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Abstract—Nowadays, data security is a demand for companies
when adopting storage services on public clouds. From long term
persistence services, such as Amazon Glacier1, to online block
storage systems for virtual machines disks, security principles
can be part of the cloud context, especially for customer’s
sensitive data. The confidentiality of storage services considers
aspects such as data life-cycle, location, and size, besides that,
this principle is often provided by a cryptography mechanism
applied in one of the persistence layers, such as in the File-System
(FS). However, to add cryptography for data security demands
extra CPU cycles for ciphering the data during its persistence.
Although these extra CPU cycles are not considered on current
cloud costs estimations, it should be part of the total application
execution’s costs. This paper presents the architectures for Cryp-
tography File Systems (CFS) adoption for data storing in cloud
computing. Furthermore, a mathematical model is presented and
discussed as an estimation tool of cryptography overhead when
using CFSs in the cloud storage stack. The model is verified in a
real scenario for estimating the total cost when adding security
for storage in a cloud environment. As main result, the model
could estimate the overhead within 90% to 92% of accuracy for
the AES algorithm, according to real cases traces, considering
available memory, I/O throughput and workload size.

Index Terms—Cost Modeling, Cryptographic File System,
Cloud Storage

I. INTRODUCTION

Storage performance is critical in most data-intensive ap-

plication due to the nature of the I/O sub-system in computer

architectures [1]. By adding any extra delay in the persis-

tence work-flow should be carefully analyzed and measured

to estimate either application performance impact or extra

computational resources demand.

In order to provide the confidentiality security principle to

data stored in the cloud, it is necessary to either encrypt data

before sending to the cloud storage or encrypt data during

the persistence phase using extra cloud resources. Once an

user’s application runs in the cloud, it is possible to consider

two scenarios for data confidentiality, handling encrypted data

through techniques such as homomorphic encryption [2], or

encrypt and decrypt the data every time it is used by the user’s

application inside the cloud.

Most providers support cloud side encryption for data

persistence in a transparent manner for users with no extra

costs. However, this transparency gives users no control of

1https://aws.amazon.com/glacier

the cryptography keys, which is not considered trustful [3].

Alternatively, customers could encrypt data inside their vir-

tual machine instance before persisting it into storage layer.

The encryption could be provided by either the application

itself, which demands application modification, or provided

transparently by a cryptography file system [4] (also know as

CFSs).

The CFSs allow standard cryptography algorithms and its

main roles are encrypting and decrypting data during the appli-

cation’s I/O operations. It is transparent for the application and

still under control of customer, since it is handled by virtual

machine internal software stack.

However, the CFSs need extra CPU cycles to provide

confidentiality and it impacts in the whole virtual machine’s

CPU consumption. In other words, the CFSs add extra costs to

customers renting the cloud. In doing so, a model representing

the CFSs overhead in cloud environments will be part of

customers’ decisions for confidentiality adoption, cloud costs

estimation, and so on. The model presented in this paper

considers aspects such as the I/O sub-system throughput, the

available memory in the host for handling the ciphering, and

also the relation of those features with the total data size.

Those axis are measured and a formula is produced for security

overhead estimation.

The rest of the paper is organized as following, in next

Section a Background and the Related Work are presented,

following, in Section III, Cloud Storage principles and the

security principles of storage systems are presented, focused

in the Cryptographic File Systems. In Section IV the security

cost model for cloud storage is presented and following, in

Section V, its validation is described. Finally the conclusions

and future works are presented in the last Section.

II. BACKGROUND AND RELATED WORK

Security has been in evidence since information leakage

facts in recent years like NSA and Wikileaks cases [5].

For offline systems, a few techniques, such as keys and

passwords, make most systems secure. For online systems, it

is necessary to adopt cryptography, digital certificates or even

complex authentication mechanisms. By considering software

deployment on cloud environments it is necessary to review

the security techniques to support companies’ requirements.

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

1066-6192/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.36

9

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

2377-5750/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.36

9

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 13:28:46 UTC from IEEE Xplore.  Restrictions apply. 



The principles of cloud computing made the security studies

consider multi-tenancy scenarios, where different users could

share the same virtualization stack to run their VMs. This sce-

nario allows inter-VM attacks or even information leakage [6].

