CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 29: 3839
Published online 12 May 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3839

Modeling and simulation of global and sleep states in
ACPI-compliant energy-efficient cloud environments

Miguel G. Xavier'* ", Fibio D. Rossi', César A. F. De Rose', Rodrigo N. Calheiros?
and Danielo G. Gomes>

VPontifical Catholic University of Rio Grande do Sul, Brazil
2The University of Melbourne, Australia
3 Federal University of Ceard, Brazil

SUMMARY

The more large-scale data centers infrastructure costs increase, the more simulation-based evaluations are
needed to understand better the trade-off between energy and performance and support the development of
new energy-aware resource allocation policies. Specifically, in the cloud computing field, various simulators
are able to predict and measure the behavior of applications on different architectures using different resource
allocation policies. Yet, only a few of them have the ability to simulate energy-saving strategies, and none of
them support the complete advanced configuration and power interface (ACPI) specification. ACPI defines
a terminology for all possible power states of a machine and their associated power rate. The hardware
industry has relied on ACPI to provide up-to-date standard interfaces for hardware discovery, configuration,
power management, and monitoring, enabling a better understanding of the energy consumption level of
different hardware states, referred to as ACPI G-states, S-states, and P-states. In this paper, we improve
the modeling and simulation of the ACPI G/S-states and show not only that these states offer different
energy-saving levels but also that state transitions consume energy. In addition, we model the latency to
transit between two states and the effects on the turnaround time when the transitions are not performed
conservatively. Furthermore, the equations provide essential information to quantify the trade-off between
energy consumption and performance and assist in the analysis/decision on which strategy fits better in the
environment and how it could be refined. Our expanded energy model was implemented in CloudSim and
validated with simulation-based experiments with a very high level of accuracy, with a standard deviation of
at most 6%. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cloud computing delivers infrastructure, platform, and software as a service under the pay-as-
you-go model on an unprecedented scale [1]. Companies and developers do not need to make
large investments in hardware and maintenance services, allowing them to focus more on inno-
vation and improving business enterprises. These new opportunities increased the popularity
of cloud computing because of its reliability, security, availability, fault tolerance, scalability,
and sustainability.

Although there is already a variety of cloud computing systems, there is still no standard for
evaluating these environments. An appropriate alternative is the use of simulation tools through
which systems not physically available can be characterized. Simulation is a useful technique for
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computer system analysis to reproduce tests, evaluate hypotheses, and compare several scenarios.
Therefore, simulation-based experiments may be preferred over real experiments because they
allow the alternatives to be compared under a wider variety of workloads and environments. Fur-
thermore, it helps to detect bottlenecks and trade-offs before the deployment of the solution on a
physical infrastructure?

Identification of the impact of energy on performance in large-scale cloud data centers is one of
today’s most studied topics on energy-efficient cloud computing [2—4]. The green IT-related key
issues involve reducing carbon emissions, which implies efficient management of energy usage,
with the reduction of equipment and rethinking business practices that cause the least impact to the
environment. In recent years, the US data centers consumed an estimated 91 billion kilowatt-hours
(kWh) of electricity, which is equivalent to the annual output of 34 large (500-megawatt) coal-
fired power plants [5]. Currently, this scenario has become worse, and the numbers are even higher,
especially at the end of the year when cloud services have a high demand for resources (retail has
large demand spikes around Christmas).

This worrying scenario has stimulated many studies proposing strategies for energy conservation,
aiming at reducing the impact on the environment. Niyato et al. [6] proposed an ideal power man-
agement based on a Markov model to adjust the number of active servers for maximum energy-
savings. Beloglazov and Buyya [7] presented a heuristic for virtual machines allocation in a cloud
with the goal of saving energy. Duy et al. [8] presented the design, implementation, and evalua-
tion of a scheduling algorithm integrated with a predictor that uses neural networks to optimize the
energy consumption of servers in a cloud. Alvarruiz et al. [9] proposed a management system for
clusters and clouds that saves energy by turning off idle nodes across the network. Isci et al. [10]
showed that there is an opportunity for energy-saving strategies in these environments using the
concept of sleep states.

Such strategies are based on the fact that not all physical hosts are overutilized all the time (the
hosts usage rate differs substantially in a large-scale data center), leading to energy-savings policies,
such as

e reduce the processors frequencies: processor frequencies might be scaled up/down on
demand based on their utilization rate. This capability provides a high degree of energy con-
servation while putting the processors to operate at the lowest frequency. This is the most
straightforward and usual policy because it is set once and remains unchanged during the
operating system (OS) run-time;

o put idle hosts to sleep (sleep states): consolidation of virtual machines in cloud data centers is
arguably a well-established approach to reduce costs and make better use of the resources. The
higher the number of consolidated virtual machines, the greater the number of idle physical
hosts consuming energy needlessly. Based on this, it is possible to put idle hosts into a lower-
power state by turning off its internal hardware components.

Many strategies have adopted such policies to increase energy efficiency, but they are not feasible
if the underlying hardware does not provide standard interfaces for power management of its internal
components. To this end, the hardware industry has implemented such standard interfaces, enabling
robust OS-directed motherboard device configuration and power management of both devices and
entire systems. These standard interfaces have been defined since 1996 in the specification referred
to as advanced configuration and power interface (ACPI) [11]. In broad terms, the specification
defines, among many other things, a terminology for all possible power states of a machine and their
associated energy consumption levels. These definitions in ACPI are implicitly cited when talking
about processor power states (P-states) and machine power states (G/S-states) in any energy-saving
strategy. With the continuous evolution of standards in its collections, the ACPI has become a de
facto standard in the industry and has been widely supported by companies such as Hewlett-Packard,
Intel, Microsoft, Phoenix, and Toshiba [11].

