
MPI-blastn and NCBI-TaxCollector: Improving

metagenomic analysis with high performance classi¯cation

and wide taxonomic attachment

R. Dias*,§, M. G. Xavier†, F. D. Rossi†, M. V. Neves†, T. A. P. Lange†,

A. Giongo‡, C. A. F. De Rose† and E. W. Triplett*

*Department of Microbiology and Cell Science

University of Florida, Florida, United States
†Faculty of Informatics

Pontiphical Catholic University of Rio Grande do Sul

Porto Alegre/RS – Brazil
‡Faculty of Biosciences

Pontiphical Catholic University of Rio Grande do Sul

Porto Alegre/RS – Brazil
§raquel.dias@ufl.edu

Received 15 October 2013
Revised 11 March 2014

Accepted 12 March 2014

Published 24 June 2014

Metagenomic sequencing technologies are advancing rapidly and the size of output data from
high-throughput genetic sequencing has increased substantially over the years. This brings us to

a scenario where advanced computational optimizations are requested to perform ametagenomic

analysis. In this paper, we describe a new parallel implementation of nucleotide BLAST (MPI-
blastn) and a new tool for taxonomic attachment of Basic Local Alignment Search Tool

(BLAST) results that supports the NCBI taxonomy (NCBI-TaxCollector). MPI-blastn obtained

a high performance when compared to the mpiBLAST and ScalaBLAST. In our best case, MPI-

blastn was able to run 408 times faster in 384 cores. Our evaluations demonstrated that NCBI-
TaxCollector is able to perform taxonomic attachments 125 times faster and needs 120 times less

RAM than the previous TaxCollector. Through our optimizations, a multiple sequence search

that currently takes 37 hours can be performed in less than 6min and a post processing with

NCBI taxonomic data attachment, which takes 48 hours, now is able to run in 23min.

Keywords: BLAST; TaxCollector; NCBI; sequence alignment; metagenomics; taxonomy

assignment; taxonomic attachment.

1. Background

Our planet is populated by a large number of microbial cells (about 1030),1 most of

them still remain uncultivable.2 New sequencing technologies have allowed the

studies on diversity and abundance of environmental microbiota. The data obtained

Journal of Bioinformatics and Computational Biology
Vol. 12, No. 3 (2014) 1450013 (17 pages)

#.c Imperial College Press

DOI: 10.1142/S0219720014500139

1450013-1

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0219720014500139


from metagenomic studies provides information about the structure, organization,

evolution, and origin of the organisms.3

In the last few years, sequencing technologies have rapidly advanced and the size

of output data from high-throughput genetic sequencing has increased substantially.

Next-generation sequencing has improved sequencing speed from 10Mb per day to

near 120Gb per day.4,5 A metagenomic analysis consists of a multi-step procedure

that ¯lters the reads by quality, searches the ¯ltered sequences within a genetic

database with the goal of ¯nding sequence matches, assigns a taxonomic classi¯ca-

tion on the sequence matches, performs statistical analysis on classi¯ed and un-

classi¯ed sequences, summarizing and visualizing the results. Some of these steps

must be performed by using large database resources, such as National Center for

Biotechnology Information advances (NCBI),6 Greengenes,7 and RDP8 databases, as

well as a large number of input sequences. Therefore, stand-alone and online tools

were developed and used to perform faster and more automated analysis. Some

examples of these tools are pipelines for analysis of next generation amplicons

(PANGEA),9 Mothur,10 and Ribosomal Database Project (RDP) classi¯er.11 These

tools, known as metagenomic pipelines, optimize the runtime of high-throughput

sequencing analysis by trying to minimize the human intervention on this process.

Despite computational tools having improved the metagenomic studies, the

amount of sequences generated by next generation technologies are increasing at an

even higher speed. Studies by Kahn et al. (2010) show that a doubling of sequencing

output every 9 months has surpassed the performance improvements of disk storage

and high-performance computation ¯elds.4 Therefore, we are closer to a scenario where

advanced computational optimizations will be strictly necessary to conclude an ordi-

nary metagenomic analysis. Considering this, our optimizations and performance

evaluations are focused in some of the most complex and time-consuming steps of a

metagenomic analysis: Taxonomic classi¯cation assignment and post processing of

classi¯cation results. In the next section, we review the current methods used in tax-

onomic classi¯cation and the main strategies applied for performance improvement.

