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Abstract—Advances in computer architecture to provide
higher parallelism (e.g. hyper threading and multi-core) usually
incur in higher complexity in software development. Appli-
cations should be designed to use efficiently the additional
resources in order to improve its performance. However,
the popularity of mobile devices and recent studies in IT-
related energy consumption have driven software developers to
focus also on energy efficiency. Besides improving applications’
performance, software developers should aim at minimizing
the amount of energy consumed by the applications. Energy
saving becomes an important non-functional requirement for
new applications. This paper evaluates the behavior of appli-
cations on multi-core architectures and proposes energy-saving
alternatives for software development.
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I. INTRODUCTION

For decades, major computer processor manufacturers
accompanied Moore’s Law by adding more features to
their processors and increasing significantly processor’s fre-
quency. In the early 2000s, physical limitations, such as heat
dissipation and data synchronization problems, led compa-
nies to find other alternatives to keep improving processor’s
performance. These issues tend to the development of new
alternatives providing higher parallelism, such as: hyper-
threading, multi-core CPUs, accelerated processing units,
among others.

Currently, processors with multiple processing units are
available on different devices, such as: computers, smart-
phones, tablets, and network devices (e.g. routers and
switches). This increase in computer parallelism required
programmers to employ parallel programming techniques
when developing applications. The applications should
present better performance on newer devices with more
execution cores, as traditionally happened before with the
increase in processor frequency.

Recently, developers started also to take into consideration
the energy consumption of their applications, specially due
to the growth of the mobile market, with battery-based
devices. The power consumption of a chip is given by the
equation P = C.V 2F [1], where P is power, C is the
capacitance being switched per clock cycle (proportional to
the number of transistors whose inputs change), V is voltage,

and F is the processor frequency (cycles per second).
Frequency increasing means increasing the amount of energy
used by a processor.

Consequently, there is a trade-off between resource use
and energy savings. If more resources are used, it will
result in a better performance, but more energy will be
consumed. If energy-saving techniques are used, there will
be a performance loss due to the decrease in processor
frequency. Some questions are raised about saving energy in
multi-core processors, and these would serve as hypotheses
evaluated in this paper. The hypotheses are:

• In a processor with two physical cores, if all the threads
migrate to one processing unit and the other unit is
turned off, will there be energy savings?

• The use of hyper-threading increases by 30% the ap-
plications performance, but do the energy consumption
follows the same increase?

• If the threads are evenly distributed among all available
cores, can it save energy?

This paper focus on evaluating these hypotheses through
the experiments executions in a real testbed. The paper is
organized as follows: Section II presents an overview on
multi-core and hyper-threading technologies and the impor-
tance in reducing energy consumption; Section III presents
related work; Section IV describes the testbed used in the
experiments; Section V evaluates the results obtained in the
experiments regarding performance and power consumption;
Section VI concludes the paper and presents future work.

II. BACKGROUND

Due to the large amount of resources that current devices
offer, software development generally does not consider
issues related to energy consumption. Even in mobile devel-
opment, in which there is a greater concern for the lifetime of
the batteries, it is not common to find oriented programming
models for this purpose. In this section, we present the
Hyper-Threading technology and discuss the energy savings
as a non-functional requirement for software development.
We also present some studies on design patterns focused on
green computing.
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A. Hyper-Threading

Hyper-Threading (HT) [2] is Intel’s implementation for
simultaneous multithreading (SMT). It simulates several
logical processors in a single core processor allowing the
operating system to schedule many threads or processes
simultaneously through each processor. HT excels by tak-
ing advantage of superscalar architectures, decreasing the
number of dependent instructions on the pipeline. This
feature can increase up to 30% of the overall application
performance.

Each logic processor has its own advanced programmable
interrupt controller (APIC) and a set of registers. Other
resources of the physical processor, such as cache memory,
buses, execution unity, etc., are shared between logical
processors.

Despite the fact that Hyper-Threading’s energy consump-
tion is slightly higher, the overall amount of energy needed
to run a task is lower than the same execution on a single
core processor. This happens because the task finishes in
fewer cycles, therefore apparently consuming less.

HT processors are present in smartphones, tablets and in
several other embedded devices. In the context of smart
cities, power-aware devices can reduce the environmental
impact caused by heat and harmful gases emission to the
atmosphere. This can happen in several ways, from soft-
ware development focused on sustainability, to techniques
that allow reducing processor’s frequency. This paper pro-
poses that energy consumption should be treated as a non-
functional requirement for software development. It suggests
a paradigm shift, that requires from the developer, a greater
knowledge of the architecture to be used. On the other hand,
such paradigm shift can bring significant advantages in terms
of energy consumption.

