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A B S T R A C T   

Ureases are moonlighting proteins displaying non-catalytic properties, including platelet activation, antifungal 
and entomotoxic effects. The structure-activity mapping of these properties is poorly developed. Proteus mirabilis 
urease (PMU) consists of three subunits, PmUreα, PmUreβ and PmUreγ, in an (αβγ)3 organization. In order to 
study the structure-activity relationships of PMU we obtained the recombinant subunits of this urease and 
evaluated their biological activities. The holo-urease promoted platelet aggregation, and toxicity in fungal and 
insect models. Similar to Jaburetox, a plant urease-derived polypeptide, PmUreβ showed the highest toxicity 
against yeasts and insects, and activated human platelets. PmUreγ and PmUreα presented insecticidal action 
upon injection. In addition, only PmUreγ and PmUreβ promote hemocytes aggregation. Bioinformatics analyses 
revealed gene/segment duplication and evolutionary divergence among ureases. Our findings show that PmUreβ 
(and probably its counterparts in other ureases) carries most of the non-enzymatic activities of these proteins.   

1. Introduction 

Ureases (EC 3.5.1.5) are nickel-dependent enzymes that catalyze the 
hydrolysis of urea into ammonia and carbamate, which spontaneously 
decompose into carbon dioxide and a second molecule of ammonia [1–3]. 
Ureases are well conserved proteins although differing in their quaternary 
structures. While plant and fungal ureases are hexamers of a single chain 
subunit, bacterial ureases can be trimers, hexamers, or dodecamers, 
whose “monomers” are composed by two or three hetero-subunits that 
co-align with the single chained ureases [4–7]. 

In the last two decades, ureases have been characterized as moon-
lighting proteins that display many other biological properties unrelated 
to catalysis. The ammonia-independent toxicity of ureases was initially 
described for Canatoxin, an isoform of the jack bean (Canavalia ensiformis) 

urease, which causes convulsions preceding death of mice and rats. 
Canatoxin, and also the classic jack bean urease (JBU), have insecticidal 
and fungitoxic properties. Most of the non-enzymatic activities of Cana-
toxin and JBU were also observed for ureases from other plants (soybean, 
cotton) and for the bacterial enzymes of Helicobacter pylori and Spor-
osarcina (Bacillus) pasteurii [1,4]. 

Structures versus activity studies on the moonlighting properties of 
ureases are scarce. An internal sequence encompassing 91 amino acids 
of C. ensiformis ureases was found to carry their insecticidal activity. 
Recombinant polypeptides with equivalent sequences were built and 
named Jaburetox, with 93 amino acids (~11 kDa), derived from JBURE- 
II, an isoform of JBU, [8,9], and Soyuretox, homologous to Jaburetox, 
but derived from the sequence of the ubiquitous isoform of the soybean 
urease [10]. In addition to entomotoxicity, Jaburetox and Soyuretox are 
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also toxic to filamentous fungi and yeasts, but do not activate platelets, 
nor display lethality towards rodents, also Soyuretox is not toxic to 
zebrafish embryos [9,10]. Altogether these data pointed to the existence 
of more than one biologically active domain in ureases [8–11]. 

H. pylori urease (HPU), a crucial virulence factor of this bacterium, 
which causes gastritis, ulcers and stomach cancer [12] consists of two 
chains, HpUreA (27 kDa), representing a fusion of the γ and β domain of 
other bacterial enzymes, and HpUreB (61 kDa), which contains the active 
site [1]. HpUreB was shown to interact with CD74 on T cells and with 
Th17 lymphocytes [13]. HpUreA was found in the nucleus of gastric 
epithelial cells [14]. Although both subunits of HPU were able to bind to 
platelets, only HpUreB displayed platelet-aggregating properties [15]. 

Proteus mirabilis is a gastrointestinal Gram-negative bacillus and an 
opportunistic uropathogen, whose infection typically leads to formation 
of bladder and kidney stones along with catheter-associated urinary 
infections [16,17]. Proteus mirabilis produces a urea-inducible urease 
(PMU) well recognized as a virulence factor [16,18]. Other virulence 
factors, such as fimbriae and adhesins, act cooperatively with PMU in 
the pathogenesis of urinary infection [16,19]. The enzyme activity of 
PMU enables the pathogen to hydrolyze urea into carbon dioxide and 
ammonia, thus providing nitrogen for bacterial survival. Subsequently 
the generated ammonia alkalinizes the urine, resulting in precipitation 
of urinary salts and formation of urinary stones that are colonized by 
bacteria [20]. 

P. mirabilis urease has three subunits, PmUreA or PmUreγ (11.0 kDa), 
PmUreB or PmUreβ (12.2 kDa) and PmUreC or PmUreα (66.0 kDa), 
organized in an (αβγ)3 oligomer [21,22]. In this work, we have studied 
PMU and its recombinant subunits separately, aiming to determine if 
PMU is also a multifunctional protein and to get structural insights of its 
biological activities. 

2. Materials and methods 

2.1. Plasmid construction and bacterial strain 

Escherichia coli HB101 carrying a pMID 1010 plasmid was a kind gift 
from Dr. Harry T. Mobley (Department of Microbiology and Immu-
nology, University of Michigan Medical School, Ann Arbor, MI, USA). 
This plasmid contains the complete operon for PMU formed by eight 
genes in tandem: three structural genes (ureA, ureB and ureC) and five 
genes encoding accessory and regulatory proteins (ureD, ureE, ureF, ureG 
and ureR). This plasmid was used as template to clone each of the 
structural genes ureA, ureB and ureC, which encode the subunits γ, β and 
α, respectively. 

Primers used to amplify P. mirabilis ureA 5-CATATGGAATTAACACC 
AAGAGAA-3, 3-AGATCTCCTACACAATAGGTGAGTGAATTG-5, P. mirab 
ilisureB 5-CATATGTAATAACATGATCCCCGGTG-3, 3-AGATCTTTTTT 
CTCACT CTCCAATTTACCC-5 and P. mirabilis ureC 5-CATATGAA 
AACTATCTCACGTCA AGCTT-3, 3-AGATCTCGCTGGTTAAAATAAGAA 
ATA GCG-5 were designed based on P. mirabilis HI4320 genome 
(http://www.ncbi.nlm.nih.gov/genome/?term=proteus+mirabilis). 
Each insert was subcloned into the vector pGEM T-Easy (Promega, 
Madison, WI, USA) and transformed into E. coli XL10-Gold ultracom-
petent cells (Novagen, Madison, WI, USA) to amplify and maintain the 
plasmid. The Zyppy™ Plasmid Miniprep kit (Zymo Research Corp, 
Irvine, CA, USA) was used for plasmid purification which was then 
cleaved by restriction enzymes (Promega, Madison, WI, USA), both steps 
performed as indicated by the manufacturers. All inserts were cloned 
into a pET15-b in which a Streptag II sequence was inserted [21]. 
Finally, P. mirabilis pET15b::ureA plasmid was transformed into E. coli 
BL21 (DE3) pLysS (Novagen, Madison, WI, USA), whereas the plasmid 
pET15b::ureB and pET15b::ureC for expression of P. mirabilis ureB and 
ureC genes, respectively, was achieved using E. coli Arctic Express (DE3) 
(Novagen, Madison, WI, USA). 

