as substrate in ecto-protein phosphoryla-
tion. Because ATP and activation of NMDA receptors
are necessary for LTP induction, it is possible that extra-
cellular ATP levels reach a suprathreshold concentration
that triggers the biological process that results in LTP by
phosphorylation of extracellular domains of NMDA re-
ceptor/channels [Fujii et al., 1999]. Furthermore, it has
been proposed that the maintenance of LTP involve the
activity of an ecto-protein kinase, using extracellular ATP
as substrate [Chen et al., 1996]. These findings consti-
tute the first evidence on the involvement of ectonucleo-
tidases in memory acquisition and consolidation and raise
questions about the importance of these enzymes in bio-
chemical events related to memory formation.

ATP, ADENOSINE AND EPILEPSY

Several studies have shown that adenosine, a ubiq-
uitous neuromodulator, has potent anticonvulsant effects
[Chin, 1989; Young and Dragunow, 1994]. Adenosine and

adenosine analogues administered either centrally or
peripherally reduce seizure activity in a dose-dependent
manner in electrically kindled rats [Barraco et al., 1984;
Rosen and Berman, 1987]. In 1985, Turski et al. demon-
strated that the analogue 2-cloroadenosine blocked the
appearance of seizures induced by pilocarpine and pre-
vented the occurrence of neuronal damage in mice, with
these effects probably being mediated by A1 receptors.
The A1 receptor antagonist, 8-cyclopentyl-1,3-dimethyl-
xanthine, produced status epilepticus (SE) in rats when
administered intraperitoneally, but their agonists, N6-cyclo-
pentyladenosine or N6-cyclohexyladenosine, suppressed
the development of SE [Young and Dragunow, 1994]. Stud-
ies have shown that adenosine A1 and A2A receptors are
involved in the suppression of seizures in audiogenic sei-
zure-sensible DBA/2 mice [De Sarro et al., 1999].

Single or repeated seizures induced by pentylene-
tetrazol (PTZ) were associated with an increase of A1 re-
ceptors in cerebral cortex, hippocampus, and cerebellum
[Angelatou et al., 1990]. Furthermore, an increased affin-
ity for adenosine A1 receptors has been observed in the
hippocampus of kindled rats, suggesting that these re-
ceptors might play a role in the anticonvulsant effects of
adenosine analogues [Simonato et al., 1994]. However, a
lower density of A1 receptors was found in nucleus
reticularis thalami in rats with genetic absence epilepsy
[Ekonomou et al., 1998]. Immunoreactivity studies have
shown a reduced expression of A1 receptors in the CA2/
CA3 regions in rats after kainate and kindling treatments
[Ochiishi et al., 1999]. Ekonomou et al. [2000] have also
observed a progressive decrease in A1 receptor density
in CA1 and CA3 regions of rat hippocampus after kainic
acid–induced limbic seizures.

Studies developed in humans observed that adenos-
ine levels significantly increased (30 times) during sei-
zures in patients with temporal lobe epilepsy [During
and Spencer, 1992]. Furthermore, a decreased binding
to A1 adenosine receptors was observed in temporal cor-
tex of patients with epilepsy [Glass et al., 1996]. Evidence
suggests that a decrease in the adenosine levels or a per-
turbation in adenosine system may play an important role
in the etiology of epilepsy [Young and Dragunow, 1994].

Besides the release of adenosine as such, biochemi-
cal studies have established that a potential source of
adenosine is its formation in the extracellular space from
adenine nucleotides [Dunwiddie et al., 1997]. Once ad-
enine nucleotides reach the extracellular space, they are
subsequently converted to adenosine through the action
of ectonucleotidases [Zimmermann, 1996, Bonan et al.,
1998]. Several studies have shown the involvement of
ectonucleotidases in several pathological conditions, such
as epilepsy. A deficiency of ecto-ATPase activity is seen
in cultured glia cells raised from neonatal, seizure-prone
mice [Trams and Lauter, 1978]. Nagy et al. [1990] showed
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ECTONUCLEOTIDASES AND SYNAPTIC PLASTICITY 61

a significant decrease in ecto-ATPase activity in tempo-
ral cortex of humans with epilepsy. However, a substan-
tially increased ecto-ATPase activity was observed in the
posterior part of epileptic hippocampus [Nagy et al.,
1990]. It is interesting to observe that the chromosomal
position of human CD39/ecto-apyrase (10q23.1 to q24.1)
[Maliszewski et al., 1994] is co-located with the gene in-
volved in the human partial epilepsy with audiogenic
symptom (10q 22 to 24) [Ottman et al., 1995]. The local-
ization of these genes led to the hypothesis that ecto-
apyrase is probably involved in the epilepsy. Furthermore,
studies have shown a reduction in the ecto-ATPase ac-
tivity in cerebral cortex of rats during prolonged SE in-
duced by sequential administration of lithium and
pilocarpine [Nagy et al., 1997].