B. Energy Savings as a Software Requirement

Software development involves several stages and activ-
ities that regardless of the method chosen, occur to allows
delivering the software working properly, within budget and
deadlines for its development. To achieve the project goals,
all development activities have to be carefully worked out
and developed, either using a development approach as UP
(Unified Process) or Agile methodologies (XP, SCRUM,
etc.). In any one of them, we will find activities of require-
ments analysis, design, architecture definition, codification
and others. A consistent analysis of the requirements, i.e.,
identification, definition, prioritization and classification of
the main problems that the future software must solve is the
basis of a software project success.

Among these, we focus on the requirements analysis.
Requirements [3] express characteristics or properties that a
system must have or do, as well as its operating restrictions.
Requirements can be classified in functional requirements or

non-functional requirements. Non-functional requirements
relate to the characteristics of the application in terms
of performance, usability, reliability, security, availability,
maintainability and technologies involved.

As the physical limits of silicon were achieved, concerns
about energy consumption becomes a non-functional re-
quirement that must be taken into account for future software
development.

More than ever, the developer must know the character-
istics of the hardware device that will serve as the base
for the software. However, when software development is
more specific to the hardware, it is less general for other
architectures. This is the motivation to set up a design pattern
for green computing.

C. Design Patterns for Green Computing

Design patterns are formalization of best practices to be
implemented in application. Just as there are design patterns
that describe the best way to explore the characteristics of
the application on the hardware architecture, there should be
a pattern that takes into account energy consumption. Litke
et al. [4] analyzes three design patterns: Factory method,
observer and adapter. The paper presents that the factory
and observer patterns increase energy consumption. This is
expected, since these patterns have focus on other metrics,
not energy consumption.

We can note that the natural way to develop power-aware
applications lies in the behavioral profile characterization
of the application on the available resources, and through
this information, deciding which power saving techniques
or technologies can be used in this application.

III. RELATED WORK

Tan et al. [5] discusses the motivation for conducting
characterization of energy in an embedded operating system,
proposing a new method to perform a systematic characteri-
zation. The method proposed consists of two parts: mapping
the sets of components that combine the power consumption
of the device, and obtaining quantitative models for these
characteristics. This enables the models creation that can
act on the operating system to save energy.

Using machine learning, the work of Kan et al. [6]
maintain a record of the application behavior and modifies
the frequency of the processor through Dynamic Voltage
and Frequency Scaling (DVFS), aiming to adjust the power
consumption. The paper shows an average energy-saving
of 9.1%. In the same way, the work of Schuster and
Brinkschulte [7] proposes to use model-driven development
based on state machines. Applications are defined on a
high level of abstraction and efficient implementations are
adapted to the target platform.

The work of Siegmund et al. [8] presents a comparison
of techniques for energy-saving on mobile devices, based on
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aspect-oriented and feature-oriented programming. In this
same context, the work of Siebra [9] argues that require-
ments facing the energy consumption should be created, and
it can result in significant power savings. As a preliminary
work, Chatzigeorgiou and Stephanides [10] propose energy
efficiency metrics for the development of software require-
ments. The paper considers the sources of power consump-
tion in every digital circuit and measures are calculated using
hierarchical information defined in software, forming a basis
for the energy metric definition. This measure can be used to
decide the level of energy consumption of the entire software
system.

This paper is focused on multicore architectures and many
of computer microarchitecture research on reducing energy
consumption in processors. Some works propose to dynam-
ically adjust processor resources as shown by Albonesi et
al. [11], other works presented by Li et al. [12] and by
Sasanka et al. [13] present comparisons of energy consump-
tion between SMT (Simultaneous Multithreading) and CMP
(Chip Multiprocessing) or multicore as presented by Kumar
et al. [14] and Kumar et al. [15]. Most of these studies were
performed by analytical methods. Grant and Ahmad [16]
follow a work that explores energy efficiency in an asymmet-
ric architecture using hyper-threading, and proposes a new
scheduling algorithm that maintains a global energy con-
sumption with minimal impact on application performance.
Focused on multithreaded applications in OpenMP, the study
showed that the most used applications maintained a lower
power consumption when using non-hyper-threading. The
purpose of the paper was to show that with some changes
in scheduling of tasks it would be possible save energy while
maintaining the same performance.

IV. EXPERIMENTAL SETUP

For the evaluations of this paper, we used the testbed
shown in Figure 1. Some features of this NUMA [17]
architecture (Intel(R) Xeon(R) 2.27GHz) are important for
the tests, as the existence of two physical processors with
four cores using HT and Linux kernel version supporting
the CFS (Completely Fair Scheduler) [18].