1.1. Taxonomic classi¯cation assignment with BLAST

The ¯rst step in a metagenomic analysis involves the comparison of several sequences

to known sequence databases, using tools such as Basic Local Alignment Search Tool

(BLAST).12 This step, known as taxonomic classi¯cation or annotation, is a com-

putationally heavy task and has been the target of several computational optimi-

zation studies.13–15

BLAST is still one of the most used tools for taxonomic classi¯cation in the ¯rst

(and critical) classi¯cation steps of metagenomic analyses, proving to be successful in

many studies.16,17 It is possible to run an online BLAST sequence search from the

NCBI Web-server.6 However, the NCBI BLAST Web-server does not support the

submission of multiple input sequences simultaneously, neither the use of external

databases such as Greengenes,7 RDP18 or local resources. To overcome the online

R. Dias et al.

1450013-2

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



limitations of BLAST its stand-alone version is used, enabling local analyses of new

metagenomic datasets and comparisons of datasets from di®erent environments. In

addition, many optimizations of high performance computing were implemented for

improving BLAST algorithm. The BLASTþ version of BLAST implements lower

complexity optimizations and multi-threading support.19 However, BLASTþ is still

unable to run in more than one node of a computer cluster at the same time, limiting

scalability of this tool in such environments.

To handle BLAST limitations, distributed versions of BLAST were developed,

such as mpiBLAST20 and ScalaBLAST.21 mpiBLAST improved the performance of

the computationally intensive sequence alignment process as more nodes can be used.

The parallelization strategy of mpiBLAST is based on the partitioning of the input

database into many fragments, as many as the number of nodes to be executed.20 In

the same way, ScalaBLAST partitions the input queries into fragments. However,

ScalaBLAST keeps separate copies of the database and query list in RAM on each

core and the rest of the RAM is reserved for BLASTs compute kernel, which can be

memory consuming. In both cases, these input query fragments are copied to each

node and a local search is performed.21 However, ScalaBLAST keeps separate copies

of the database and query list in RAM on each core and the rest of the RAM is used

for BLASTs compute kernel. After the parallel BLAST search steps, the results are

merged among processes. The input partitioning and the following steps may gen-

erate working overhead, when dealing with large databases, such as the NCBIs

nt/nr, or large queries such as the next-generation sequencing outputs. Furthermore,

a parallel search that partitions the database needs to combine sequence segments

found from individual database partitions for each query sequence, requiring extra

post processing if compared to sequential BLAST. Recently, GNU parallel has been

used as a simple solution for running multiple BLAST searches in one or more

nodes.22 GNU parallel is a shell tool that can split a given input and divide it into

multiple commands. For running BLAST among several nodes, GNU parallel uses

multiple Secure Shell (SSH) connections. However, cryptographic methods are

central to SSH and these methods may a®ect performance due to encryption over-

head.23 In the present work, we implement a novel strategy of parallelization for

BLAST, focusing on nucleotide alignment function (MPI-blastn). The present tool is

available at https://github.com/Bioinfo-Tools/MPI-blastn.

1.2. Post processing of BLAST results with TaxCollector

The typical BLAST result in a metagenomic analysis consists of a text ¯le in a

tabular format with information on subject and query alignment, such as name of the

subject and query sequence, similarity score, e-value, bitscore, and sequence cover-

age. Usually, the query name provides no information on its taxonomic classi¯cation

levels. For obtaining this information, the user must search the query identi¯cation

number (TAXID or GI number) in taxonomy databases, such as NCBI,6 Green-

genes7 or RDP taxonomy.18

MPI-blastn and NCBI-TaxCollector

1450013-3

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Considering that a metagenomic analysis may have hundreds of thousands of

input sequences, the manual taxonomic ranks assignment becomes impracticable.

TaxCollector tool was developed by Giongo et al.24 in order to handle this problem,

attaching taxonomic information on 16S rRNA sequences from RDP and Greengenes

databases. TaxCollector approach involves the loading of taxonomy databases from

NCBI (names.dmp and nodes.dmp ¯les from taxdump.tar.gz databases25) and their

conversion to dictionary structures in Python language. All the taxonomic databases

are loaded into computer RAM (about 4GB). However, loading large databases into

RAM does not seem to be the most promising approach. Another limitation is that

TaxCollector scripts support only RDP and Greengenes databases, not handling with

the largest genetic database available, NCBI nt/nr databases.6 Including the NCBI

database implies the attachment of a new database ¯le in the algorithm. This

new database, known as GenInfo Identi¯er (GI) versus taxon ID (gi taxid nucl.dmp)

is available at the NCBI Taxonomy database and it has GI identi¯cation numbers,

from GenBank,26 converted to their corresponding TAXID numbers, supported by

NCBIs taxonomic trees (nodes.dmp) and names (names.dmp) database ¯les.25 Con-

sidering TaxCollector limitations, we propose a new algorithm of lower complexity

and higher performance for taxonomic levels attachment of the NCBI database. The

new algorithm, NCBI-TaxCollector, is described and compared to TaxCollector. The

present tool is available at https://github.com/Bioinfo-Tools/NCBI-taxcollector.