Putting ACPI-compliant machines into a G-/S-state contributes significantly to energy-savings but
imposes an additional latency to enter or leave a state. This latency might delay resource availability

*Cloud computing environments composed of physical resources, such as servers, switches, and routers.
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and affect the scheduling performance (job turnaround time). There have been many studies focusing
on identifying the trade-off between energy consumption and performance to sidestep this disruptive
effect. Our proposal is complementary; we focus on the modeling and simulation of the ACPI G/S-
states, considering the trade-off to switch a host from one state to another. We correlate power rate
and latency to identify the trade-off (Section 4). We validate our model in CloudSim, allowing it to
simulate a handful of energy-saving strategies previously impossible on a robust and well-validated
platform (Sections 5 and 6). As we shall see, the cost to switch a host between two states plays
an important role in our model, because the transitions imply different power rates and latencies to
return a host to the GO state (a state in which the host might be used for virtual machine provisioning)
(Section 7).

2. BACKGROUND AND STATE OF THE ART

This section presents a background on the terms used in energy-saving solutions and the state-of-
the-art concepts that are relevant for energy-aware studies. In order to drive the reader with the
concepts intrinsic to the work, we would like to distinguish them as follows:

e Power model: is a real-world scenario description using mathematical terms and languages
for this purpose. In the context of energy consumption, power models might be understood as
being an equation or a set of equations that describe the power rate of a system, in which the
effects of its components, as well as the predictions of its behavior, are explained. The energy
consumption is obtained through the integral of the power model equations.

e Energy-saving strategy [12]: represents actions performed by a given entity upon a system with
the sole purpose of reducing the overall energy consumption. Strategies normally benefit from
power models to reach their goals;

e Energy-saving policy [12]: denotes the behavior of a system when an energy-saving strategy
acts on it.

The challenge to be tackled in simulation methods is how to develop a model that most closely
represents a real environment. Hence, models should be implemented/validated in simulators, and
accuracy is achieved when the simulated results are close to real results. Otherwise, the simula-
tion produces no useful or misleading results. The first part of this section covers work that present
power models for cloud computing environments. Then, we summarize studies that implement
power modules in simulators to evaluate strategies with policies involving scheduling, placement,
consolidation, scaling of processors frequencies (P-states), and shutdown hardware components
(G/S-states).

2.1. Energy-aware modeling

Some recent work in energy-efficient cloud computing benefits from virtualization capabilities, such
as load balancing, resource allocation, and virtual machine scheduling, to make the environment
more sustainable [13]. Another study proposes power models to quantify the energy consumption
of different workloads [14]. Beloglazov and Buyya [15] balance the service-level agreement (SLA)
metrics and energy constraints, describing the energy consumption through a linear model.

Bohra and Chaudhary [16] proposed a model that considers the utilization of CPU, RAM,
cache, and disk. The model consists of a four-dimensional linear regression, allowing a compu-
tational resource usage prediction with 82% accuracy. This model can be seen in the following,
where Pcpu, Pcaches PDRAM, and Pg;gx are the explanatory variables that denote computational
resources and CO, C1, C2, C3, C4 are weights that calculated the workflow.

Ptotal = Co + C1Pcpy + C2Pcache + C3Ppram + C4Pdisk ()

This model predicts the power rate of a single core host but cannot determine the individual
consumption of each virtual machine. Thus, it was decomposed into a linear system for this purpose,
as follows:
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N
Ptotal = P(baseline) + Z P(domain(k)) ()
k=0

where Pgomain(k)) corresponds to the power rate implied by an active domain (a domain is one
of the virtual machines that run on the system) and N is the number of active domains including
domain0. Domain0 is the first domain started by the Xen hypervisor at boot time. Based on this
model, Chen et al. [17] proposed a new model that uses only two of the most power-consuming
components: processor and disk. Cy is replaced by P;4;. as follows:

Piotar = Pigre + C1Pcpu + C2Pypp 3)

The new model (equation 3) aims to infer the power rate based on just these two components,
because cache and RAM are not significant enough to disrupt the results. The management of cloud
computing environments is a complex task because of their layered structure and the heterogeneity
of their resources.

Bruneo et al. [18] present several characteristics of these environments that can hinder manage-
ment, such as allocating, migrating, and consolidating resources, in addition to managing when,
how, and where to instantiate new virtual machines. To this end, they present a stochastic model
(stochastic reward nets) that investigates the best strategy to manage cloud environments, focused
on reducing energy consumption.

Salehi et al. [19] present a power module for Haizea [20] serving as a scheduler for cloud comput-
ing platforms such as OpenNebula. Simulation traces from a supercomputing center in San Diego
were used and showed a reduction in energy consumption of 18% within 30 days.

Although current models are quite accurate regarding power rate of individual components, they
do not take into account the trade-off to put a machine in a power state. The model proposed in this
work overcomes this limitation, allowing for a more realistic cost-benefit analysis of energy-saving
strategies based on ACPI states.

2.2. Energy-aware simulation

This section presents implementations of power models in simulators to support energy-saving
strategy evaluations.

CloudSim [21] consists of a general system and extensive simulator, enabling modeling, simu-
lating, and testing infrastructure in the emerging cloud computing applications and services. Some
advantages can be identified, such as requiring less effort for test implementation while allowing
large-scale environment simulation. Also, it allows flexibility in the choice and implementation of
new policies for using resources and services. The power module has been introduced in CloudSim
in a partial implementation of ACPI focused on dynamic voltage and frequency scaling (DVES) [22]
by Guérout et al. [23].

The GreenCloud simulator [24] extends the functionalities of the NS-2 network simulator [25] to
measure the power rate of communication components and packet-level patterns for data centers.
Also, it includes specific functionalities of virtualized data centers, such as virtual machine migra-
tion. All topologies supported by NS-2 can be used, allowing power measurement in several TCP
operations, routing, and protocols.

ICanCloud simulator [26] is focused on Amazon’s cloud environment, allowing flexibility in the
choice of the hypervisor and providing large-scale simulation. The aim of this simulator is to predict
the trade-offs between energy consumption and performance of applications running on a specific
hardware. To this end, the simulated scenarios allow for the use of various data center components,
such as disk, network, memory, and file system environments, including their behavior.