In addition to that, many other threats make managers consider

cloud environments an unsafe solution.

The security solutions for data storage in cloud environ-

ments have been following standard patterns, such as using

cryptography. The solution choice should provide confidential-

ity (where provider does not learn any information from users’

data), integrity (any unauthorized modification of stored data

should be detected by the customer), availability (customer’s

data should be available from anywhere at any time), reliability

(customers’ data should be backed up), efficient retrieval (data

retrieval should be as efficient as in a standard public cloud),

and data sharing (customers would share their data with trusted

parties) [7]. Some cryptography techniques also provide the

auditing support for cloud environment using a public key

design for third-party auditing with no local data damage and

adding minimal overhead [3]. Also, even the data deletion

could be verifiable to avoid its distribution or leakage after

company stops using external resources [8].

In order to support security for storage system, the Cryptog-

raphy File Systems are solutions that apply standard ciphers

algorithms in a transparent manner to upon layers such as

the user’s application. The concept of the CFSs are simple to

understand, yet difficult to apply, often due to overhead impact

in application’s performance.

The privacy preserving techniques may be applied in dif-

ferent layers of the computational stack and each of them

have their own specification for pros and cons [9]. In the

Application layer, although it could be easy to deploy and

adopt several kind of encryption algorithms, the performance

is clearly damaged compared to lower layers (which is critical

in storage systems). Following, if the privacy is applied in the

File System layer there are still several algorithms and it is

possible to offer it to upper layer in a transparent manner,

however, once the file structure is created it becomes difficult

to modify or revoke keys since it would be necessary to modify

the entire list of files and directories. One layer bellow, the

Block structure is responsible for storing raw data and yet it

is possible to apply several different algorithms with higher

performance comparing to upper layers, however nothing is

kept in plain text in the File System which require longer

operations for key revocation or modification. The lower layer

in this stack is the hardware embedded cryptography. Although

this layer offer higher performance then above layers, the

cryptography characteristics, such as keys and algorithms, they

are pre-defined reducing the security and privacy aspects. As

a main conclusion, presented by the survey of Diesburg [9],

the File System layer offer transparency and flexibility for the

application layer, however the performance should be careful

analysed in order to reduce overall impacts in the user’s

software execution.

Some variations on cryptography algorithm application

could reduce the impact in terms of performance. The standard
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Fig. 1. I/O stack in Unix-like systems over a virtualized environment.

AES algorithm could be applied using the CTR mode which

could work in parallel [10]. The AES adoption could be im-

proved using processors with the AES-NI instruction set [11].

Even choosing the best setup for the encryption layer, it

is clear the impact in performance when handling stored data.

For Big Data environments [12], small datasets has low impact

of the performance due to in-ram data processing, however

in bigger datasets a high CPU demand is observed in nodes

which handle the persisted data. This overhead needs to be

clearly observed in order to measure and estimate the impact

of cryptography in the I/O-dependent operations. To combine

algorithms in a hybrid model is also an option trying to

reduce the processing time in data access, but it is clear

that an amount of CPU time is needed for storing data with

confidentiality [13].

III. CLOUD STORAGE WITH CFS

Most cloud providers build their service on top regular data

centers. The storage system is often provided by centralized

per-rack storage unit, and on-server discs. The hardware

storage is managed by the virtualization layer that places the

VMs’ (virtual machine) disc images according to rules of the

virtualization player. These disc images are attached to VMs

and they are accessed as regular disc by the operating system

hosted inside that VM. Figure 1 shows a regular I/O stack for

Unix-like systems, where in Block Layer the Virtualization

technology add extra layers in order to handle shared resource

among virtual machines. Even in a Virtualized environment

the CFSs act in layers between the application and the Block

Layer.

In the same hand, cloud providers offer storage as a service

through internet-based communication, e.g. HTTP. Those sys-

tems are also called WebServices and they are also handled by

the virtualization layer (to support service elasticity). Some of

these services support security principles and they often uses

cryptography.
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Cloud storage systems are composed of layers which are

implemented according to the application, i.e. a guest op-

erating system hosted into a virtual disc which is managed

by a virtualization layer over a storage service managed by

a Network-Attached Storage. The confidentiality mechanisms

can be applied to different levels of the storage stack, but one

is enough to avoid data leakage.