2. Implementation

In this section, we describe the implementation of the tools proposed in the present

work. Figure 1 demonstrates a summary of the main steps of our algorithms (dashed

rectangles), as well as their placements in a metagenomic analysis context. As

mentioned in a previous section, our optimizations are applied in some of the most

complex and time consuming steps in the post processing of metagenomic data:

Species classi¯cation and post-processing with taxonomic attachment (relative time

represented in the runtime axis in the bottom of Fig. 1). More details on the algo-

rithms implemented for such tasks are discussed in the next sections.

2.1. MPI-blastn: Parallel nucleotide search for computing clusters

MPI-blastn is a new parallel implementation based on a recent version of BLASTþ
(2.2.25). Unlike BLAST+, which can only take advantage of individual shared-

memory multicore machines, our implementation exploits the computing power of

clusters of multicore machines, to allow increased performance and scalability. Our

approach consists of two steps. In the ¯rst step, the algorithm splits the input queries

evenly among the number of available computer nodes and places these sub-queries

on shared storage together with the NCBI database. In the second step, each node

loads its sub-query and a copy of the full database to local memory, and the parallel

execution is started. If multiple cores are available in a node, all take part in the

calculations. Message Passing Interface (MPI) is used to exchange messages among

R. Dias et al.

1450013-4

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



the computing nodes of the cluster through a master-slave programing strategy, and

threads are used inside the slaves to explore the multiple cores of a node. The master

process is responsible for step 1 and all other processes are slaves, executing step 2.

When the master process starts, each worker waits until the master splits all the

input queries. After splitting the queries, the master process reports to all workers a

start signal, indicating that the split stage was ¯nished. After that, workers load the

queries and the database from shared storage and run the computation of all their

respective queries (Fig. 2). When the computation is done, all workers report to the

master process that they are done. After performing the sequence search, the output

of MPI-blastn is a set of result ¯les from every worker. Lastly, the master process

merges all search results obtained from workers, generating a single output ¯le.

Fig. 1. Overall work°ow of proposed optimizations for metagenomic analysis.

Fig. 2. Input data of MPI-blastn algorithm in detail.

MPI-blastn and NCBI-TaxCollector

1450013-5

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Our parallel implementation shows three main advantages if compared to a

common parallel script: In our master-slave programing strategy (1) the workload is

split and distributed evenly among all processors; (2) the master processors monitors

all slave processors, certifying that all slaves accomplish their tasks correctly; and (3)

once all tasks are performed, the output data is merged automatically. In our im-

plementation, MPI messages do not carry the actual input data and are used just to

make sure the synchronism between workers and the master node. This decision was

made to simplify the implementation reducing the message size (depending on the

problem size, queries may have up to 8MB and the database used is about 4GB big).

This has a minimal impact in the performance, because the time needed to split and

merge the queries is very small compared with the total time of the computations. In

the worst case (small workloads), this I/O represents only 3% of the total execution

time, as demonstrated in Refs. 21 and 27.

2.2. NCBI-TaxCollector

Asmentioned above, the programming approach of TaxCollector developed byGiongo

et al.24 involves the loading of NCBI Taxonomy databases and their conversion to

dictionary structures in Python programming language. Whole taxonomic databases

are loaded into RAM (about 4GB of size), GI identi¯cations from BLAST results are

translated to NCBI taxon IDs, and taxonomic information is attached to them. How-

ever, considering that these databases are updated often, increasing their sizes, loading

databases into RAM does not seem to be the most suitable approach in this case.

Our NCBI-TaxCollector tool has a new approach to load the GI number from

BLAST results and to search their information on taxonomic rank levels from NCBI

databases. This tool is designed to maximize performance and allows many searches

per second. NCBI-TaxCollector runs as a command line tool and, for this reason, it is

especially suitable for use in scripts.