The distribution of the 5′-nucleotidase in patients
with temporal lobe epilepsy showed that the enzyme is
significantly increased in the dentate gyrus and in the
mossy fiber endings in CA4 and CA3 areas, when com-
pared with the activity in normal hippocampus of hu-
mans [Lie et al., 1999]. Recently, the presence of the
5′-nucleotidase was observed in mossy fibers of rat den-
tate gyrus after systemic kainate injection and induction
of kindling, being less detected in normal hippocampus
[Schoen et al., 1999].

Recently, our laboratory has investigated ecto-
nucleotidase activities after the induction of epilepsy by
several chronic animal models, such as pilocarpine, kainic
acid, and kindling models. ATP diphosphohydrolase and
5′-nucleotidase activities from synaptosomes of hippoc-
ampus and cerebral cortex of rats significantly increased
at 48–52 h, 7–9 days, and 45–50 days after induction of
SE by pilocarpine or kainic acid models [Bonan et al.,
2000b]. However, only 5′-nucleotidase activity remains
elevated at 100–110 days after the treatment with kainic
acid [Bonan et al., 2000b]. Our findings lead us to the
hypothesis that an increase in ectonucleotidase activi-
ties could modulate the seizure activity in a time win-
dow (48 h–110 days) after SE, contributing to production
of extracellular adenosine, a known endogenous neuro-
modulator [During and Spencer, 1992]. If ATP is released
in large amounts and for a long time, it may promote a
dramatic increase in intracellular calcium levels medi-
ated by P2X receptors, which could represent significant
damage, as that induced by excess of glutamate [Edwards
et al., 1992]. If all members of the ectonucleotidase path-
way work at an elevated rate, an efficient removal of ex-
tracellular ATP and enhanced adenosine production
could occur in this condition. Then, adenosine could
modulate the release of a variety of neurotransmitters,
including glutamate, acetylcholine, noradrenaline, and
dopamine [Di Iorio et al., 1998]. In summary, after SE,
an important adaptive plasticity of the ectonucleotidase
pathway could occur to decrease ATP levels, an excita-

tory neurotransmitter, and to increase adenosine levels,
a neuroprotective compound. Our results suggest that
SE can induce late and prolonged changes in ectonucleo-
tidase activities. The regulation of the ectonucleotidase
pathway may play a modulatory role during the evolu-
tion of behavioral and pathophysiological changes in-
duced by SE [Bonan et al., 2000b].

Considering that adenosine has potent anticonvulsant
effects on various models of epilepsy, such as PTZ kindling,
we evaluated ectonucleotidase activities after the induc-
tion of this model. Our results have indicated that rats show-
ing greater resistance to PTZ kindling presented an increase
in ATP hydrolysis in synaptosomes from hippocampus and
cerebral cortex [Bonan et al., 2000c]. To examine whether
the altered ATP hydrolysis was due to the chronic, long-
lasting changes induced by, kindling or by the drug, we
investigated enzyme activities after a single acute seizure
induced by PTZ. Changes in ectonucleotidase activities
were not seen at different times (immediately, 1 h, 24 h,
and 5 days) after a single convulsant PTZ injection [Bonan
et al., 2000c]. These alterations seems to be related to the
chronic, long-lasting synaptic plasticity induced by kindling,
because such changes are not seen in acute seizures, which
are insufficient to activate these mechanisms. When these
results are considered together, they support the hypoth-
esis that changes in nucleotide hydrolysis may represent
an important mechanism in the modulation of epilepto-
genesis [Bonan et al., 2000c].

ECTONUCLEOTIDASES AND CEREBRAL ISCHEMIA

Brain ischemia and hypoxia are the main causes of
neuronal damage resulting in human neurological disabil-
ity [Ginsberg, 1995]. The molecular mechanisms underly-
ing the neuropathological events involved in these processes
have been the subject of intense experimental investiga-
tion. The main molecular consequences of brain ischemia
include depletion of ATP, acidosis, massive release of exci-
tatory amino acids, increase in intracellular calcium, and
free radical formation that may lead to cell death [Rudolphi
et al., 1992; Pulsinelli, 1992; Ginsberg, 1995].

Ischemic injury evokes cellular stress response,
which involves the activation or inhibition of several
mechanisms. It is known that brief ischemic episodes,
not enough to produce cell death, induce tolerance to
longer episodes of ischemia [Kirino et al., 1991].

Although the molecular mechanisms for tolerance
is poorly understood, a variety of cellular and molecular
changes have been implicated in the induced tolerance
phenomenon, such as increase in specific heat-shock pro-
tein synthesis [Nakamura et al., 1992] and increase in ATP,
ADP, and AMP hydrolysis and adenosine production
[Schetinger et al., 1998a,b]. Recently, Reshef et al. [2000]
reported that the opening of KATP channels is mandatory
for acquisition of ischemic tolerance by adenosine in neu-
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62 BONAN ET AL.

ronal cultures, because glibenclamide, a KATP channel
blocker, abolished the protection conferred by the pre-
conditioning substances N6-(R)-phenylisopropyladeno-
sine, 1,2 dioctanoyl-rac-glycerol, and cromakalim. In
another study, it was reported that chemical precondi-
tioning with 3-nitroproprionate that mediate hypoxic tol-
erance is associated with a transient A1 receptor mRNA
upregulation that was observed at 1 h but not at 24 h
after preconditioning, whereas receptor mRNA levels
remained unchanged [Von Arnim et al., 2000]. These
changes may be related to the role played by purines in
the central nervous system that includes both immedi-
ate effects, such as neurotransmission, and trophic ef-
fects, which induce changes in cell metabolism, structure,
and function [Rathbone et al., 1999].