When applying confidentiality for storing data inside the

virtual machine, the user is responsible for choosing the cryp-

tography algorithm and also for managing the keys, given to

user total control of the security. The cryptography mechanism

could be applied either internally in the user’s software or

using a persistence mechanism with cryptography support, i.e.

the Cryptographic File Systems.

The Cryptographic File Systems, earlier introduced by A
Cryptographic File System for Unix[4] and The Design of
a Cryptography Based Secure File System [14], have been

used to provide persistent data with confidentiality. The main

feature of this mechanism consists in provide encrypted stored

data with no application modification. The application uses

standard I/O instructions, since the CFS works in lower

system’s layers.

Most CFSs uses symmetric cryptography due to perfor-

mance issues and could be build as the following level of

abstraction [1]:

A. Block-based System

Block-based storage system have cryptographic support by

handling one disk block at time. There is no knowledge of

upper layers, such as files or directories, and it could even be

used by software that needs to access raw partitions (such as

databases). In other words, the persistence flow is intercepted

by an cryptography phase which applies the ciphering to

each block in the raw device, as shows Figure 2. In the

Linux systems, the Device-mapper crypt [15] is a kernel

module which provides block devices using the kernel’s crypto

API [16]. This API runs in the kernel space memory area

and all instructions and keys are placed in the kernel space

controlled area.

B. Stackable File System

Stackable cryptography file systems are placed on top of

different regular file systems and they are often portable for

multiples operating systems, since the software layer which

intercepts the data flow for encryption is independent of the

persisted data. The ciphering process uses regular file system

as the lower layer for hosting the directory-file structure and

modify only the files content and optionally the file name

(or directory name). Figure 3 shows a Cryptography Module

running in User Space layer that handle application’s files

storing them into another File System. The EncFS [17] is one

of this kind and was created as a virtual encrypted view for

a directory in a regular file system in the user-space. It runs

without any special permission and use the FUSE (File System

in Userspace) library. The key management is made through

user’s configurations, but never stored, and it is prompted

every time the encrypted directory is mounted. During the
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Fig. 2. I/O stack in Unix-like systems with Cryptography read/write directly
in the block storage unit.

mounting phase, a new key is derived from the original

within a certain number of rounds which is described in the

user’s configuration file. The primarily goal of this file system

is to protect data off-line and support the usage of strong

cryptography algorithms, such as AES and 3DES, for regular

users. Similarly, the eCryptFS [18] build a cryptographic file

system over a regular directory structure using algorithms such

as the AES with different size of keys. In this case, the key

is managed by a regular Linux keyring and the ciphering jobs

is relayed to the kernel module Crypto API. Any algorithm

supported by this kernel module is eligible to be used for the

eCryptFS.

When comparing Block and Stackable models, the former

could achieve better performance due to less layers between

application and the storage device. However, a performance

comparison between those two models should be evaluate

according to the above application’s behavior. Despite the

model architecture impacts the overhead, the main portion of

CPU load of their architectures is related to the cryptography

algorithm. In doing so, following a model considering the

algorithms used in CFSs is presented.

IV. STORAGE SECURITY MODEL

The storage privacy principles, supported by the cryptog-

raphy file systems presented early, are often based in regular

symmetric algorithm such as AES and BlueFish. However, the

overhead measurement of storing data with privacy is not only

base on the characteristics of the cryptography algorithm. It

is necessary to consider the architecture of the cryptography

file systems, the IO subsystem, as well as the encryption and

decryption operations in such a system. The storage system

often uses cache mechanisms for performance improvement

that needs to be paired with the cryptography module.

Currently, the cryptography algorithms achieve higher per-

formance specially using modern processors. In the other hand,

the IO subsystem’s performance still depends on physical

1111

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 13:28:46 UTC from IEEE Xplore.  Restrictions apply. 



����

���	�


�����

���	�


����	�����

���

�����������

���	�������

������

�����

������������

������

�����������

Fig. 3. I/O stack in Unix-like systems with Cryptography module read/write
in a File System.

aspects for persisting data. These two aspects make the Cryp-

tographic File Systems an alternative for storing data with

confidentiality and with low CPU allocation.