The MDCSim [27] presents a power module based on the workload execution time and CPU
usage rate. MDCSim represents a typical three-tier environment (application, web server, and
database). The simulator allows multiple scenario configurations varying the network latency, clus-
ter size, and workload. Based on this information, the user can scale the cloud environment to suit
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performance metrics, such as response time or number of transactions per minute. The power mod-
ule implemented in MDCSim uses a linear function based on three components: a fixed CPU’s
frequency, the energy consumption of the hosts, and the application throughput.

There have been many cloud computing simulators that support energy-saving strategy evalua-
tions, but none of them implements the complete ACPI specification. Moreover, recent studies lack
a proper understanding of the trade-off between energy consumption and performance when dealing
with the simulation of the ACPI states.

3. ADVANCED CONFIGURATION AND POWER INTERFACE

The ACPI is a specification that provides an open standard for OS power management. It was
designed to allow OSs to configure and control each hardware component, replacing both the pre-
decessors plug and play (PnP) energy management and the advanced power management (APM).
In modern hosts, the firmware-level ACPI is implemented in the ACPI BIOS code, which provides
tables containing information on hardware access methods. OSs use this information for tasks like
assigning interrupts or (de)activating hardware components. As this management is performed by
the OS, there is greater flexibility regarding energy-saving modes for CPU and several other devices
present in the hardware. This section outlines how ACPI is organized and how its components relate
to each other.

3.1. Advanced configuration and power interface architecture

The ACPI architecture can be seen in Figure 1, where the upper part represents user-mode appli-
cations and threads dispatched by OS. The communication between OS and hardware platform
is performed by a device driver. Likewise, power management is carried out by the ACPI driver
through a communication between OS and the hardware platform.

The ACPI driver manages three different components: ACPI Tables, ACPI Registers, and ACPI
BIOS. ACPI Tables contain hardware descriptions managed through ACPI, including machine-
independent byte-code used to perform hardware management operations. ACPI Registers provide
low-level hardware management operations. Finally, during the hardware designing, additional reg-
isters are implemented to be accessed through the byte-code stored in the device-specific part of the
ACPI tables, referred to as ACPI BIOS.

Application
$ ......................... Operating System
Kernel
Device |_ ACPI
Driver 1 Driver
A \
ACPI ACPI ACPI

Tables Registers BIOS

Hardware <—> BIOS

Figure 1. The advanced configuration and power interface architecture [11].
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Figure 2. Aadvanced configuration and power interface states based on [11].

In computers that support ACPI, before the OS is loaded, the ACPI BIOS puts the ACPI Tables in
memory. Thus, when the OS is started, it searches for a small data structure with the valid signature
within the BIOS and uses a pointer to the ACPI Tables to find the definition of the hardware blocks.
The ACPI Registers store changes that are made in the ACPI Tables. By ACPI, the OS has the
ability to put devices in and out of low-power states. Devices that are in use can be turned off.
Similarly, it uses information from applications and user settings to put the system as a whole into a
low-power state.

Although ACPI is a standard used in today’s computers, several legacy architectures remain in use
in data centers. Most of these architectures have their resources managed directly by the firmware.
The main firmware-based approach is the system management mode (SMM). As computer archi-
tectures evolved, conflicts started to be observed between information obtained via SMM and OS
[28]. Because in SMM, the processor’s states are stored in the system management RAM, ACPI can
read these legacy states and translate them to supported ACPI states.

3.2. Advanced configuration and power interface states overview

From a user-visible level, the system can be thought of as being in one of the power states presented
in Figure 2. Moreover, the arrow indicates the depth of energy savings provided by each state.
ACPI specifies different power state levels, which are global states, sleep states, device states, and
processor states. Some of these levels comprehend IT resources, such as computers, hard disks, and
graphic cards, in addition to other peripherals, such as the processor chip.

The global states (Figure 2(a)) denote the entire system and are visible only to the user. Sleep
states (Figure 2(b)) are power states derived from the G1 state and are visible only to the system.
When the user has pressed the power button, for example, the power states of a particular device
(Figure 2(c)) are usually not visible to the user. For instance, devices may be turned off while
the system keeps working. Finally, processor states (Figure 2(d)) are power states within the GO
state (working state). It means the processor states may vary if the computer is processing some-
thing. Besides those mentioned states, DVFS [22] is the name given by the industry to P-states
(Figure 2(e)). Each level denotes one of all available modern CPU’s frequencies, which in conjunc-
tion with the ACPI-based firmware allows on-the-fly adjustment based on the CPU load. Table I
shows the depth levels of the mentioned states, as well as their descriptions. The deeper the state,
the lower the power rate and the higher the latency for returning to the working state.

3.3. Synthesis and discussion

The first most widely used power state in energy-saving strategies is called standby (S1), which
turns off the screen, hard drives, and fans. Because all open programs are kept stored in RAM, the
memory remains active, requiring little power for maintaining user data until some external event
occurs and turn the subsystems back on. The advantage of this state is the short time required for the
computer to be on again. This is fundamental in situations where the computer must be awakened
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to all possible events or do so very quickly. As the context of the OS is stored in a volatile memory
that requires power to keep up the data, there is a disadvantage when instabilities occur in the
power grid.

Another lower-power state adopted in a variety of energy-saving strategies is called hibernate
(S3). In this state, the computer is completely turned off, and the application execution context is
stored as a file into the hard disk. When an external event interrupts hibernation, the computer is
turned on, and the original state is loaded from the hard drive into memory. Computers consume less
power in this state because most of the hardware components are turned off. The drawback is that
the computers in this state incur a higher latency for getting ready because of the cost of moving the
context from disk to memory.

Besides these two power states, another way to save energy is by turning computers off without
worrying about the OS state, application contexts, or user data. This behavior refers to the global
state G2 in ACPI. The difference of this state compared with hibernation is that it does not keep
settings in memory.

These states can be controlled locally by ACPI commands, but in some systems, the ACPI might
also be remotely managed using Wake-on-LAN (WoL) [29]. WoL consists of a standard devel-
oped by Advanced Micro Devices (AMD) for computers connected to a network to manage energy
information. For this, the network card and the motherboard must support WoL..