During ischemia, ATP can be released from cells
and stimulate specific P2-purinoreceptors. In fact, the
activation of P2-purinoreceptors triggers a sequence of
events that could potentiate the excitotoxic effects of
glutamate that increases considerably in the synaptic cleft
after ischemia [DiVirgilio et al., 1990; Edwards, 1996].
Consequently, a sustained increase in extracellular ATP
can contribute to exacerbate the deleterious effects of
ischemia to neuronal cells. Thus, a rapid mechanism for
ATP inactivation is crucial for adequate cell functioning.

The extracellular concentration of adenosine can be
increased during in vitro and in vivo ischemic episodes,
and it is believed to confer cytoprotection by the activa-
tion of specific P1-purinoreceptors [Rudolphi et al., 1992;
Latini et al., 1999a,b]. Several studies demonstrated that
1) the activation of A1 adenosine receptors depressed syn-
aptic transmission with subsequent reduction in glutamate
release [Rudolphi et al., 1992]; 2) the stimulation of A2A

adenosine receptors attenuate the A1-mediated depression
[Cunha et al., 1995; Latini et al., 1999b]; 3) the stimulation
of the A3 receptor produces a delayed desensitization of
the A1 receptor [Dunwiddie et al., 1997] and activates the
antioxidant defense system [Maggirwar et al., 1994]. It is
plausible to suppose that these distinct receptor-mediated
adenosine effects represent a compensatory mechanism
that can protect the neural cells against ischemic damage.

As described earlier in this review, adenosine can
be produced extracellularly by the conjugated action of
ATP diphosphohydrolase and 5′-nucleotidase. Conse-
quently, we hypothesised that ischemia could change the
enzymes activities involved in adenosine formation in the
extracellular space [Schetinger et al., 1994]. In fact, we
observed that there exists a link between changes in ATP,
ADP, and AMP hydrolysis and the induced-tolerance
phenomenon after ischemia (four-vessel occlusion method)
and reperfusion. Results from our laboratory provided
evidence for the first time that changes in ATP diphos-
phohydrolase activity could be involved in such events
[Schetinger et al., 1994]. We observed that 2 and 10 min

of ischemia increase ATP diphosphohydrolase activity
from hippocampal synaptosomes immediately after the
ischemic episode. In a more detailed study, Schetinger
et al. [1997] reported that the response of synaptosomal
ATP diphosphohydrolase and 5′-nucleotidase from rat
hippocampus to different ischemic episodes was com-
plex, depending on whether the animals were made tol-
erant to ischemia by exposure to a short ischemic episode
of 2 min. In fact, the activity of ATP diphosphohydrolase
from tolerant animals did not vary after 10 min of is-
chemia, whereas the activity of animals submitted to a
single ischemic episode increased immediately after is-
chemia and decreased from 24 to 48 h after the ischemic
insult. Also, another important finding was that after 24
h of reperfusion, the activity of 5′-nucleotidase was clearly
enhanced in the tolerant animals. These data demonstrate
a lasting modulation of ATP diphosphohydrolase and 5′-
nucleotidase activities in preconditioned rats. Subse-
quently, other studies confirmed that the enzymes that
participate in ATP, ADP, and AMP degradation were
modulated by different models of ischemia in rats [Braun
et al., 1997, Braun et al., 1998; Schetinger et al., 1998a].

The effects of ischemia on the enzymes that pro-
duce adenosine are consistent with a protective role pro-
posed for this purine. In fact, a considerable number of
studies have indicated a cerebroprotective role for ad-
enosine against ischemic and excitotoxic amino acid–in-
duced damage [Rudolphi et al., 1992; Parkinson et al.,
1994; Schubert et al., 1996; Parkinson et al., 2000]. Thus,
after ischemic insult, the ectonucleotidase activities are
modulated in a such way that facilitates the production
of adenosine, a neuroprotective agent.

CONCLUSIONS

The demonstration that ectonucleotidases present
their activities differently altered after the acquisition of
a memory task, or the induction of different animal mod-
els of epilepsy or ischemia /reperfusion makes possible
the suggestion that these enzymes may act in the regula-
tion of synaptic activity. These enzymes can control ex-
tracellular ATP and adenosine levels and, consequently,
modulate the activation of P2 and P1 receptors, depend-
ing on the type of synaptic plasticity developed, in physi-
ological or pathological situations. Future studies will
contribute significantly to the identification of the mecha-
nism involved in modulation of these enzymes in differ-
ent conditions, as well as increase our understanding on
their functional role in synaptic plasticity.
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