But how much is the impact of CPU usage in such a system,

how is the impact of Cryptography File Systems in a cloud

environment, and what is the application’s profile that match

within a certain CPU costs are some of the questions that

need to be answered for better allocation of cloud computing

resources.

For this reason, one can consider to model the costs of using

Cryptography File System in a cloud environment. The CPU

usage estimation is important since cloud billing is commonly

based in CPU units (such as cycles or hours).

As mentioned early, the CPU time used by the CFS is

spread along the IO queue size. In doing so, one can first

deduce a inverted relation of the total CPU time consumed

by cryptography for a certain data amount and the time for

persisting it. This relation can be writing as:

S(d,t) =
C(d)

t
(1)

where d is a data amount, C is the function for expressing the

CPU time for that given data amount d, and t is the total time

of the persistence flow. The formula would be clear if a single

one-way direction (reading or writing) is considered. However,

it is necessary to identify and split the data amount d in write

and read operation to make it close to real scenarios. It is also

necessary to consider a significant difference in reading and

writing throughput to estimate the total time of the persistence

process. In doing so the formula could be rewritten as:

S(w,r,TPr,TPw) =
E(w) +D(r)

r × TPr + w × TPw
(2)

were w and r are total data write and read, respectively, E and

D are the function for estimating the CPU time of encrypting

and decrypting an amount of data. These values will produce

the total CPU time for ciphering process. Following, the TP
variables are related to the throughput of the reading and

writing operations in IO subsystems. Although it seems to

be clear spreading the cryptography’s CPU time over the

IO time, the machine’s memory size has also a significant

impact in the application’s total time since the file system’s

cache subsystem allow better performance of the cryptography

algorithms’ utilization. So the memory size m impacts the total

time of the IO subsystem and it is represented as:

S(w,r,TPr,TPw,m) =
E(w) +D(r)

Δ(r/TPr + w/TPw)
(3)

where the variable m represents the available memory for the

IO subsystem and needs to be considered for two scenarios:

the total dataset size is smaller than the available memory, or

not. The Δ is dependent of a condition within m as:

Δ =

{
F (r/TPr + w/TPw,m), r + w < m

1, r + w >= m
(4)

where the F function in the formula gives the index of the

extra performance for in-memory operations. This behavior

could be observed during experiments where file with size

small than the host’s available memory could achieve at least

3 times higher performance.

As a summary, the formula application would need the

knowledge of variable values such as the amount of data read

(r) and written (w), the function costs of encrypting (E) and

decrypting (D) each kind of persistence flow, and the through-

put of the IO subsystem. The throughput needs to be observed

in two main perspectives: the read and write operations in to

raw-external devices (virtual disc of virtualization layer is also

included), and the read and write operations in to memory

which will fit the F function, as presented in the formula 4.

The presented model aims to produce as result the CPU

allocation of a host (or virtual cloud host) for a certain data

amount. This value helps to predict the host allocation when

choosing to add security in the persistence for confidentiality

guarantees.

The system administrator could trace company’s application

I/O data amount and use this formula to estimates the CPU

allocation per node.

V. VALIDATION

In order to evaluate the proposed model, initially a set of

experiments was conducted to fit the mathematical model,

considering the impact of memory, the absolute CPU load and

the relation between dataset’s size and execution time. Finally,

an experiment considering a real application scenario shows

the impact of the cryptography for storing data in a cloud

environment.
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A. Environment Description
The validation environment was composed by virtual ma-

chines running a standard Linux using a single virtual pro-

cessor and variable memory sizes (256MB, 512MB, 768MB,

and 1024MB). The virtual machines were hosted in a physical

server with a 8-cores processor Intel Xeon X6550 2GHz,

96GB RAM, a local Sata disk with 128GB, and XenServer

6.2. The Cryptography File Systems used in the experiments

are the dm-crypt [15], placed in the kernel level and acting as a

Block CFS, and the EncFS [17] running in the user-space with

FUSE library, acting as a Stackable CFS, and the algorithm is

always set to AES with a 256 bits key. This algorithm is chosen

due to it is recommended by security institutes and could be

verified in the future using specialized processors [11]. These

CFSs were evaluated by the IOZone [19] I/O benchmark tool.