4. MODELING THE ADVANCED CONFIGURATION AND POWER INTERFACE STATES

While most previous studies are related to at least one ACPI state, none of them explore the cost to
go from one state to another. For example, if a given computer goes into the G2 state; that is, it is
turned off to meet an energy-saving strategy, how long does it take to turn back on? And how much
energy is spent during reboot?

Figure 3 depicts power-agnostic states in a computer and their transitions from a holistic view of
a data center, where the requested computers are busy and unused computers are idle. Under these
constraints, it is possible to infer several polices to decide on conditions to enter or leave ACPI states
to save energy. However, the trade-off concerning energy consumption and performance to change
power states is not considered in current simulators, even though they are fundamental to answer
the aforementioned optimization questions.

From the ACPT’s point of view, when a computer becomes busy, its CPU might be put into one
of the load-driven power states (P-states). On the other hand, the computer might enter into an
S-state when it becomes idle, reducing the energy consumed by hardware components in both states.
This is a very common scenario in laptops and mobile devices to conserve energy. In a more generic
sense, the set of ACPI G-/S-states can be correlated as shown in Figure 4.

It is worth noting that all states at some point converge at the GO state, when the computer is
busy in processing a workload. It occurs because any transition must pass through GO, as per the
ACPI specification. The weights / and p denote, respectively, the latency (seconds) and power rate
(watts) required for a state to be reached. Moreover, the power rate while the computer remains in
each state is represented as a transition to the state itself.

Although transitions between states can be measured at discrete time intervals and are repre-
sented by different reachable states, they do not present a probabilistic behavior. State transitions are
deterministic based on well-defined and controlled events within a limited set of states. This deter-
ministic behavior of ACPI’s state transitions makes them unsuitable to be modeled via stochastic
processes, such as Markov chains. Therefore, according to graph theory, we express this behavior

idle busy

Figure 3. Power-agnostic states of a computer.
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Figure 4. Correlation of advanced configuration and power interface S-/G-states. Edges represent reachabil-
ity between states and weights the latency and power rate to switch between them.

Table II. Assessments of the power states
and their transitions in a computer.

¢ & p© o op

(G0,G2) 59 108 1.1 07
(G2,G0) 81 69 21 04
(G0,S3) 25 51 11 05
(S3,G0) 5 91 06 05
(G0,S4) 101 8 49 02
(S4G0) 79 79 13 09
{G0,GO} oo 190 N/A N/A
{(G2G2}) o 6 NJ/A NJ/A
{383} oo 9 N/A NJ/A
{$484} oo 11 N/A NJ/A

N/A means the computer does not process
any load in sleep mode.

The symbol co means the computer may stay
indefinitely in a state.

Latency and power are represented in sec-
onds and watts, respectively.

as G = (V, A), where V. = {v;, ..., vy} is the vertix-set and A = {e;, ....€m} < {(x,y),{x,x} |
x,y € V} is the edge-set. From the ACPI standpoint, we define V = {G0,G2, 53,54} and 4 =
{(G0,G2), (G2,G0), (GO, S3), (S3,G0), (GO, S4), (S4,G0), {GO,G0}, {G2,G2}, {S3,S3},
{S4, S4}}. Power (p) and latency (/) are the weights of each € € A such that F(e) = ((x,y),
{x,x}).

In order to discuss our claims, we conducted a set of preliminary tests in a physical computer
to identify relationships between state transitions under different load conditions. We assessed the
power rate while the computer was changing from/to GO, G2, S3, and S4 states. In the case of
(G0,G0), in which the computer is busy and the CPUs might enter in a load-driven P-state, we scaled
them up to the maximum frequency for peak energy consumption. The testbed consists of a com-
puter equipped with two 2.27 GHz Intel Xeon E5520 processors (with 8 cores each), 8M of L3 cache
per core, 16 GB of RAM and one NetXtreme I BCM5709 Gigabit Ethernet adapter. The instan-
taneous power rates were measured via a digital power meter connected directly to the computer’s
power supply, and the latency was obtained by inspecting power fluctuation during transitions. The
measurements for each state and its transitions are shown in Table II.

Latencies and power rates may vary during state transitions. Computers with a large amount of
data loaded in memory will probably take more time to be powered off than idle computers. To
reflect this, several measurements of latency and power were performed while the computer was
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10 of 21 M. G. XAVIER ET AL.

under different load conditions in terms of memory and CPU usage, and the measurements were
based on the average with their respective standard deviations o. The total amount of memory
allocated was from 10% to 100%, and the CPU load was increased in a core basis, starting from 1
to 16 using the Linpack benchmark [30]. The highest standard deviation was observed in (GO, S4).
All data were moved from the memory to disk before entering the S4 state. This caused the latency
to vary unpredictably because of the amount of data in memory. We believe this is not an issue
because energy-saving strategies in most cases do not change a computer’s power states until it is
unallocated, so that memory content is cleaned up and space is returned to the OS before any policy
is triggered.

Based on our observations, the energy consumed by a computer during a given state transition €
is calculated by the integral of the power rate using the first instant time #y and the amount of time
the computer is changing to a state #;(¢) as limits:

17 (€)
E. = / p(e)Dt €]
t

0

Given that a computer may have its power state changed many times governed by an energy-
saving strategy, then we need a discrete equation to sum the energy consumed by a set of executed
transitions. Thus, let S : S € E be a subset of transitions executed for a period. The total energy
consumed by transitions in S is given by

Er =) Ec,Ve€S C{(x,y).{x.x}|x,y eV} )

Additionally, we also considered the consumption while the computer is in the GO state, that is,
executing some task. The CPU’s frequencies may vary dynamically to conserve power in the GO
state by entering into a P-state. Thus, we added to our definition the well-known linear power model
proposed by Chen et al. [17], which considers CPU usage («) as input to predict power in P-states:

U 1
EGo.coy = ) - f [ (1 = @) Prregate; + Prreqrun; | Dt 6)

i=1 v

where the CPU power rate while it is idle and full utilization are denoted by Pryeqraie and Prreqrui,
respectively. The integral limits represent the amount of time the computer remained in GO, and
U is the total amount of processing units. Finally, the total energy consumed by transitions in §
including the {G0, GO} transitions is denoted by