This tool takes as input a GI value from BLAST search results and the NCBI

database ¯les (namely gi taxid nucl.dmp, nodes.dmp and names.dmp). The ¯le

gi taxid nucl.dmp maps the GI numbers to their corresponding NCBI taxon IDs.

The ¯le nodes.dmp has a child–parent structure, which is responsible for modeling

the di®erent taxonomic levels. The ¯le names.dmp contains a list with one or more

taxonomic names for each NCBI taxon ID. Thus, the algorithm consists of four steps:

(1) translating the GI value to its corresponding NCBI taxon ID; (2) traversing the

nodes list looking for the highest parent node; (3) ¯nding all available taxonomic

names for each taxonomic level; and then, (4) returning this information in a human-

readable format.

First, the tool converts the NCBI databases, originally in ASCII format, to a binary

format optimized for fast searches. This optimization consists of generating a sorted

list of NCBI taxon ID values, whereas each NCBI taxon ID is stored in one line index

that is equal to the number of its corresponding GI value. For example, if we want to

know what is the NCBI taxon ID number n that refers to GI i, the program goes to the

R. Dias et al.

1450013-6

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



line i. This ¯le structure allows the NCBI-TaxCollector to ¯nd an NCBI taxon ID

through one unique search step, seeking directly the line index that stores the taxo-

nomic information. Combined to this optimized structure, the convertion to binary

format not only speeds up the search, but also reduces the NCBI ¯le size. For example,

we observed up to 54% reduction on the total size of the bases in our experiments.

Once the optimized database is generated, the translation of a GI value to a NCBI

ID is performed with a very small computational complexity, known as O(1) in

algorithmic notation,28 i.e. it is independent of the number of NCBI entries. Since the

size of these databases is constantly increasing, this is a key feature for taxonomic

tools. On the other hand, the databases for mapping taxonomic names (nodes.dmp

and names.dmp) have a hierarchical structure, which cannot be optimized using the

same approach as the gi taxid nucl.dmp database. Since each node in this hierar-

chical structure may refer to other nodes and di®erent taxonomic names, we cannot

optimize the binary ¯le structure so each taxonomical node has an unique reference

value. In order to minimize this problem, the search for taxonomic names is per-

formed using a binary search approach that has a higher computational complexity

of O(log n), where n is the number of entries in the database. The ¯nal output of

NCBI-TaxCollector is the BLAST result initially provided by the user with all GI

values replaced by their corresponding taxonomical classi¯cation in six levels, from

domain to species, in a human-readable format. Table 1 describes an example of

input and output of NCBI-TaxCollector.

Table 1. Examples of input and output for NCBI-TaxCollector.

Input (Blast/MPI-Blastn results)

Query1 gijj309261160jgbjHQ246245:1j
81.87 1186 148 64 226 1375 128 1282 0.0 937
Query2 gijj85001879jgbjDQ337061:1j
79.47 1554 166 122 9 1464 1 1499 0.0 961

Query3 gijj319992851jembjFR729081:1j
82.33 928 124 40 446 1352 115 1023 0.0 769
Query4 gijj309261157jgbjHQ246242:1j
81.97 976 112 61 428 1371 401 1344 0.0 769

Output (Blast results modi¯ed by NCBI-TaxCollector)

Query1 [0]Bacteria; [1]Proteobacteria; [2]Alphaproteobacteria; [3]Rhodospirillales; [4]Acetobacteraceae;

[5]Roseomonas; [6]Roseomonas sp.;
81.87 1186 148 64 226 1375 128 1282 0.0 937

Query2 [0]Bacteria; [5]uncultured bacterium; [6]uncultured bacterium;

79.47 1554 166 122 9 1464 1 1499 0.0 961
Query3 [0]Bacteria; [1]Proteobacteria; [2]Deltaproteobacteria; [5]uncultured delta proteobacterium;

[6]uncultured delta proteobacterium;

82.33 928 124 40 446 1352 1151023 0.0 769

Query4 [0]Bacteria; [1]Proteobacteria; [2]Gammaproteobacteria; [3]Pseudomonadales; [4]Pseudomona-
daceae; [5]Pseudomonas; [6]Pseudomonas sp.;

81.97 976 112 61 428 1371 401 1344 0.0 769

MPI-blastn and NCBI-TaxCollector

1450013-7

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



3. Results and Discussion

In this section, we present experiments that evaluate our algorithms performance. In

the case of MPI-blastn, the performance results were compared with mpiBLAST20

and ScalaBLAST,21 which represent state-of-the-art parallel BLAST implementa-

tions for clusters. For NCBI-TaxCollector, the results were compared with the

original TaxCollector24 that is, to the best of our knowledge, the only existing tool for

taxonomic attachment in BLAST results. We evaluated the algorithms in terms of

execution time and speedup. Speedup is a metric widely used in high-performance

computing to evaluate how many times faster a parallel code is when compared to a

corresponding sequential one.