Figure 1. Test Architecture

Our experiments were conducted using the NPB bench-
mark suite, as presented in Kale [19], one of the most well-
known and widely used benchmarks for HPC. NPB is de-
rived from computational fluid dynamics (CFD) applications
and consist of five kernels and three pseudo-applications.
We chose the EP and LU to represent the behavior of
two different types of threads, CPU-intensive (EP) and IO-
intensive (LU).

• EP (Embarrassingly Parallel): It is a benchmark that
provides an estimation of most reachable performance
for analysis of floating point calculation. It is normally
used to evaluate performance without the significant
cost of interprocess communication, therefore an ideal
CPU-intensive benchmark.

• LU (Lower-Upper Symmetric Gauss-Seidel): It is
a benchmark that performs matrix factorization being
a product of a lower triangular matrix and upper
triangular matrix. It performs complex interprocess
communication. It is a very complete HPC benchmark
and is similar to the one used to build the Top500 list 1,
ranking the world’s most powerful supercomputers.

Aiming to answer the questions presented in this paper,
three different configurations were tested:

• 1 physical processor (called 1P)
• 2 physical processors + Affinity (called 2P-Af)
• 2 physical processors + CFS (called 2P-CFS)
The first scenario (1P) can be seen in the Figure 2,

and consists of only one physical processor available to
the operating system, and the second physical processor
disabled.

Figure 2. 1 Socket Test Scenario

The second scenario (2P-Af) presented in the Figure 3
is similar to the first scenario, but presents the second
physical processor available, although idle. This is possible
by scheduling all threads to the first physical processor,
performing affinity. The second physical processor being in
idle state still consumes energy, though with a minimum of
frequency.

The third and last scenario (2P-CFS) (Figure 4) shows
the two physical processors available, and the threads are
distributed according to the rules of the CFS scheduler.

1http://www.top500.org
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Figure 3. 2 Sockets + Thread Affinity Test Scenario

In multi-core architectures, CFS splits threads between the
available processors to optimize resource usage.

Figure 4. 2 Sockets + CFS Test Scenario

For each scenario and for each group of benchmarks
tested, all tests were performed fifteen times, showing no
significant differences between runs.

V. EXPERIMENTAL RESULTS

The graphs show results of benchmarks executions run-
ning 4, 8 and 16 threads, which are sets of executions that
represent values when compared to the numbers of cores: a
number less, equal and greater about them. We believe that
this set describes the real use of multithreaded applications
on multi-core environments. In our tests, presented in Figure
5, the x-axis represents each specific execution time and the
y-axis represents the power consumption in watts.

In Figure 5 5(a) we can see energy consumption mea-
surement of executions of EP benchmark using 4 threads. In
this scenario, when compared to 2P-CFS, the 2P-Af showed
a reduction in energy consumption by 3%, while the 1P
showed a reduction in power consumption of 13%. This is
the only set of execution in the CFS scheduler that loses in
energy consumption for other models, and this is due to the
low load imposed by 4 threads in architecture.

Executions of the LU benchmark with 4 threads shown in
Figure 5 5(b) did not present the same behavior, in which
the 2P-Af and 1P consumed more energy (55% and 51%
respectively) than the model with only CFS.

Running 8 threads, the 2P-CFS is energetically efficient
when compared to other models. Figures 5 and 5(c) show the
benchmark EP with an increase of 44% in the consumption
by the use of 2P-Af and 33% by using 1P. The LU
benchmark shows an increase of power consumption at the
level of 150% by 2P-Af and 137% by 1P.

The behavior exhibited by executions with 16 threads
is the same as 8 threads, but with different values of
consumption. In the EP benchmark, 2P-Af had an increase
in energy consumption of 69%, while 1P had an increase
in power consumption by 44%, compared to 2P-CFS. The
LU benchmark showed an increase of 24% when running
2P-Af and 16% when running on 1P, when compared with
2P-CFS.

Based on the results presented, we can perform some
analysis on the trade-off between resource usage and power
consumption, as follows:

• It is possible to make adjustments in power consump-
tion based on the threads location. Depending on the
threads position and their characteristics, it can have
energy efficiency. Although the gain in energy cost
seems small, in various architectures with multiple
cores and threads this may represent a great gain.

• Benchmarks using two physical processors certainly
consume more energy each time interval. However, in
most cases it executes on a smaller time execution,
which allows a reduction in total power consumption.
This shows that the CFS scheduler allocation of threads
among the available resources is energetically efficient.