E = ET + E(Go,Go} (7

It should be noted that a transition occurs whenever a request arrives and a given computer must
return to GO to serve it. Thus, let W : W C S be a subset of transitions performed over this
condition, w is the user’s workload, and ¢ is its execution time. The equation that represents the
total workload execution time when the requested computer is not in GO and the user must wait for
a transition € before having its workload placed on that computer is as follows:

ET =t(w)+1(e),e e W ®

Finally, the latency-related performance degradation incurred by transitions in W is given by
Ly =) l(e).Vee W )
It is remarkable that there is a trade-off between the total energy consumption and performance.
The impact of this relationship on real-world scenarios now becomes much clearer. An in-depth

study reveals that current energy-saving strategies do not consider this trade-off and that there are
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environments where these transitions would have a huge influence on energy consumption and user’s
Service Level Agreement (SLA), such as those that the turnaround time is critical and should never
be exceeded. We claim that these influences would be better comprehended through simulation-
based evaluations that enable an analysis without any disturbance of the environment.

5. MODEL SIMULATION

Evaluation by simulation allows researchers to evaluate different ACPI states efficiently without
being affected by the environment. To this end, we expanded the current CloudSim’s power engine
to enable more generic energy-saving strategy simulations of cloud computing environments con-
sidering host’s power states and their transitions. CloudSim’s DVFS package provides part of the
ACPI architecture (e.g., P-states), which can be expanded to encompass other power states, such
as S-states and G-states. We did not see opportunities to implement D-states support, as CloudSim
does not implement devices in its physical substrate. Also, the energy consumed by devices, such as
hard drives, CD-ROM, and LCD display, is not a concern in cloud computing environments, and the
energy-saving strategies usually do not consider this layer of physical components. Nevertheless,
equation 5 could be easily adapted for all types of devices.

5.1. Model implementation in CloudSim

The proposed energy model was added to CloudSim’s DVFS package developed by
Guérout et al. [23]. The package already implements and offers part of the ACPI architecture (e.g.,
P-states), which allowed us to expand from a well-validated power engine. The DVFS package pro-
vides a framework to simulate strategies involving only processor features. With new capabilities,
it is possible to simulate a wider set of strategies. Therefore, we now have the ability to simulate
not only processor states but also strategies involving sleep and global states. In fact, we included
subsidies that allow simulation of ACPI G/S-states, as presented in the specification document and
described in Section 3.2.

Actually, CloudSim’s power engine core is composed of the following entities and objects: Power-
DataCenterBroker, PowerDataCenter, PowerHost, PowerModel,VirtualMachine, and Cloudlet. The
class PowerDataCenterBroker models the broker, which is responsible for mediating between users
and service providers. PowerDataCenter models the core infrastructure level services (hardware and
software) offered by resource providers in a cloud computing environment. Moreover, PowerHost
models physical hosts. PowerModel measures power based on the CPU load. Also, VirtualMachine
models a virtual machine instance. Lastly, Cloudlet is the cloud-based application services (work-
load). The relationship between the power engine and the new modeled entities and objects can be
observed in the diagram in Figure 5.

Regarding object classes, the class ACPIStateDatas was modeled to represent the ACPI state data
structure. The power_entering and time_entering attributes refer respectively to the power rate and
latency for entering into a state. The power_leaving and time_leaving attributes refer respectively
to the latency and power rate to leave a state. Finally, the latency and the power rate while the host
remains in a state are stored in the power_remaining and time_remaining attributes.

For simulating the incurred latency to go from one state to another and to change the internal
power state of the hosts, we designed the PowerDatacenterACPI entities. The entity PowerDatacen-
terACPI contains concrete methods conceived to provide ACPI capabilities and abstract methods to
be overridden by a derived class, as is the case of the class PowerDatacenterEnergySavingStrategy,
which in turn implements the desired energy-saving strategy on the PowerHosts.

A straightforward strategy would change the host’s power state when it becomes idle or busy. The
processChangeHostACPIState method is responsible for the state transitions; thereby it is called
whenever the states of hosts change. For instance, if a state of a host changes from GO to G2, then
the method is called, and the latency associated with the state is used as the delay for creation or
destruction of a virtual machine.

User mistakes are controlled by the ACPITranstionException class. State transitions are validated
per host, and users are notified when a state is unreachable. For instance, a host cannot change
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DatacenterBroker

|

PowerDatacenterACPIBroker

+ createVmsinDatacenter(int datacenterld : int) : void

PowerDatacenter
AbstractGovemor
FAY
PerformanceGovermnor PowerDatacenterACPI
+ processOtherEvent(SimEvent ev : int) : void
+ processChangeHostSleepState(SimEvent ev : int, boolean ack : int) : void
+ updateCloudletProcessing( : void
OnDemandGovernor T
UserSpaceGovernor | | PowerDatacenterEnergySavingStrategy
Pe + processVmDestroy(SimEvent ev : int, boolean ack : int) : void
n + processVmCreate(SimEvent ev : int, boolean ack : int) : void
ConservativePerformance + processCloudletSubmit(SimEvent ev : int, boolean ack : int) : void
PowerSaveGovernor | | l/—
PowerHost ACPIStateDatas
- ACPIEnergySavingEnable : boolean - :Jimeg-rﬁ::ie;'g".gi;_fo"ble Hint
PowerModel - ACPIState : String - — L s
- ACPIEnergySavingStrategy : String e B :,ir?l\:e{e_:fai:m'gi.r:oume S
- ACPlindexState  int R
- ACPIConfig : HashMap <String,ACPIStateDatas> g Eoacie Ayl COIENE
- time_staying : int

ACPITransitionException

SimulationXMLParse

+ ACPIConfig_PARSE(Element acpiConfig : int) : HashMap <String,ACPIStateDatas >

Figure 5. Advanced configuration and power interface implementation in CloudSim’s power engine. The
new designed entities are highlighted in grey.

between G2 and S3 or should be in the GO state before entering into a P-state. These requirements
are defined in the ACPI specification and were also exhibited previously in Figure 2.