The experiments were performed on a High Performance Computing (HPC) cluster

composed of 16 Dell PowerEdge M610 nodes. Each node has 2 Intel(R) Xeon(R) CPU

E5645 2.40GHz processors, each with 6 cores, capable of running 12 threads simul-

taneously. These processors support Hyper-Threading (HT) technology, which give us

a total of 24 cores per node. The nodes are interconnected by an In¯niband network

and message exchanging is carried out by Open MPI library,29 running on a standard

Ubuntu Linux version 10.04. Each node of the cluster has a 24 GB RAM memory, a

single local disk and shared storage. The cluster uses a network ¯le system (NFS) to

store user data. For mpiBLAST execution, the sequence database was split into as

many partitions as the number of worker processes.

3.1. MPI-blastn performance

In order to evaluate MPI-blastn performance under di®erent workloads, we used two

sizes of input data: 30,000 and 100,000 lines. These input sequences were randomly

collected from NCBI nt database.6 The parallel BLAST search tests were performed

over the original nt database. Three trials were run for each case, showing a standard

deviation of less than 0.001 in each.

Our ¯rst experiment was a direct comparison of MPI-blastn and mpiBLAST in

our test cluster (Fig. 3) against the sequential time of BLASTþ running in one core.

Using the input of 30,000 lines (average sequence lengh of 1074.08 nucleotides,

standard deviation of 944.16 nucleotides), we compared the two implementations

scalability up to 240 cores (in our case 10 nodes). The output ¯les were generated in

tabular format for all experiments. Although our test cluster has 16 nodes (384

cores), we were unable to execute mpiBLAST beyond 244 cores (the program indi-

cates in an error message that is not able to go beyond this number of cores).

Our ¯rst measurements show that our implementation scales in general better

than mpiBLAST even for this small workload. Soon after, 24 cores mpiBLAST

speedup is already stagnating and begins to decline after 96 cores. MPI-blast, on the

other hand, keeps scaling linearly compared to the theoretical speedup up to 240

cores for this workload. We believe this huge di®erence in performance is caused

mainly by the BLAST version used in the implementation and in the more optimized

parallelization strategy. MPI-blastn is based on a recent version of BLAST (2.2.25)

R. Dias et al.

1450013-8

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



called BLASTþ, since mpiBLAST is based on a previous version of BLAST (2.0.9).

BLASTþ shows a more e±cient algorithm with substantial improvements than the

previous versions.16 Furthermore, choosing a simpler approach to partition the

problem, subdividing only the queries and giving full copies of the NCBI database to

the slave processes, our implementation was able to decrease the execution time of

BLASTþ signi¯cantly, from 7.5 hours to less than 3min (Table 2). This result

represents an execution up to 186 times faster for 240 computational cores, if com-

pared to the sequential time, which represents 95.83% of the expected performance

(theoretical speedup) for this workload (30,000 lines). Table 2 also shows that

extending our tests to all the 16 nodes of the cluster (384 cores) and with a bigger

workload (100,000 lines, average sequence lengh of 1110.19 nucleotides, standard

deviation of 773.41 nucleotides), we obtained an even better performance, reducing

the execution time from 37 hours to 5.5min.

We also evaluate our implementation scalability up to 16 cluster nodes (384 cores)

for a medium workload (100,000 input lines). We see that this heavier workload

improved the cores e±ciency due to a better distribution of task sizes, decreasing the

idle time among processes and increasing the performance (Fig. 4). As a result, MPI-

blastn performance obtained is very close to the theoretical speedup, even surpassing

it slightly when executing over 288 cores. This superlinear behavior may be the result

of cache e®ects, when task sizes are small enough to ¯t entirely in the cache and pro¯t

from much lower memory latency. The results also indicate that MPI-blastn scal-

ability was not a®ected by the standard deviation of the input sequence length

(773.41 nucleotides). The e®ects of sequence length on scalability of our implemen-

tation may have been minimized because MPI-blastn distributes the workload evenly

Fig. 3. Performance comparison between MPI-blastn and mpiBLAST using 30,000 input lines in a cluster

with 10 nodes (240 cores).