Alternatively, ureB gene was also cloned in plasmid pET23a, between 
NdeI and XhoI restriction enzymes (produced by GenScript, Piscataway, 

NJ, USA). The plasmid pET23a::ureB was transformed in E. coli 
(Lemo21) in order to obtain the expression of ureB subunit in the soluble 
fraction, as will be discussed in the manuscript. 

2.2. Bacterial growth and induction conditions 

2.2.1. Proteus mirabilis urease (PMU) 
Escherichia coli HB101 cultures were performed in LB, 100 μg.mL− 1 

ampicillin (Sigma-Aldrich, St. Louis, MO, USA) and 1 μM NiCl2 under 
constant agitation (185 rpm) at 37 ◦C. The induction of urease expres-
sion was carried out by addition of 500 mM urea for 3 h, as soon as the 
culture reached OD600 of 0.7. Screening of recombinant colonies 
expressing ureolytic activity was performed by urea segregation agar 
methodology [23]. 

2.2.2. PMU structural subunits 
All cell cultures were carried out using LB medium with 100 μg.mL− 1 

of ampicillin (Sigma-Aldrich, St. Louis, MO, USA). For pET15b::ureA and 
pET23a::ureB plasmid, 36 μg.mL− 1 of chloramphenicol (Sigma-Aldrich, 
St. Louis, MO, USA) were added, while for pET15b::ureB and pET15b:: 
ureC-expressing cultures, 20 μg.mL− 1 of gentamycin were added. Cultures 
were performed at 37 ◦C, under constant agitation (180 rpm). Protein 
expression was induced by addition of 0.5 mM IPTG when the cellular 
growth achieved an OD600 of 0.7. Cell cultures were kept overnight at 27 
◦C for ureA and 18 ◦C for ureB and ureC to allow protein synthesis. 

2.3. Crude extract and purification of PMU 

The recombinant holoprotein encoded by the plasmid carrying the 
whole urease operon was called PMU. The recombinant subunits were 
designated PmUreγ, PmUreβ and PmUreα, encoded by the plasmids 
carrying the ureA, ureB and ureC genes, respectively. 

After bacterial growth, the culture was centrifuged at 5800 × g for 15 
min at 4 ◦C. The pellet was ressuspended in PEB [20 mM sodium 
phosphate pH 7.5, 1 mM EDTA, 5 mM β-mercaptoethanol] and centri-
fuged. To remove excess of urea from the pellet, the process was 
repeated three more times. Cells were suspended in PEB buffer and 
disrupted using a Unique Ultrasonic Homogenizer (Hielscher Ultra-
sonics, Teltwon, Germany), 10 pulses of 50 s, in ice bath. After lysis, the 
material was centrifuged at 23,000 × g for 60 min at 4 ◦C and the su-
pernatant was dialyzed exhaustively to remove the urea still present in 
the solution. 

After dialysis, the crude extract was submitted to three sequential 
chromatographic steps. The extract was applied into a HiTrapQ™ column 
(GE Healthcare, Little Chalfont, UK), at 60 % of its protein binding ca-
pacity. The resin was equilibrated with PEB pH 7.5 and washed with the 
same buffer to remove unbound proteins. The fraction with ureolytic 
activity was eluted stepwise in PEB pH 7.5 containing 400 mM KCl. The 
urease-enriched fractions were pooled and dialyzed against PEB pH 7.5 
and then loaded into a Q-Sepharose™ column (GE Healthcare, Little 
Chalfont, UK) mounted in an ÄKTA chromatography system (GE 
Healthcare, Little Chalfont, UK), equilibrated in the same buffer. Elution 
was performed with a linear gradient from 0 to 600 mM KCl in PEB 7.5. 
The active fractions were pooled, concentrated using an Amicon device 
with a cut-off of 30 kDa (Merck Millipore, Darmstadt, Germany) and then 
further purified by size exclusion chromatography (Superdex 200™ 26/ 
60-pg), equilibrated in PEB buffer pH 7.0. Before each bioassay, the so-
lution of PMU was sterilized by passing through 0.22 μm syringe filters. 

2.4. Crude extract and purification of PMU subunits 

After bacterial growth, the culture was centrifuged at 5800 × g for 10 
min at 4 ◦C. The pellet was suspended in buffer containing 100 mM 
Tris–HCl pH 8.0, 150 mM NaCl and 1 mM EDTA. Cells were disrupted by 
sonication in ice bath, 15 cycles of 1 min at 20 kHz. Cellular debris were 
pelleted by centrifugation at 14,000 × g for 30 min. PmUreγ was found 
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in the culture supernatant whereas the other two proteins were 
expressed as inclusion bodies, using the plasmid pET 15b. To solubilize 
PmUreβ and PmUreα, cellular debris were washed three times with 
Tris–HCl, containing 3 % (v/v) Triton X-100, followed by three washes 
with Tris–HCl without Triton X-100. After washing and centrifugation, 
the pellets were suspended in 6 M urea, and kept under agitation, 
overnight at 4 ◦C. After solubilizing proteins, urea was removed by 
dialysis and any precipitated material still present was removed by 
centrifugation at 14,000 × g for 20 min. After the protein refolding 
procedure, crude extracts of PmUreβ and PmUreα were obtained. The 
crude extracts were then subjected to an affinity chromatography step 
using StrepTactin resin (GE Healthcare, Little Chalfont, UK) equilibrated 
in 100 mM Tris–HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, and elution was 
carried out by addition of 2.5 mM D-desthiobiotin to the eluent. Before 
each bioassay, a gel filtration step in Superose 6 10/300 column (GE 
Healthcare, Little Chalfont, UK) was conducted to change the solvent to 
50 mM Tris–HCl pH 7.5 buffer. 

The PmUreβ cloned in pET23a and expressed in E. coli (Lemo21) the 
culture was centrifuged at 5800 × g for 10 min at 4 ◦C. The pellet was 
suspended in buffer containing 50 mM Tris–HCl pH 7.5, 500 mM NaCl 
and 20 mM imidazol. The cells were disrupted by sonication and cellular 
debris were pelleted by centrifugation at 14,000 × g for 30 min. PmUreβ 
was found in the culture supernatant. This subunit, containing a His tag 
in the C-terminal portion of the protein were then subjected to an af-
finity chromatography using Chelating Sepharose resin (GE Healthcare, 
Little Chalfont, UK) equilibrated in 50 mM Tris–HCl pH 7.5 buffer, 500 
mM NaCl and 20 mM of imidazole. The column was washed with the 
same buffer containing 70 mM imidazole and then eluted with 500 mM 
of imidazole. 