On this platform, it is possible to implement and simulate a wider variety of strategies involving
not only those at the processor level (e.g. PO and P1 ) but also at host levels, such as G1, G2, and G3.

5.2. Simulation configuration

After implementing the strategy using the designed classes, the user must rely on calibration steps
to make the simulator as close as possible to the real environment—the environment that is being
simulated. In fact, three steps are essentials to do so, which are as follows:

(1) Identify the set of frequencies the hosts’ CPU supports and the power rate (p) for each fre-
quency. The DVFS’s userspace governor might be used to scale manually the frequencies
while power is measured. Then, power rates given by the hosts at 0% and 100% of CPU uti-
lization, called Fregldle and FreqFull for each frequency, should be measured. These results
are inputs for the P-states’ power model, as defined in Section 4, equation 6;

(2) Measure the power rate (p) to switch from one power state to another. For example, if the
strategy considers hosts that enter into the G2 state, then the power rate while the host is
shutting down and starting up should be measured. As discussed in Section 3.3, ACPI states
can be controlled remotely by WoL, so that the power rate can be measured by a power meter
while the transitions are triggered remotely. This calibration is quite important; otherwise,
the simulation might not express reliable and precise results;
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(3) Measure the latency (/) of each transition identified in item 2. For example, if the strategy
considers hosts that enter into the G2 state, the hosts’ boot time must be measured. A simple
way to do it is by analyzing power rate fluctuations during transitions. When the host reaches
the GO state, the power rate tends to stabilize and latency can be measured by analyzing
the time while the power rate varied. Another way is by using ICMP packets to identify the
exact time that the network subsystem starts to reply with ICMP messages. However, this
approach does not apply to all ACPI states, because not all of them turn off the network
subsystem. Finally, the user can measure latency through a handmade script installed into the
system through which the system’s uptime is collected as soon as it becomes available. This
calibration is quite essential, because the state changes take some time to complete, as shown
in Section 4.

The ACPIConfigPARSE method was created in SimulationXMLPARSE class to load calibration
values from a XML file and make the simulator easier of programming. It prevents the user from
designing codes in CloudSim core aimed at not breaking the build.

6. MODEL VALIDATION

Energy-saving strategies employ policies to switch host’s power states in different ways. Most large-
scale data centers are governed by policies that put hosts into the most common ACPI states: S3, S4,
and G2. In this section, the calibration phase necessary to simulate these states is presented. Next,
the accuracy of the model incorporated to CloudSim is validated on a single host.

6.1. Setup configuration

All experiments were conducted on the machines presented in Table III. They are equipped with
heterogeneous processor architectures and different resource capacities. All machines are inter-
connected by a Gigabit Ethernet switch. The ACPI and WoL capabilities were enabled in the
machines’ BIOS. WoL is the technique necessary to remotely manage the machine’s power states
during the experiments.

We deployed the OpenStack [31] (Havana release) platform on the 10 machines. OpenStack is an
open-source cloud platform that has been largely adopted by the industry and has been continuously
developed by a strong user community [32]. The simulated resources in CloudSim were analogous
to the configurations described in Table III.

6.2. Simulation calibration

Among all of the hosts shown in Table III, there are five distinct architectures that vary in power
rates, as can be seen in Figure 6. The trade-off formerly noted during the modeling steps now
becomes more noticeable. The deeper the power state, the higher the latency to return from the state.
In contrast, the deeper the power state, the lower the energy consumed in the state.

Table III. Configuration of the machines in our Cloud testbed.

Host Processor Cores Clock (Ghz) Cache Mb) RAM (Gb)
1 Intel dual core E5200 2 2.5 2 4
2 Intel dual core E5200 2 2.5 2 4
3 Intel core 2 duo E8400 2 3.1 6 2
4 Intel core 2 duo E8400 2 3.1 6 2
5 Intel Xeon E5520 16 2.7 8 16
6 Intel core i7 3770 8 34 8 16
7 Intel core 15 2400 4 3.1 6 8
8 Intel core i5 2400 4 3.1 6 8
9 Intel core 15 2400 4 3.1 6 8
10 Intel core i5 2400 4 3.1 6 8
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2017; 29: 3839
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Figure 6. Energy consumption during advanced configuration and power interface state transitions on
different architectures.

Table IV. Measurements of the energy consumption
in each state for the five distinct hosts.

Power (W)

(G0,G0) (S4,54)  (S3,S3) (G2,G2)

Host Idle Full )4 )4 )4

1 32 70 12 15 5
3 36 82 8 11 5
5 110 190 24 12 5,5
6 32 95 9 13 6
7 31 92 10 13 6

Table V. Measurements of the energy consumption and latencies during state
transitions for the five distinct hosts

Latency (s) x power (W)

(G2,G0) (GO,G2) (S3,G0) (GO,S3)  (GO,S4)  (S4,G0)

Host |/ P l P / )4 [ )4 [ 14 l D
1 44 40 4 30 8 36 327 7 36 28 42
3 48 46 3 31 9 35 2 28 9 27 21 50
5 81 69 59 108 5 91 25 51 101 8 79 179
6 56 43 5 31 8 35 4 35 9 37 20 55
7 65 55 4 20 7 40 3 30 6 38 42 63

Based on this analysis, we must configure the simulated testbed in CloudSim to obtain more
reliable, realistic, and accurate results compared with the real testbed. Therefore, in order to calibrate
the simulator with the power rates p (in watts) and latency [ (in seconds) values, we measured the
ACEPI states and their transitions in each architecture. The assessments collected from the hosts in
each state are shown in Table IV, and the assessments from the transitions can be seen in Table V.

In addition to the energy consumption, Table IV also shows the power rate in GO when the
hosts’ CPU becomes idle or goes up to a full load. The consumption while idle is essential to
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reproduce/simulate strategies in which the host is unallocated and does not enter to a deeper power
state immediately. On the other hand, the consumption while in the full load enables simulation of
high-load host allocations. Decisions about energy-saving policies that lead to scenarios like these
are influenced essentially by the trade-off we have presented. Furthermore, the latency values were
suppressed just because a host can remain indefinitely in a state.