MPI-blastn and NCBI-TaxCollector

1450013-9

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



(a) (b)

Fig. 4. Scalability of MPI-blastn: (a) Comparison among MPI-blastn, GNU Parallel and ScalaBLAST
using 30,000 input lines in a cluster with 8 nodes (192 cores) and (b) MPI-blastn scalability using 100,000

input lines in a cluster with 16 nodes (384 cores).

Table 2. Execution time (hours) for mpiBLAST and MPI-blastn

with di®erent input sizes in a cluster of 16 nodes (384 cores).

Input size (lines) 30.000 30.000 100.000

Number of cores mpiBLAST MPI-blastn MPI-blastn

1 7.43 7.43 36.80

4 3.54 1.77 10.20
8 2.05 0.98 5.81

12 1.52 0.88 4.27

16 1.32 0.79 3.72
20 1.19 0.63 3.15

24 0.74 0.55 2.70

48 0.49 0.22 1.34

72 0.42 0.14 0.71
96 0.39 0.11 0.48

120 0.38 0.09 0.36

144 0.38 0.07 0.28

168 0.40 0.06 0.23
192 0.40 0.05 0.20

216 0.43 0.05 0.18

240 0.43 0.04 0.16
264 X ��� 0.14

288 X ��� 0.13

312 X ��� 0.12

336 X ��� 0.11
360 X ��� 0.10

384 X ��� 0.09

Note: X: execution for this number of cores is not supported by

mpiBLAST.

R. Dias et al.

1450013-10

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



among all processes. However, further studies are needed for understanding the

in°uence of sequence length on BLAST performance and MPI-blastn scalability.

We also evaluated ScalaBLAST as another parallel solution to be compared with

MPI-Blastn. Due to the fact that the ScalaBLAST requires a ratio between the

number of cores and the amount of RAM per core (at least 8GB RAM for our testing

environment), the evaluations between ScalaBLAST and MPI-blastn were per-

formed on another HPC cluster using eight machines with 3.3GHz 24-core Opteron

6,378 processor and 250GB RAM per node. The nodes are interconnected by either

Gigabit Ethernet or In¯niband network. For ScalaBLAST evaluation, we used the

following parameters: Disk group size and cores per node ¼ number of cores per

node; task group size ¼ total number of cores �1; and ¯rst sub manager ¼ 1.

Table 3 shows the performance evaluation of ScalaBLAST. We con¯gured Sca-

laBLAST for allocating 8GB and 10GB of RAM per core because of its RAM ratio

requirement. Figure 4 shows the scalability results for the best performance settings

of ScalaBLAST. Based on the results presented, MPI-blastn has shown two main

advantages: It has less hardware requirements such as minimum memory per core

(<1GB RAM per node), and it has presented a shorter execution time than the

ScalaBLAST. ScalaBLAST keeps separate copies of the database and query list in

RAM on each core and the rest of the RAM is reserved for BLASTs compute kernel,

which can be memory consuming. If this amount of separate information needs to be

exchanged through nodes in a cluster, this may also cause network overload. This

limitation did not allow ScalaBLAST scalling when using less than 8GB RAM per

Table 3. Execution time (hours) for ScalaBLAST, GNU Parallel, and MPI-blastn with input size of
30.000 lines in a cluster of 8 nodes (192 cores).

RAM allocated per core 8GB 1GB 10GB 1GB 1G

Network Gigabit Ethernet Gigabit Ethernet In¯niband In¯niband In¯niband

Number of cores ScalaBLAST MPI-blastn ScalaBLAST MPI-blastn GNU Parallel

1 8.19* 8.19* 1.80* 1.80* 1.80*
4 X ��� X 0.53 0.50

8 X ��� X 0.26 0.25

12 X ��� 1.25 0.18 0.23

16 X ��� 0.99 0.16 0.21
20 X ��� 0.83 0.13 0.20

24 X ��� 0.73 0.12 0.19

48 X ��� 0.25 0.07 0.11
72 7.17 0.15 0.20 0.05 0.07

96 0.26 0.13 0.15 0.04 0.05

120 0.19 0.11 0.12 0.03 0.04

144 0.18 0.06 0.11 0.02 0.03
168 0.17 0.04 0.10 0.02 0.03

192 0.13 0.01 0.10 0.01 0.02

Note: X: This number of cores is not supported due to RAM per core ratio requirements.