Before each bioassay, a dialysis was conducted to change the solvent 
to 10 mM Tris–HCl pH 7.5 buffer and 1 mM DTT. Solutions of PMU 
subunits were sterilized by passing through 0.22 μm syringe filters. 

2.5. Protein determination 

The protein contents were determined by absorbance at 280 nm or 
by the Bradford method [24] using bovine serum albumin as standard. 

2.6. SDS-PAGE 

SDS-PAGE was performed according to [25]. The material was 
diluted in sample buffer, heated to 95 ◦C for 5 min and applied in 12 or 
15 % polyacrylamide gels. Native-PAGE was performed in 7.5 % poly-
acrylamide gels, without SDS and reducing agents, and without boiling 
the samples. The gels were stained with colloidal Coomassie Brilliant 
Blue or silver nitrate. 

2.7. Urease assay and zymography 

Urease activity was determined in 96 well plates (Thermo Scientific, 
Waltham, MA, USA) in 100 μL final reaction volume of 20 mM sodium 
phosphate pH 7.5, 150 mM NaCl containing 100 mM urea and the tested 
sample. The enzymatic reaction proceeded for 30 min at 37 ◦C and the 
color reaction was developed using the phenol-nitroprussiate method 
[26]. Zymography in native-PAGE gels was carried out by the 
nitroprusside-thiol reaction according to [27]. 

2.8. Platelet aggregation 

Peripheral human blood of healthy volunteers was collected in 
presence of 0.313 % (w/v) sodium citrate. The blood samples were 
centrifuged at 400 × g for 10 min at 25 ◦C to obtain a platelet-rich 
plasma (PRP). All procedures regarding blood collection and handling 
were conducted in strict accordance with Brazilian legislation (Law no. 
6.638/1979) and approved by the institutional Ethics Committees 
(UFRGS 721.217; PUCRS 14/00414). 

2.8.1. Platelet aggregation assay by microscopy 
PMU subunits were incubated with a platelet rich plasma (PRP) for 1 

h at room temperature on a rocking platform. After centrifugation, the 
pelleted cells were fixed with 4 % v/v formaldehyde, and the aggregates 
were counted in a Neubauer chamber using an optic microscope (Carl 
Zeiss Microscopy, Thornwood, NY, USA). An aggregate was defined as a 
cluster of five or more platelets grouped together. The methodology was 
based and adapted from [28]. 

2.9. Yeast proliferation assay 

2.9.1. PMU and subunits 
Candida albicans and C. parapsilosis (kindly provided by Dr. Valdirene 

Gomes, Universidade Estadual do Norte Fluminense, Campos dos Goy-
tacazes, RJ, Brazil) were grown for 48 h on Sabouraud agar (1 % 
peptone, 2 % glucose and 1.7 % agar-agar) at 28 ◦C. After growth, the 
cells were harvested, transferred to sterile saline (0.9 % NaCl), counted 
and 104 cells were placed on 96 wells plates (Thermo Scientific, Wal-
tham, MA, USA), containing Sabouraud broth. After addition of tested 
proteins in concentration of 33 and 65 μg.mL− 1 for PMU (molar con-
centrations of 120 and 140 nM respectively) and 22 and 65 μg.mL− 1 for 
subunits (molar concentrations: PmUreγ, 2 and 6 μM; PmUreβ, 1.8, 2.25, 
4.5, 5 and 9 μM); PmUreα: 0.33 and 1 μM, respectively), the yeasts were 
incubated 24 h at 28 ◦C. To assess cell viability, colony forming units 
(CFU) were determined after further incubation at 28 ◦C for 24 h in 
Sabouraud agar plates by the drop plate method [9]. 

2.10. Optical microscopy 

Candida albicans were grown for 24 h on Sabouraud agar (1 % 
peptone, 2 % glucose and 1.7 % agar-agar) at 28 ◦C. After growth, the 
cells were resuspended in Sabouraud broth (1 % peptone, 2 % glucose), 
counted and 104 cells were placed on 96 wells flat bottomed plates 
(Thermo Scientific, Waltham, MA, USA), and grown during 24 h at 28 
◦C. Then the cells were incubated with 9 μM of PmUreβ and/or buffer 
(10 mM Tris–HCl pH 7.5 buffer and 1 mM DTT) during 3 h at 28 ◦C. To 
evaluate yeast morphology and aggregation, 20 μL of each sample were 
dropped on a Neubauer chamber, and examined under an optic micro-
scope (Carl Zeiss Microscopy, Thornwood, NY, USA). A yeast aggregate 
was defined as a cluster of five or more C. albicans grouped together. 

2.11. Scanning electron microscope (SEM) 

After the incubation period, the culture medium was centrifuged, 
washed with buffer, then the cells were fixed with glutaraldehyde (2.0 
%) over seven days, after that the samples were washed for 30 min to 
remove the glutaraldehyde, followed by drying at room temperature. 
Controls consisted of yeast samples only, with no additions. Specimens 
were dehydrated in baths with increasing concentrations of acetone (50 
%, 70 %, 90 % and 100 %) for 10 min each. Specimens were dried, 
metallized and stored in desiccator for subsequent observation by MEV 
(Zeiss Evo MA10 - German) [29]. 

2.12. Bioassays with insects 

Fifth-instar nymphs of the kissing bug R. prolixus (a Chagas’ disease 
vector) were kindly provided by Dr. Denise Feder (Universidade Federal 
Fluminense, Niteroi, RJ, Brazil). The insects were kept on a light:dark 
cycle of 12 h/12 h, temperature of 27 ± 1 ◦C and 60 % relative humidity. 
The cotton stainer bug D. peruvianus were from a colony established in 
our laboratory, maintained at 23 ◦C and 75 % of relative humidity, with 
light-dark cycle of 16 h:8 h, and fed ad libitum on cotton seeds. N. cinerea 
cockroaches were from our own breeding colony, kept at 22–25 ◦C, with 
a light:dark cycle of 12 h/12 h, food (Birbo Premium Meat & Vegetables) 
and water ad libidum. 
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2.12.1. Interaction of PMU with R. prolixus’ central nervous system (CNS) 
PMU (63 nM) or bovine serum albumin (BSA, 63 nM) were incubated 

with Texas Red (0.5 mg/mL) during 1 h, at 4 ◦C, with continuous stirring 
[31]. The samples were then exhaustively dialyzed against 20 mM NaPB, 
pH 7.0 to remove any excess of free dye. Fifth-instar nymphs were 
anesthetized by cooling at − 20 ◦C for 5 min, immobilized ventral side 
down and their body cavities were opened. The CNS, composed by brain 
and ganglia, was dissected. Incubation of the CNS was carried out with 
63 nM solutions of Texas Red-labeled PMU or Texas Red-labeled BSA for 
1 h at room temperature, followed by three washes with buffer (30 min 
each) at room temperature. The CNS were then placed in coverslips and 
visualized under an inverted microscope Eclipse TE2000-S (Nikon, 
Tokyo, Japan), equipped with an ORCA-ER-1394 Camera (Hamamatsu 
Photonics KK, Hamamatsu, Japan), and with Phylum 4.2.0 (Improvi-
sion, Lexington, MA, USA) as image acquisition software. The method-
ology was adapted from [31]. 