6.3. Aadvanced configuration and power interface validation on one host

To analyze CloudSim’s accuracy in a real environment, we simulated a trace on a single host (host
6 in Tables V and IV) to validate each state individually. The trace driven by a strategy that puts idle
hosts into the three states (S3, S4, and G2) is presented in Figure 7.

In the beginning, the host was idle and remained in that G/S-state until a request for provisioning
a virtual machine was received. Slice (a) means there was a request, and the host must be ready
to receive a virtual machine. In this case, a transition to the GO state has occurred, and the host
has begun leaving from its current state. While in GO, the host has started the virtual machine
and its processors are no longer idle (CPUs are at the maximum power peak because DVFS is
in performance governor mode). This step refers to the slice (b) in the figures. Finally, slice (c)
means the virtual machine was unallocated, and the host became idle again; thereby, according to
the energy-saving strategy policy, the host had its state switched back to either G-state or S-state.
Thus, it has begun transitioning into a state (a state in which the host are consuming less power) and
remained there until the next request.

All hosts maintained the same behavior regardless of the power state governed by the strategy,
because the events had the same timeslice proportion among them. However, it is worth noting that
there were substantial differences regarding energy consumption and latency among the states, as
observed in Table VI.

Notable differences in run-time are due to the latency L7 associated with each state transition, and
the differences in overall energy consumption E are influenced by the energy consumed by states
throughout the trace, as noted by E7. This simulation has shown an accuracy of 83% compared
with the real results.
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Figure 7. Comparison of the real and simulated energy consumption of all the three advanced configuration

and power interface states: S3 (standby), S4 (hibernate), G2 (soft off). Only the first 400 s of the total
execution time are shown; however, the same behavior is repeated seven times.

Table VI. Simulation results on one host in all of the three advanced
configuration and power interface states.

v Er (Wh)  E(Go,goy (Wh) E L7 (s) Run-time (s)

S3 21 26 47 84 1406
S4 10 26 36 207 1529
G2 5 26 31 427 1751
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7. MODEL EVALUATION

Strategies that put hosts into different power states were necessary to validate the new CloudSim
capabilities for more realistic scenarios, and then we implemented and evaluated the straightforward
strategy proposed by Alvarruiz et al. [9] that we referred to as Green energy-saving strategy. In
addition, we also implemented and evaluated a timeout-based strategy widely employed in various
works [33-35]. Both strategies reproduce different cloud computing data center behaviors regarding
energy-saving policies.

A set of state transitions (denoted by ) was executed for each test case in real and simulated
environments, and the simulator’s accuracy was quantified by comparing the results. To reproduce
the traces in the real OpenStack environment, we developed a set of scripts that implements the
strategies by orchestrating hosts’ power states according to transitions in 5. Because we are only
interested in the simulation of the G and S states, we assumed that the hosts CPUs operate at their
highest frequency while running user’s workloads, ensuring that the hosts are at power consumption
peak. The Linux stress tool [36] was used to impose load on and stress the hosts.

Prior to experiments, some constraints have been defined before running the traces: (1) the virtual
machines allocate the total amount of the hosts’ resources while being careful not to exceed the
maximum capacity; (2) a number of virtual machine requests are carried out throughout the traces.
After the allocation time has expired, the virtual machine is unallocated and the host is released; (3)
the traces start with all hosts in a power state different of GO; and lastly, (4) when the host becomes
busy (provisioned virtual machine), the CPU-bound workload boosts the CPUs’ frequency up to the
maximum supported.

7.1. Green energy-saving strategy

This strategy is proposed by Alvarruiz et al. [9] and considers a cloud computing data center com-
posed of hosts that become idle or busy under different periods of time. Under these conditions, the
strategy takes into account the following policies that rely on two ACPI states (V = {G0, G2}):

(1) When a given host becomes idle (no provisioned virtual machine), then it enters into G2 state;
(2) The host remains in G2 until it is requested for a new virtual machine provisioning;
(3) The host returns immediately to the GO state if it is requested.

Figure 8 shows the policies applied on one host and illustrates iteration among the aforementioned
states.

The definition denoted by EGo,Goy quantifies the total energy when the host is in the GO state
because the CPUs’ frequencies are governed by DVFS. On the other hand, the host enters into the
G2 state when it becomes idle and E7 is calculated. Finally, the testbed in this experiment consists
of a cluster of four identical hosts (host 5 in Table III). We set the Kernel-based Virtual Machine
(KVM) [37] as the hypervisor under the OpenStack platform.

The trace carried out to analyze CloudSim’s accuracy is illustrated in Figure 9. We varied the
number of transitions per minute during the 19 752 s to analyze the model’s accuracy with several
(G0,G2) and (G2,GO0) transitions. Only the first 4000 s were plotted, but the interval lying between
the second 0 and 2000 was performed 10 times repeatedly. This is why the interval from A to H was
sliced only in this time interval.

Slice (A) represents (G2,GO0) transitions triggered in all hosts. A set of virtual machine requests
was received from the user that led all hosts to become ready to receive the workloads. All hosts
were busy in slice (B). They were using the totality of resources, and their processors’ units were

idle

requested

Figure 8. Green energy-saving strategy ‘s policies employed on one host.
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Figure 9. Comparison of energy consumption in real and simulated experiments for the Green energy-saving
strategy.

Table VII. Green energy-saving strategy’s simulation
results.

Er E(Go,Go} E L7y  Run-time

310 Wh 1221 Wh 1531 Wh 5127s 19740

working at the highest power rate. The virtual machines were unallocated in slice (C), and the hosts
went into G2 state to save energy. In slice (D), OpenStack started receiving virtual machine requests
in 60-second intervals that made the hosts are gradually switched from the G2 to GO state. The
hosts were busy processing the workload in slice (E). They started entering to G2 state as the virtual
machine allocation time begins to expire. Finally, the hosts become idle in slice (G).