*Execution times refer to sequential BLAST version used as base for ScalaBLAST implementation.

MPI-blastn and NCBI-TaxCollector

1450013-11

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



core. We suppose that the RAM requirement of ScalaBLAST and the way that it

manages the database and query sequences separately in the RAM may have caused

this performance di®erence in the present HPC environment. Nevertheless, Scala-

BLAST may improve its performance in HPC clusters that have higher ratio of RAM

available per core and fast network such as In¯niband (Table 3).

Beyond performance, we observed some advantages in MPI-blastn work°ow when

compared to ScalaBLAST. For example, the user does not have to deal with pre-

con¯guration operations for running the MPI-blastn. In ScalaBLAST, however, the

user must con¯gure a parameter ¯le (sb param.in) that de¯nes work°ow rules, task

group sizes, task distribution methods, sizing of memory usage, etc.

We also evaluated GNU parallel performance compared to MPI-blastn. The

results indicate that our implementation scales in general better than GNU Parallel.

MPI-blastn speedup shows an average improvement of more than 30% if compared

to GNU Parallel speedup (Fig. 4). Unlike MPI-blastn, GNU parallel uses multiple

SSH connections. Cryptographic methods are central to SSH and these methods may

a®ect performance due to encryption overhead, whereas MPI is optimized for mes-

sage exchange and does not have encryption. In addition, MPI is executed in the

transport layer, whereas SSH runs in the application layer. This may increase the

packet size, causing more overhead if compared to MPI.

3.2. NCBI-TaxCollector performance

In order to evaluate our algorithm performance, we compared its performance with a

similar tool. Currently, a recent version of TaxCollector by Giongo et al.24 is the only

program available to perform the taxonomic attachment task. The input ¯les used in

our performance evaluation consist of the MPI-blastn results in tabular text format.

The MPI-blastn results were generated from the sequences and databases described

in previous section. TaxCollector takes about 5min of execution time for 4 lines of

MPI-blastn results, and needs more than 60GB of RAM to perform the task (about

75 s per input line of BLAST results). Following this execution example, a taxonomic

attachment that takes 2 days with TaxCollector, now can be performed in less than

1 hour with NCBI-TaxCollector. However, we could not extend our tests with

TaxCollector for larger input sizes due to the large amount of memory usage nec-

essary in order to run TaxCollector. Unlike this tool, the present implementation of

NCBI-TaxCollector takes less than 1 s to run the same input. Furthermore, we

observed a max RAM memory usage of less than 0.5GB (lower than the 60GB used

by TaxCollector). This result shows that NCBI-TaxCollector is able to perform

taxonomic attachments 125 times faster and needs 120 times less RAM than Tax-

Collector by Giongo et al.24

Extending the evaluation of the present tool, we increased the input size (number

of MPI-blastn results) up to 450,000 lines. We performed this experiment in order to

assess the behavior of our algorithm for larger input sizes, in matters of execution

time and memory usage. Varying the input sizes, we see that the execution time and

R. Dias et al.

1450013-12

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



memory usage remain a linear proportion if compared with the input size. This

result is demonstrated in Fig. 5. The same evaluation was impossible to be per-

formed with TaxCollector due to the large amount of memory usage and unfeasible

execution time.

4. Conclusions

Sequence search and post processing of these results has become subject of many high

performance optimizations. The exponential increase in the size of data generated by

next generation sequencing technologies has made currently used tools impossible to

be executed in a feasible time, unless optimizations of parallelism and lower com-

plexity are performed on their algorithms. In this work, we exemplify this issue with

BLAST and TaxCollector programs. Without optimizations, these tools may take

weeks, even months, to perform a metagenomic analysis with the current size of data

generated. In this paper, we present a new parallel implementation based on a recent

version of BLASTþ (2.2.25) at NCBI.16 Unlike BLAST+, that can only take ad-

vantage of individual shared-memory multicore machines, our implementation

exploits the computing power of clusters of multicore machines, to allow increased

performance and scalability. The resulting tool, called MPI-blastn obtained a super

linear speedup if compared to the theoretical value, running 408 times faster in 384

cores. Furthermore, if compared with other parallel BLAST tools, our implemen-

tation shows a much higher performance than mpiBLAST20 and ScalaBLAST.21

Fig. 5. A NCBI-TaxCollector performance: Execution time and memory usage trends versus input size.