2.12.2. Nitric Oxide Synthase (NOS) assay in N. cinerea’s CNS 
homogenates 

For these experiments, the CNS of adult cockroaches was dissected as 
described above and homogenized in 20 mM Tris–HCl (pH 7.4), 0.32 M 
sucrose, 2 mM Na2EDTA, 2 mM DTT and 10 % protease inhibitors 
(Sigma Chem. Co.). The homogenates were centrifuged (10,000 × g, 10 
min, 4 ◦C) and the protein concentration was determined by the Brad-
ford dye method. The homogenates were incubated at 4 ◦C for 1 h with 
63 nM PMU or buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4, 2 mM KH2PO4, pH 7.5) as control. NOS activity was measured 
by incubating the samples at 37 ◦C in a reaction mixture containing 50 
mM NaPB (pH 7.0), 1 mM CaCl2, 1 mM L-arginine, 100 μM NADPH, 10 
μM DTT, 0.1 μM catalase, 4 μM superoxide dismutase (SOD) and 5 μM 
oxyhemoglobin, as described in Galvani et al. 2015 [32]. Formation of 
methemoglobin was monitored at 401 nm. Negative controls were done 
carrying out the reaction in the presence of the NOS inhibitor, 
NG-methyl-L-arginine (L-NMMA, 1 mM). 

2.12.3. In vitro hemocyte aggregation assay 
Fifth-instar nymphs of R. prolixus were sterilized by immersion in 

ethanol 70 %, and their hemolymph was then collected from a cut in one 
leg with a micropipette. A hemolymph pool (7 insects) was mixed in a 
proportion of 1:1 (v/v) with Rhodnius saline as reported by [33]. The 
diluted hemolymph was incubated with PMU subunits (final concen-
trations of 2.2 μg mL− 1) and incubated at room temperature for 1 h on a 
rocking platform. The aggregates were counted in a Neubauer chamber 
using an optic microscope (Carl Zeiss Microscopy, Thornwood, NY, 
USA). A hemocyte aggregate was defined as five or more cells clamped 
together. In order to assess the relevance of divalent cations in the 
process of hemocyte aggregation, experiments were performed in pres-
ence of 100 μM EDTA, following the same protocol. The experiments 
were performed in quadruplicates. 

2.12.4. Lethality assay by injection into D. peruvianus 
D. peruvianus fifth-instar nymphs (~30 mg body weight each) were 

anesthetized by cooling at 4 ◦C for 5 min, immobilized onto a plate and 
injected into the hemocoel with 5 μL of solutions (163 μg.mL− 1) of 
PmUreγ, PmUreβ or PmUreα in 50 mM Tris pH 7.5 (~27 ng of protein. 
mg-1 insect body weight), with a Microliter 900 series syringe (Hamil-
ton, Reno, NV, USA). Controls received injections of buffer alone [30]. 
The experiments were performed in triplicates of groups of 5 insects. 
Mortality rates were recorded every 24 h for 3 days. 

2.12.5. Lethality assay by oral administration to D. peruvianus 
Fifth-instar nymphs of D. peruvianus were immobilized on a flat surface 

and their mouth apparatus were introduced into a glass capillary con-
taining 5 μL of test solution, as described in [30]. The experimental groups 
were fed with the solutions (163 μg mL− 1) of PmUreγ, PmUreβ or PmUreα 
dissolved in 50 mM Tris–HCl pH 7.5, to give final doses of ~27 ng of 

protein per mg of insect body weight. The controls fed with Tris–HCl 
buffer alone. The experiments were performed in triplicates using groups 
of 5 insects. Mortality rates were recorded every 24 h for 3 days. 

2.13. Protein sequence analyzes 

Protein sequences (for bacterial urease subunits, plant urease, and 
Jaburetox) were collected from NCBI - Protein database [34] and 
aligned using the Clustal Omega algoritm [35]. Internal amino acid 
sequence repeats related to genetic duplication were inspected with 
Swelfe [36]. Ancestral state reconstruction was carried out with MEGA7 
[37], (http://www.megasoftware.net/) using the previously published 
urease phylogeny data as reference [38]. 

2.14. Molecular modeling and dynamics 

The molecular model for the PmUreβ subunits was built with Mod-
eller 9 [39] (https://salilab.org/modeller/) using the Sporosarcina pas-
teurii urease structure (PDB ID 4AC7 [40] as template. Molecular 
dynamics simulations were carried out with the Gromacs 4 suite [41], 
(http://www.gromacs.org/) following protocols for native, physiolog-
ical conditions [38], and for structural stability assessment [42]. 

3. Results 

3.1. Recombinant PMU and its recombinant isolated subunits 

A plasmid carrying the whole operon of PMU, consisting of ureR, 
ureD, ureA, ureB, ureC, ureE, ureF and ureG genes [43], was employed to 
produce the protein in Escherichia coli. In the absence of a tag to aid 
purification, conventional chromatographic steps were performed to 
obtain the enzymatically active recombinant PMU. The homogeneity of 
purified PMU was assessed by native-PAGE and zymograms confirming 
its ureolytic activity (Suppl. Fig. 1). 

To obtain PMU’s isolated subunits, pET15b plasmids encoding each 
protein were constructed. Recombinant PmUreγ was found in the E. coli 
soluble fraction, while PmUreβ and PmUreα were produced as inclusion 
bodies. Alternatively, the PmUreβ subunit was cloned in E. coli strain 
Lemo21 (DE3) using pET23a vector, due the low solubility, then the 
PmUreβ subunit was found in the soluble fraction after cells lysis. No 
differences in the biological effects were observed between the two 
versions of PmUreβ. (Suppl. Fig. 2). 

3.2. Moonlighting properties of PMU and of its isolated subunits 

3.2.1. Toxicity of PMU and isolated subunits against yeasts 
The antifungal activity of PMU was tested on two Candida species. 