B. Evaluation
This evaluation defines the weights for the variables and

functions from the Equation 3. The functions E and D in the

formula should calculate the processing time of encrypting

and decrypting an amount of data in bytes, respectively.

Considering that the CFSs used in this validation use standard

cryptography algorithm, this values could be captured form

isolated test case (measured with command line tools, i.e.) and

applied in a linear function. The values from the functions

E and D for a 500MB file was respectively 4558ms and

3956ms. One can notice the encryption operation expensive in

terms of time compared to decryption. This operation is also

essential during the writing processes which is far expensive

than reading in terms of time for the I/O subsystem. When

combining both encrypting and writing operations the worst

scenario for this experiment is presented. So, next experiments

would consider only writing operations in order to demonstrate

the model application.
Following with the Equation 3, the throughput variables

are determinant in the overall formula application. In order

to figure out the behavior of such mechanism, an experiment

was conducted to write files in a CFS from 10MB to 1000MB

and the host CPU consumption is captured for four memory

sizes 256MB, 512MB, 768MB and 1024MB. Figure 4 shows

differences in CPU allocation according to the file size and

the host memory size. In general, the CPU load was near

10% for files with size up to 68% of the available memory.

This experiment makes clear the allocation of the memory

during the encryption phase. Otherwise, for bigger files the I/O

subsystem queue the work flow not allowing the progress of

the CPU. In such scenario, the formula would be impacted by

the host’s memory size which is mapped in the mathematical

model as the Δ factor. This factor is conditioned by the

function in Equation 4, where the total execution time is

affected by a factor F when persisted data is bigger than

than available memory size m. The reduced CPU load is also

reflected in the total execution time, as it was observed during

the tests executions.
The isolation of CPU load with and without using the

memory as a support for improving the performance is demon-

strated in the experiments when the CPU overhead chart was

Fig. 4. Memory size

Fig. 5. CPU load

produced. Figure 5 presents a stabilized overhead of CPU for

files bigger than 260MB and a increasing curve otherwise.

This execution was produced in a virtual machine with 512MB

RAM and the negative peaks are random and it was not

considered in the model.

When modeling the overhead of CPU of the Cryptography

File Systems, one may consider to draw a logarithmic curve

for predicting this values, as presented in Figure 6.

Fig. 6. Log CPU load
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Fig. 7. Hadoop overhead by CFS: Word count running over different files
sizes.

C. Real Application validation

In order to evaluate the Cryptography File Systems sup-

porting a real cloud application, a new environment was

produced with two virtual machines (same image and CPU)

with 2GB RAM each. The virtual machines hosts a set of

Hadoop [20] components, enough for the execution of a map-

reduce application. The datanodes was configured to read and

write data into a CFS in all nodes. The workload was a 1MB

file replicated with size from 10MB to 500MB with a set of

words, which produces a linear workload. This linearity can

be observed in the execution time line in Figure 7. It is also

observed that the CPU overhead was no more than 10% in

average. This overhead is an comparison of the environment

with and without the usage of the CFS and confirms the

estimation presented early in this paper.

VI. CONCLUSIONS

Cryptographic File Systems have been used to provide data

storing with privacy. However, they do not appear in cloud

estimations since it is part of user’s VM installation. Although

most privacy solutions use regular cryptography algorithms

to provide confidentiality for persisting data, there are more

elements to be considered when estimating the extra overhead

of such solutions in a cloud environment.

In doing so, this paper presented a mathematical model for

extra CPU estimation when using Cryptographic File Systems.

The model considers three main factors as essential in the

overhead calculation: (a) the CPU load for encrypting and

decrypting the data flow, (b) the memory size of the host

machine, and (c) the throughput difference between raw-in-

disk operations and in-memory operations.

The validation shows the behavior of CFSs considering

the aspects explored in the model. Yet, it was possible to

use the experimented values of CPU load, processing time,

and workload size for fitting the model’s variables. The fitted

model was used to estimate the overhead of a CFS hosting files

of an application execution (based on Big Data operations) and

the model predictability accuracy was close to 90%.

As future experiments specialized file systems will be

considered in order to investigate the best mechanism for data

privacy storage for cloud computing, taking into account not

only the throughput but also the cache hierarchy, synchroniza-

tion mechanisms and different cryptography algorithms.
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