The Green energy-saving strategy’s simulation results had an accuracy of 95%. This shows that
the simulator can correlate latency with power rate in the states and during their transitions. Finally,
Table VII outlines the simulation results.

7.2. Timeout strategy

The Green strategy relies only on two power states (V' = {GO0,G2}). This new experiment
expands our validations to a scenario that covers other states presented in this work. For this
purpose, we evaluated a well-known timeout-based strategy [33-35] that uses four power states
(V ={G0, S3,54,G2}):

(1) When the host in the GO state becomes idle, it enters into the S3 state;
(2) The host returns immediately to the GO state if it is requested; and
(3) The host enters successively to a lower-power state if the timeout expires.

Figure 10 shows the policies applied on one host and illustrates iteration among the aforemen-
tioned states.

As we saw, the deeper the power state, the longer it takes to return from the state. On the other
hand, the deeper the state, the lower the energy consumption. Thus, state transitions should be
performed conservatively because it is less costly, in terms of latency, to ‘wake up’ a host from S3
than a host from G2. Hence, the strategy imposes a priority order to aid in deciding which host

[ < timeout [ < timeout
[ > timeout [ > timeout idle

busy

Figure 10. Timeout strategy’s policies employed on one host.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2017; 29: 3839
DOI: 10.1002/cpe

85U8017 SUOWILIOD BAIIRID 3ol (dde a3 Aq peusenob afe sajolie VO ‘8sn Jo S|y 10} ARIqIT8UIIUO 8|1 UO (SUOTPUOD-PLR-SLRYLI0O" A3 | I AfeIq 1 U1|UO//SANL) SUORIPUOD Pue Swie 18U} 89S *[2202/0T/82] Uo AriqiTauliuo A8 (1M ‘S3d VD Ad 6£8€2d0/200T 0T/I0P/Wo0* A3 | 1M ARead 1 puljuo//:Sdiy wioly papeojumod v '2TOZ ‘YE902ZEST



18 of 21 M. G. XAVIER ET AL.

should be returned to GO when a virtual machine request arrives. The hosts are ordered by priorities
based on their current power state. Deeper states have lower priority over shallow states. Based on
this, when a new request arrives, hosts in S3 will be chosen for allocation followed by those in S4
and finally those in G2.

The simulation was carried out based on the same trace adopted in [38]. We deployed the
OpenStack on the 10 hosts described in Table III. We also changed the underlying virtualization
technology to experiment our model on an alternative virtualization architecture. Thus, we installed
the Linux Container (LXC) container-based system [39] as a representative operating system-level
virtualization system. The timeout value was set to 300 s based on the state-of-the-art works [40—42].
Finally, when idle hosts reach the timeout value, they are placed gradually in lower-power states as
depicted in Figure 10. Figure 11 shows a comparison of the real versus the simulated experiments.

The simulation achieved an accuracy of 94%. We believe part of this difference is due to
granularity in watts measured by the power meter when compared with power values configured
in CloudSim. This difference becomes evident when we look at the variance spikes in the real
experiment and a linear behavior when these spikes are represented in the simulated experiment.

Although Figure 11 shows the total energy consumed for each time interval, the state each host is
in during each of these time intervals cannot be seen. Figure 12 shows the percentage of hosts in each
state. This enables monitoring of the host state distributions throughout the simulated experiment
and estimating the accumulated energy at every moment. Finally, we outlined the simulation results
for 150, 300 and 600-s timeout values in Table VIII.

Real Experiment

§ 900
= 600 -
= 300 -
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Energy Consumpi
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Figure 11. Comparison of energy consumption in real and simulated experiments for the timeout energy-
saving strategy.
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Figure 12. Percentage of hosts in each power state during the simulation.
Table VIII. Timeout strategy’s simulation results.
Timeout (s) E7 (Wh)  E(Go,goy (Wh) E(Wh) Lt (s) Run-time
150 118 418 536 973 5764
300 130 418 548 852 5764
600 182 418 580 609 5764
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Differences in timeout values reflect strongly in energy consumption and latency. It occurs
because the number of hosts reaching lower-power states varies considerably. It is easy to see that
high-throughput clusters would suffer more impact on latency for lower timeout values. In coun-
terpart, the energy consumption is reduced. This is a typical case study in which the strategy could
be refined to improve scheduling performance. Based on the simulation results, we could suggest a
timeout adaptive solution to balance the number of hosts in lower-power states based on the requests
arrival time interval.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed an improved energy model for the ACPI power states and showed that not
only these states offer different energy-saving levels but also that state transitions consume energy
and impact on performance.

Evaluation of energy-saving strategies through simulation is of paramount importance before
implementing them in a production data center. The definitions we have presented provide funda-
mental information to quantify the trade-off between the energy consumption and performance and
assist in the analysis/decision on which strategy fits better in the environment based on the number
of available hosts and the cloud provider’s throughput.

As we have presented, the latency to create and destroy virtual machines might eventually impact
the end-user’s satisfaction and violate service-level agreements. In such cases, the S3 (standby) state
would be the most suitable because it incurs a lower latency to return the hosts to the GO state.
On the other hand, if impact on energy consumption is a concern and cannot be disregarded, then
an energy-saving strategy that uses the G2 (soft off) state should be taken into account. Yet, if the
latency and energy consumption reflect end-user dissatisfaction and also concern in a green cloud
computing environment, a strategy that uses the S4 (hibernate) state would be a good choice.

Our energy model was implemented in CloudSim and validated real-based and simulation-based.
We also evaluate the implementation of two energy-saving strategies in CloudSim. In our prelimi-
nary results, we obtained a very high accuracy, with a standard deviation of at most 6%, compared
with the same experiments running in a real testbed.

Therefore, we strongly believe that the inclusion of ACPI support in CloudSim with the imple-
mentation of our more precise energy model expands its applicability even more. This leads also
to a better understanding of the cost-benefit trade-offs involved in changing states to save energy,
thereby allowing a more accurate simulation and analysis of a wide range of energy-saving strate-
gies in cloud environments, combining the consolidation of virtual machines, DVFS, and other less
explored ACPI states. The CloudSim ACPI package is available in [43].
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