Incubation for 24 h with PMU at 33 and 65 μg.mL− 1 (120 and 240 nM, 
respectively), led to a dose-dependent decrease of the proliferation rates 
of C. parapsilosis (Fig. 1B), but this inhibition was not observed to 
C. albicans (Fig. 1A). PMU’s isolated subunits were tested on C. albicans 
and C. parapsilosis (Fig. 1C and D). Proliferation rates of C. albicans and 
C. parapsilosis decreased in the presence of 65 μg.mL− 1 PmUreβ (corre-
sponding to 5.3 μM), but not with the other subunits in the tested 
concentrations. 

Among the subunits, PmUreβ proved to be more promising regarding 
antifungal activity. With this evidence, we decided to evaluate other 
concentrations (2.25 μM, 4.5 μM and 9 μM) of PmUreβ on C. albicans 
(Fig. 2). We decided to use C. albicans in this study because it is an 
attractive yeast model used frequently in antifungal studies [44].We 
observed higher susceptibility of C. albicans, highlighting the concen-
trations of 4.5 μM and 9 μM of PmUreβ. The 2.25 μM concentration is 
less active, but still decreased the viability of C. albicans. 

In order to understand how PmUreβ acts against C. albicans, we 
performed optical microscopy (magnification 200 X) after 3 h of treat-
ment with the highest dose (9 μM) and observed the formation of yeast 
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aggregates in the samples treated with PmUreβ in comparison with the 
control (Fig. 3). 

The formation of aggregates was confirmed by scanning electron 
microscopy (SEM) (Magnification 3000 X) (Fig. 4). When we prepared 
the samples to SEM; however, it was not possible to observe enough cells 
upon treatment with either 9 μM and 4.5 μM PmUreβ, only isolate and 
highly damaged cells. Then, we perfomed the treatment with 2.25 μM 
and an altered phenotype of the treated yeasts, a flocculent extracellular 
material was observed by the electron microscopy, connecting cells. 
(Fig.4C). It is important to highlight that the reducing agent (DTT), 
fundamental to protein stabilization, alone was not toxic to the cells 

(Fig.4B), since the effect was compared against yeast grown in saline 
(Fig.4A) and no changes in yeast morphology were observed. 

3.2.2. Neurotoxicity of PMU in insects 
Here we show that PMU bound to R. prolixus nervous ganglia 

(Fig. 5C) and, at a concentration of 63 nM, it inhibited ~40 % the nitric 
oxide synthase activity of N. cinerea’s central nervous system (CNS) 
homogenates (Fig. 5D). 

3.2.3. Insecticidal activity of PMU’s subunits 
The cotton stainer bug Dysdercus peruvianus was employed to 

investigate the insecticidal effect of PMU’s subunits (Fig. 6A-B). PMU’s 
subunits were insecticidal upon injection (ca. 27 ng protein.mg− 1 body 
weight), and lethality was seen for PmUreα and PmUreγ, with the latter 
promoting the highest mortality (Fig. 6A). The same dose of the subunits 
tested orally in D. peruvianus induced a dose- and time-dependent lethal 
effect. PmUreβ produced the highest lethality (90 %) whereas PmUreα 
(which contains the enzyme’s active site) given orally to D. peruvianus 
did not induce significant mortality after the observed period (Fig. 6B). 

JBU and Jaburetox were shown to modulate R. prolixus immunity by 
inducing hemocyte aggregation in vitro, through a cation-dependent 
mechanism [28,45]. In this work, we conducted a similar in vitro assay 
incubating hemocytes of the kissing bug R. prolixus with PMU’s subunits 
and analyzing its capacity to induce aggregation, thus indicating the 
activation of a cell immune response. Fig. 6C shows that, when PMU’s 
subunits were tested at 2.2 μg.mL− 1 concentrations, PmUreβ (180 nM) 
and PmUreγ (200 nM) induced a significant increment in the number of 
hemocyte aggregates when compared with the control incubated with 
vehicle. PmUreα (33 nM) had no effect on the aggregation response of 
R. prolixus hemocytes in vitro. In all tested cases, the incubation with the 
chelating agent EDTA reverted the aggregation process, evidencing that 
divalent cations are needed for this immune response (Fig. 6C). 

3.2.4. Aggregation of human platelets by PMU and its subunits 
One of the effects that convey pro-inflammatory properties to ure-

ases is their ability to activate blood platelets, coupled to exocytosis of 
their dense granules [46–48], and conversion of these cells into a 
pro-inflammatory phenotype [15]. PMU (17 μg.mL1, 63 nM) was found 

Fig. 1. Antifungal effect of Proteus mirabilis urease 
(PMU) and of its subunits on yeasts. Panels A-B. 
Recombinant PMU (33 and 65 μg.mL− 1, 120 and 
240 nM respectively) was incubated for 24 h at 28 
◦C with the yeasts and then colony-forming units 
(CFU) were determined by the drop plate method. 
Panels C-D. Yeasts were incubated with PMU’s 
subunits (22 and 65 μg.mL− 1) for 24 h at 28 ◦C and 
then CFU were determined by the drop plate 
method. Molar concentrations: PmUreγ, 2 and 6 
μM; PmUreβ, 1.8 and 5 μM; PmUreα: 0.33 and 1 
μM, respectively. Buffer, 50 mM Tris–HCl, pH 7.5. 
Results are represented as percentage of the num-
ber of CFU.mL− 1 observed for the negative control 
(no treatment). Results are means ± S.E.M, N = 3, * 
p ≤ 0.05; ** p ≤ 0.02; *** p ≤ 0.01.   

Fig. 2. Dose-effect curve of antifungal effect of PmUreβ on C. albicans. Yeasts 
were incubated with PmUreβ (2.25, 4.5 and 9 μM) for 24 h at 28 ◦C, then 
colony-forming units (CFU) were determined by the drop plate method. Buffer 
(10 mM Tris–HCl pH 7.5 buffer and 1 mM DTT). Results are represented as the 
number of CFU.mL− 1 observed for the negative control (no treatment). Results 
are means ± S.E.M, N = 4, * p ≤ 0.05; ** p ≤ 0.02; *** p ≤ 0.01. 
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also able to induce aggregation of human platelets [22]. PMU-induced 
aggregation had a slower rate compared to the platelets’ response to 
the physiological agonist ADP (20 μM), and a similar extent of aggre-
gation was eventually reached [22]. 

Microscopic observation allowed visualization of the small platelet 
aggregates formed in the presence of PMU’s subunits (Fig. 7). PmUreβ 
produced significantly more and bigger platelet aggregates than did 
PmUreγ or PmUreα (Fig. 7A and B). In contrast, our previous studies 
with isolated subunits of H. pylori’s urease indicated that only its B 
subunit, which is equivalent to PmUreα, is able to induce aggregation of 
platelets [15]. 