• In all cases presented, the LU benchmark consumes
more energy than the EP benchmark. It means that
the application that perform memory access consumes
more power than CPU-intensive applications. Running
LU benchmark presents a performance gain when run-
ning on two physical processors and the CFS scheduler,
and this is due to the increased size of the available
cache memory. EP uses a set of only 20 megabytes of
data, while the LU benchmark uses 650 megabytes of
data.

• The use of two physical processors, scheduling threads
only to the first processor and turning the second
processor off, show almost the same time execution,
however the affinity option consumes more energy be-
cause it keeps the second physical processor consuming
energy while idle.

• When using only one physical processor holding the
second physical processor off, consumption values are
always lower, but the run time is always higher.

These analysis of the trade-offs between resource usage
and energy savings enables fine adjustment in software
development, since the concern with energy consumption is
taken into account as a non-functional requirement. How-
ever, there is a clear dependence on the knowledge of
processor architecture, which makes the development of
energy-aware software less general. This is not really a
limitation, given the software development for embedded
platforms is quite specific to the hardware.
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(a) EP Benchmark using 4 threads

150	  

180	  

210	  

240	  

270	  

300	  

330	  

1	   3	   5	   7	   9	   11	   13	   15	   17	   19	   21	   23	   25	   27	   29	   31	   33	   35	   37	   39	   41	   43	   45	   47	   49	   51	   53	   55	   57	   59	   61	   63	   65	   67	   69	   71	   73	   75	   77	   79	   81	   83	   85	   87	   89	   91	   93	   95	   97	   99	  

P
o
w
e
r	  
C
o
n
su
m
p
5
o
n
	  (
K
W
h
)	  
	  

Time	  (s)	  	  

2S-‐CFS	  
1S	  
2S-‐Af	  

(b) LU Benchmark using 4 threads
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(c) EP Benchmark using 8 threads
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(d) LU Benchmark using 8 threads
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(e) EP Benchmark using 16 threads
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(f) LU Benchmark using 16 threads

Figure 5. Execution Time vs. Power Consumption Evaluations

VI. CONCLUSION AND FUTURE WORK

Computers with multiple processing units have been used
for several years already, mainly in high performance com-
puting, but recently the interest in the topic grew because
of physical limitations of the increase in frequency process-
ing. This increase in frequency and consequent increase in
performance has a cost in energy consumption.

Therefore, there is an increasing concern about energy
consumption of computers, and several studies are being
performed trying to reduce energy consumption and its
environmental impact, keeping the performance gains.

Most studies aimed at energy savings in computing are
focused on infrastructure, using techniques to change pro-
cessor frequency, perform more efficient forms of data com-
munication, operating systems using sleep states as standby
and hibernate, new policies for scheduling and use of the
devices. However, there have been few studies on how to
develop software with a focus on energy-saving, with the
intention of using all available resources, without consuming
more energy to it.

This study attempts to answer some questions that can
direct the software development targeting an energy-aware
environment. To this end, we used in our evaluations two
benchmarks representing the two main types of resource de-

manding applications: CPU-intensive and IO-intensive. This
paper answers some questions about the use of multi-core
processors in an energetically efficient manner. This study
was guided by three questions presented in the introduction.

The first hypothesis is about the threads migration to only
one core, with the intention to turn the other cores off to
save energy. This hypothesis is true, since in all tested cases
we have observed that there is indeed energy-saving while
maintaining idle cores turned off.

The second hypothesis checks if hyper-threading impacts
on energy consumption, as well as impacts the execution
time of jobs. We can see an increase in energy consumption
that accompanies the percentage of performance gain. This
is due to a larger area of the processor components that
must maintain to support hyper-threading technology, which
consumes more energy.

The third hypothesis verifies that a fair distribution of
threads on all available cores is energy efficient. This hy-
pothesis is true, because the CFS scheduler is present in
most current kernels that support other technologies such
as DVFS. Thus, the scheduler distributes the threads on the
processor cores, and the kernel can adjust the frequency of
these, saving energy by fitting the frequency and voltage.

During all assessments in this paper, we have moni-

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:38:01 UTC from IEEE Xplore.  Restrictions apply. 



tored metrics including number of cores, speedup, context
switches, total CPU used, CPU idle, time of CPU idle and
temperature. With a correlation analysis, through which we
identified most influence metrics on energy consumption.
Because of that, it will be possible to develop a power
consumption equation for multi-core applications. As future
work, the same set of experiments could be run to test energy
efficiency in embedded processors such as PowerPc. Another
path to follow is to consider some primitives at design phase
of the application, such as page, stack, heap and other kinds
of memory data structures in order to evaluate the trade-off
between performance and power consumption.
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