3.3. Topology of PmUreβ in PMU and molecular dynamics 

Fig. 8 shows the molecular model constructed for PMU. As depicted 
for Jaburetox in JBU [49], PmUreβ is also well exposed at the protein’s 
surface. Molecular dynamics simulations (Fig. 8C to E) were performed 
to inspect PmUreβ for possible disordered behavior, as seen for Jabur-
etox [50] and Soyuretox [10]. Loss of secondary structure was observed 
after 100 ns under physiological conditions, with ~36 % of secondary 
structure elements remaining after the simulation (Fig. 8D). At a higher 
temperature (to evaluate structural stability), a complete loss of sec-
ondary structure elements was observed (Fig. 8E), supporting a ten-
dency of structural disorder for PmUreβ. 

3.4. Gene or segment duplication in ureases 

The fact that PmUreβ displayed all the activities tested here, paral-
leling the biological properties of Jaburetox, besides also exhibiting a 
platelet-aggregating effect, was quite unexpected. Jaburetox corre-
sponds to positions 230–321 in the sequence of JBURE-II, the isoform of 
JBU that served as template to clone the peptide [8]. In an attempt to 
understand these results, PMU was inspected for internal sequence re-
peats, to detect possible duplications of functionally relevant regions. 
The amino acid sequence of PmUreγ, PmUreβ and PmUreα are collinear 
to segments 1–100, 131–238, and 271–840 of the JBU molecule, 
respectively (Fig. 9). Two similar segments were identified in the region 
between PmUreβ and PmUreα, when comparing PMU and the proto-
typical JBU as reference (Fig. 9). One similarity pair encompasses a 
“jaburetox-like” segment in PmUreα (aligning to amino acid positions 
268–316 in JBU) and its homologous in PmUreβ (177–229 in JBU), as 
shown in Fig. 9A. The second pair encompasses (Fig. 9A) a segment in 
PmUreα corresponding to 307–331 in JBU and its homologous in 
PmUreβ (186–210 in JBU). Alignment of these regions to their putative 
ancestor sequences revealed their evolutionary conservation (Fig. 9B). 

4. Discussion 

The well recognized role of PMU as a virulence factor of P. mirabilis 
has been so far exclusively attributed to its enzyme activity. Here our 

Fig. 3. Optical microscopy of C. albicans after 3 h treatment with PmUreβ. A) saline; B) 9 μM PmUreβ. Each sample were dropped on a Neubauer chamber, and 
examined under an optic microscope (Carl Zeiss Microscopy, Thornwood, NY, USA). A yeast aggregate was defined as a cluster of five or more C. albicans grouped 
together. In B the C. albicans cell aggregation could be observed (arrows). Magnification 400 X. 

Fig. 4. Scanning Electron Microscopy of C. albicans after 24 h assay in A) saline solution (NaCl 0.9 %); B) buffer 10 mM Tris–HCl pH 7.5 buffer and 1 mM DTT; C) 
2.25 μM of PmUreβ in the same buffer as in panel B. In A and B the C. albicans cells display a typical oval shape. In panel C the cells are more elongated (thin arrow) 
and are involved by a flocculent extracellular material disposed as a network (large arrow). Magnification 3000 × . 
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data revealed that PMU is a true moonlighting protein that carries 
several other biological properties unrelated to ammonia production. 
Particularly, the exocytosis-inducing effect that underlies the aggrega-
tion response of platelets to ureases [4], observed here with nanomolar 
doses of PMU, and which correlates to the pro-inflammatory activity of 
these proteins [15,51,52], could be relevant in the context of the dis-
eases caused by P. mirabilis. 

Fig. 5. Neurotoxicity of Proteus mirabilis urease (PMU) to insects. Panels A, B 
and C. Binding of PMU to central nervous system (CNS) of R. prolixus. Dissected 
CNS were incubated for 1 h with phosphate buffer saline (PBS) (A), Texas Red- 
labeled bovine serum albumin (BSA), 63 nM (B) or Texas Red-labeled PMU, 63 
nM (C) and analyzed by fluorescence microscopy. Scale-bars: 200 μm. Insets 
show the same fields under bright field microscopy. The pictures show repre-
sentative experiments of at least three independent assays. Panel D. Inhibition 
by PMU of nitric oxide synthase activity of N. cinerea’s CNS. Homogenates were 
incubated with 63 nM PMU or buffer (control) for 1 h, on ice, and then nitric 
oxide synthase (NOS) activity was determined using L-arginine as substrate. The 
results are expressed as means ± S.E.M, N = 10, ** p < 0.0032. 

Fig. 6. Entomotoxicity of the isolated subunits of P. mirabilis urease (PMU). 
Panel A. Survival rates of D. peruvianus after hemocoel injection of 5 μL buffer 
(50 mM Tris–HCl pH 7.5; negative control) or 5 μL solutions of PMU’s subunits, 
to give doses of 0.27 ng of per mg of insect body weight. Results are means ± S. 
E.M, N = 3. ** p ≤ 0.02; *** p ≤ 0.01. Panel B. Survival rates of D. peruvianus 
fed on 5 μL buffer or 5 μL solutions of PMU’s subunits, to give doses of 0.27 ng 
of per mg of insect body weight. Results are means ± S.E.M, N = 3. ** p ≤ 0.02; 
*** p ≤ 0.01. Panel C. R. prolixus hemocyte aggregation induced by PMU’s 
subunits. Open bars indicate the number of hemocytes aggregates formed in 
vitro after 1 h incubation of insect hemolymph with PMU’s subunits at 2.2 μg. 
mL− 1 (PmUreγ: 200 nM, PmUreβ: 180 nM, PmUreα: 33 nM) in 50 mM Tris–HCl, 
pH 7.5. Hatched bars show the number of aggregates formed when 100 μM 
EDTA was added to the solutions of PMU’s subunits. Control (black bar) he-
mocyte aggregation was carried out in buffer alone. 
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We first reported the non-enzymatic antifungal activity of ureases 
studying the effects of Canatoxin on filamentous phytopathogenic 
fungi [53], later followed by observation of fungitoxic effects of ure-
ases from soybean and cotton seeds, and of H. pylori’s urease [54]. 
Postal and co-authors in 2012 described the fungitoxic effect of JBU 
and Jaburetox on yeasts [9]. As observed here for PMU, the protein 
inhibited C. parapsilosis proliferation in a similar concentration range 
as reported for plant ureases [4]. Interestingly, reports have shown 
that, when in the presence of P. mirabilis, there is a marked inhibition 

of biofilm formation by C. albicans [55] that could be due to PMU 
production. In our study we did not observe the inhibition of C. albicans 
growth by the holoprotein, in these tested concentrations. Biofilm 
studies will be conducted by our group with biofilm-producing 
C. albicans in order to confirm this hypothesis. 

Concerning the subunits, PmUreβ inhibited proliferation of the yeasts, 
thus proving that PMU’s fungitoxic effect does not require ureolysis. 
Since a region equivalent to Jaburetox is absent in bacterial ureases, our 
data confirmed the existence of more than one fungitoxic domain in 

Fig. 7. Aggregation of human platelets induced 
by P. mirabilis urease (PMU) and its isolated 
subunits. The reaction started by addition of 
PMU’s subunits or ADP to a platelet-rich plasma 
suspension (PRP) and the aggregation response 
was monitored. Panel A. PRP aliquots were 
incubated with PMU’s subunits, buffer or ADP 
for 1 h on a rocking platform, then the samples 
were centrifuged, the pellets were fixed with 
formaldehyde and the number of aggregates 
was counted in a Neubauer chamber. PmUreγ 
(9.8 μM), PmUreβ (8.8 μM) and PmUreα (1.6 
μM). Buffer: 50 mM Tris–HCl, pH 7.5. Panel B. 
Microscopic view of aggregates (defined as a 
cluster of 5 or more cells) as formed in the 
conditions described in panel B. Bar: 400 μm. 
Results are mean ± S.E.M, N=3, *** p ≤ 0.01.   

Fig. 8. Topology of PmUreb in Proteus mirabilis 
urease (PMU) and dynamics. Panels A and B. 
Trimeric forms of Canavalia ensiformis urease 
(JBU) (PDB 3LA4) and PMU (modeled), in front 
(left) and side (right) views. In panel A, jabur-
etox’s N-terminal half is colored in blue and its 
C-terminal half in pink. In panel B, PmUreβ is 
depicted in green. Panels C, D and E. Confor-
mations of PmUreβ and molecular dynamics 
simulations. In panel C, native PmUreβ 
(modeled); panel D, PmUreβ after 100 ns under 
normal conditions (310 K); panel E, PmUreβ 
after 100 ns under protein-disturbing condi-
tions (498 K).   

V. Broll et al.                                                                                                                                                                                                                                    



Process Biochemistry 110 (2021) 263–274

271

ureases, as previously suggested by our group [4,9]. Unlike the effects 
observed to Jaburetox and Soyuretox, which induce the pseudohyphae 
growth [4,10], PmUreβ induced aggregation in C. albicans (Fig. 3B). In 
addition, the flocculent extracellular materials that were observed in the 
SEM (Fig. 4C), was already demonstrated in C. parapsilosis treated with 
baicalein in combination with fluconazole [56]. Regarding inhibitory 
concentration on C. albicans, PmUreβ proved to be effective at 2.25 μM 
(Fig. 2), comparable to the doses of Jaburetox and Soyuretox, 9 μM and 5 
μM, respectively, needed to inhibit the growth of C. albicans [11]. Ag-
gregation in C. albicans is an indicative of cell membrane or cell wall 
damage [57] providing an explanation of PmUreβ antifungal effect. The 
ability of Jaburetox to interact with fungal external cell membrane 

and/or cell wall was previously demonstrated [31]. Besides this, an 
initial study showed that Soyuretox was able to induce reactive oxygen 
species in C. albicans [10] although more studies are necessary to confirm 
it. Additional studies are under way aiming to understand the PmUreβ’s 
mode of action against yeasts. 

Our previous work on the entomotoxic properties of ureases 
focused mostly the single-chained plant proteins and the insecticidal 
effect was ascribed mainly to their “Jaburetox” moiety. However, tri- 
chained bacterial ureases, which lack a “jaburetox-like” sequence, 
can also be insecticidal, as reported for entomopathogenic Photo-
rhabdus spp. [58] and Yersinia pseudotuberculosis [59] enzymes, 
implying that ureases contain more than one insecticidal domain. 

Fig. 9. Comparison of duplicated segments 
among ureases and their putative ancestors. 
Panel A. Alignments of “jaburetox-like” se-
quences in C. ensiformis JBURE-II urease (JBUii), 
PMU (Proteus mirabilis urease), and the most 
likely ancestor sequences, indicated as “a” to 
“e”, for the nodes in the simplified phylogenetic 
tree shown in panel B (JBUii: ACL14297.1; 
PMU: WP_124740772.1, WP_109880188.1, 
WP_020945159.1; a-e: inferred in this study). 
Colors highlight differences from major 
consensus rule. Panels C and D. Schematic rep-
resentation of C. ensiformis major urease (JBU), 
P. mirabilis (PMU) and Helicobacter pylori (HPU) 
ureases. In C) JBU single subunit (840 amino 
acids) is represented as a gray bar and jaburetox 
appears below in hatched gray. Duplications of 
jaburetox-like sequence in JBU and PMU 
(alignments shown in A) are represented as 
green and blue boxes, with numbers indicating 
amino acids positions. In D) PMU and its three 
subunits: PmUreγ (red), PmUreβ (green) and 
PmUreα (blue). Gray boxes in PMU identify its 
putative platelet-interacting segments (align-
ments shown in A). The numbers refer to the 
amino acid positions in JBU sequence. Below, 
HPU is shown with its UreA chain (HpUreβ) 
(striped red or green bars) and its UreB chain 
(HpUreα) (blue). Alignments of all sequences are 
presented in Suppl. Fig. 3.   
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Here, the neurotoxic effect of PMU in insects was established by its 
binding to R. prolixus’ CNS tissues and by the pronounced inhibition of 
nitric oxide synthase activity of N. cinerea’s brain homogenates 
(Fig. 5). Similar bioassays have previously demonstrated the neuro-
toxic effects of Jaburetox in triatomine insects [32,60], and in 
N. cinerea cockroaches [31]. Furthermore, it has been shown that JBU 
affects insect behavior, heart frequency and muscle contraction [61], 
and interferes on the release of neurotransmitters by modulating insect 
calcium channels [62]. The evolutionary conservation of the nervous 
systems of invertebrates and vertebrates is reflected in the fact that 
many neurotoxins, ureases included, are active on both animal groups 
[63,64]. Mechanisms similar to those triggered by ureases in the ner-
vous system of insects probably underlie the neurotoxicity and 
convulsant effect of Canatoxin [47,65] or that of H. pylori urease in 
rodents [66]. Thus, a potential contribution of PMU to neurological 
conditions such as neonatal meningitis [67] or adult meningitis 
following neurosurgery [68,69] deserves investigation. We have 
shown that ureases are neurotoxic to insects and impair their immune 
system, and similar effects were also observed for the urease-derived 
peptides Jaburetox and Soyuretox [1,4]. JBU and Jaburetox were 
found to bind to nervous tissues of the kissing bugs Triatoma infestans 
and Rhodnius prolixus [32] and of the cockroach Nauphoeta cinerea 
[31], accompanied by a pronounced inhibition of nitric oxide synthase 
activity in brain homogenates of these insects [32,60]. 

Studies on the structure versus entomotoxic activity were performed 
by testing PMU’s subunits on D. peruvianus, a hemipteran susceptible to 
both, JBU and Jaburetox. All subunits were lethal to the insects, either 
injected or given orally, confirming the ureolysis-independent entomo-
toxicity of PMU (Fig. 5). PmUreγ was more toxic when injected, whereas 
PmUreβ administered orally promoted the highest toxicity. Besides 
neurotoxicity, JBU and Jaburetox also interfere on the immune response 
of R. prolixus and induce aggregation of the insect’s hemocytes [1,4]. 
Hemocytes are granulocytes that combine biological properties of 
several types of mammalian leukocytes as well as of platelets [70]. Here, 
PmUreγ and PmUreβ, but not PmUreα, induced a cation-dependent ag-
gregation of R. prolixus hemocytes thus ascribing an immunomodulatory 
component to PMU’s entomotoxicity. 

Plant and bacterial ureases, regardless of their enzymatic activity, 
promote platelet activation in the nanomolar range, by triggering an 
eicosanoid signaling cascade [4]. A platelet-activating effect was re-
ported for liposaccharides extracted from P. mirabilis [71]. As the pu-
rity of the liposaccharide preparations was not described, it is not 
possible to exclude the presence of low amounts of PMU in that sam-
ples. Our group demonstrated that the recombinant PMU induced ag-
gregation of human platelets in nanomolar concentrations, following a 
slower rate when compared to that prompted by the platelet agonist 
ADP (at a 317-fold greater dose) [22]. We described earlier that ag-
gregation induced by HPU in rabbit [46] or human platelets [15] also 
develops at a slower rate, suggesting that this may be a trend of 
platelets’ response to microbial ureases, contrasting to the much faster 
rate of Canatoxin- or JBU-induced effects [48]. Testing the subunits 
demonstrated that only PmUreβ induced aggregation of human plate-
lets (Fig. 7B and C). PmUreγ did not interact at all with platelets. The 
maximal molar concentration of PmUreα that could be tested was 
5.5-fold lower than that of PmUreβ, what may explain the lack of 
platelet aggregating effect. These results contrasts to the fact that both 
subunits of HPU interacted with human platelets [12], but only 
HpUreα (or B subunit), which is collinear to PmUreα, showed 
platelet-aggregating activity [12]. The sequence in HPU that corre-
sponds to PmUreβ is part of its A subunit, where it appears fused to the 
sequence corresponding the PmUreγ (Fig. 9). A plausible explanation 
for this observation is that the region corresponding to PmUreγ poses 
some sort of steric hindrance that blocks a productive interaction of β 
domain in HPU’s A subunit with platelets, thus abrogating an aggre-
gation response. Nevertheless, HPU’s A subunit produced other effects 
on platelets [15]. Altogether, these findings indicate that PMU is able 

to activate platelets (as do all other ureases we have tested so far) and 
this effect involves PmUreβ. Finally, the ability of ureases to insert 
themselves into lipid membranes, leading to formation of ion channels 
and to alterations of the membrane’s permeability [49], could be what 
underlies their effects on different cell types. 

The fact that PmUreβ displayed all the biological activities tested 
here was somewhat surprising. Apart from the catalytic region in the α 
subunit, no functions are yet clearly ascribed to the other bacterial en-
zyme’s subunits. The urease’s β domain has so far only been proposed to 
take part in the enzyme’s activation process [72,73]. Since the biological 
effects of PmUreβ seen here overlapped the toxicity reported for 
Jaburetox, similarities between them were examined. Both, PmUreβ 
(this work) and Jaburetox [49] are located at the surface of the protein 
(Fig. 8), and therefore they could putatively “drive” many of the urease’s 
interactions with other molecules and cells. Jaburetox is an intrinsically 
disordered peptide, a feature that may be at the basis of its toxicity [30, 
31,50]. Here, simulations of PmUreβ indicated loss of secondary struc-
ture that, accelerated under fold-disturbing conditions, yielded an un-
structured molecule (Fig. 8). Thus, PmUreβ displays a Jaburetox-like 
behavior both in terms of biological activities and of physicochemical 
behavior. Although no obvious homology could be found by direct 
comparison of the amino acid sequences, a tool able to detect intragenic 
duplications on three levels revealed, in PmUreβ, a homologue of 
Jaburetox’s sequence (Fig. 9A and C). Considering that, in contrast to 
Jaburetox, PmUreβ also activated platelets, additional regions of 
duplication between the β and α domains of JBU were inspected, 
revealing a second similarity site (Fig. 9A and C). 

5. Conclusion 

Considering the moonlighting profile of ureases’ biological proper-
ties, here demonstrated also for PMU, we believe that the relevance of 
this protein as a virulence factor has been so far underappreciated. Its 
non-enzymatic properties suggest that PMU could probably be involved 
in many more features of P. mirabilis pathogenesis than merely providing 
nitrogen and shelter (by forming urinary stones) for the bacteria. 

Ureases are unnecessarily large for the enzyme function they perform 
[38]. The need for the additional subunits (considering the ancestral 
dihydroorotase) is unknown, and acquisition of toxicity has been pro-
posed as a trend [74]. Evidence of duplication within ureases genes have 
not been reported so far. Our current observation of duplications of 
“toxic” elements across urease subunits gives support to this proposition. 
Considering the evolutionary age of ureases and observing the conser-
vation of a Jaburetox-like region in the β domain of the proteins may 
even point to its origin there, and the Jaburetox moiety in single-chained 
ureases could be labeled as a copy of an “original” toxic segment in the β 
subunit of tri-chained bacterial ureases (Fig. 6B). Confirmation that 
these enzymes may be accumulating various types of toxicities to 
become multifunctional toxins raises the question: was urease originally 
a toxin, then later co-opted for enzymatic activity [4]? While this 
question remains unanswered, PMU is clearly pointing towards toxicity 
as a driving force in the evolution of these enzymes. 
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C.A. Dal Belo, C.R. Carlini, I. Orchard, Jack bean urease modulates 
neurotransmitter release at insect neuromuscular junctions, Pestic. Biochem. 
Physiol. 146 (2018) 63–70. 

[63] D. Arendt, K. Nubler-Jung, Comparison of early nerve cord development in insects 
and vertebrates, Development 126 (1999) 2309–2325. 

[64] W. Blenau, A. Baumann, Molecular and pharmacological properties of insect 
biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera, 
Arch. Insect Biochem. Physiol. Publ. Collab. with Entomol. Soc. Am. 48 (2001) 
13–38. 
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