MPI-blastn and NCBI-TaxCollector

1450013-13

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



We also present our new NCBI-TaxCollector implementation. The algorithm

converts the taxonomic databases from ASCII to binary format. This conversion

remarkably speeds up the search, decreases the algorithm complexity, and also

reduces the total size of NCBI database ¯les. Besides, comparing the NCBI-Tax-

Collector execution with an adapted version of TaxCollector,24 we see not only a

remarkable decrease of runtime but also in RAM usage. Our evaluations demon-

strated that NCBI-TaxCollector is able to perform taxonomic attachments 125 times

faster and needs 120 times less RAM memory than adapted version of TaxCollector

by et al.24

Combining both tools, we o®er a real improvement for metagenomic analysis. For

example, a multiple sequence search that currently takes one week can be performed

in 25min and a post processing with NCBI taxonomic data attachment, which takes

48 hours, now is able to run in less than half hour. In a future work, we intend to

expand our optimization of nucleotide sequence search to protein sequence search, in

order to improve the performance of protein function prediction for environmental

genomics data.30 For NCBI-TaxCollector, a further improvement to use multipro-

cessor and/or multicomputer parallelism is possible to be implemented, since the

taxonomic attachment for one input line is independent from another. For MPI-

blastn implementation, due to variations in the size of sequences and consequently in

the workload size by process, new job scheduling strategies may be implemented to

handle such problems.

References

1. Proctor GN, Mathematics of microbial plasmid instability and subsequent di®erential
growth of plasmid-free and plasmid-containing cells, relevant to the analysis of experi-
mental colony number data, Plasmid 32(2):101–130, 1994.

2. Kaeberlein T, Lewis K, Epstein SS, Isolating \uncultivable" microorganisms in pure
culture in a simulated natural environment, Science 296(5570):1127–1129, 2002.

3. Handelsman J, Tiedje J, Alvarez-Cohen L, Ashburner M, Cann I, Delong E, Doolittle W,
Fraser-Liggett C, Godzik A, Gordon J, The new science of metagenomics: Revealing the
secrets of our microbial planet, Nat Res Council Report 13, 2013.

4. Kahn SD, On the future of genomic data, Science 331(6018):728–729, 2011.
5. HiSeq Systems ��� Illumina. Available at http://www.illumina.com/systems/

hiseq systems.ilmn (accessed 10 Jan 2013).
6. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH, The

NCBI BioSystems database, Nucleic Acids Res 38(Database issue):D492–D496, 2010.
7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D,

Hu P, Andersen GL, Greengenes, a chimera-checked 16S rRNA gene database and
workbench compatible with ARB, Appl Environ Microbiol 72(7):5069–5072, 2006.

8. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Ban-
dela AM, Cardenas E, Garrity GM, Tiedje JM, The ribosomal database project (RDP-II):
Introducing myRDP space and quality controlled public data, Nucleic Acids Res 35
(Database issue):D169–D172, 2007.

9. Giongo A, Crabb DB, Davis-Richardson AG et al., PANGEA: Pipeline for analysis of
next generation amplicons, ISME J 4(7):852–861, 2010.

R. Dias et al.

1450013-14

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



10. Schloss PD, Westcott SL, Ryabin T et al., Introducing mothur: Open-source, platform-
independent, community-supported software for describing and comparing microbial
communities, Appl Environ Microbiol 75(23):7537–7541, 2009.

11. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM,
The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput
rRNA analysis, Nucleic Acids Res 33(Database issue):D294–D296, 2005.

12. Healy MD, Using BLAST for performing sequence alignment, Current Protocols Human
Genetics, Chapter 6:Unit 6.8, Wiley Online Library, 2007.

13. de Araujo Macedo E, Magalhaes Alves de Melo AC, P¯tscher GH, Boukerche A, Hybrid
MPI/OpenMP strategy for biological multiple sequence alignment with DIALIGN-TX in
heterogeneous multicore clusters, Parallel and Distributed Processing Workshops and
PhD Forum (IPDPSW), 2011 IEEE Int Symp, pp. 418–425, IEEE, 2011.

14. Vouzis PD, Sahinidis NV, GPU-BLAST: Using graphics processors to accelerate protein
sequence alignment, Bioinformatics 27(2):182–188, 2011.

15. Rezaei S, Monwar MM, Bai J, Performance comparison of MPI-based parallel multiple
sequence alignment algorithm using single and multiple guide trees, Cognitive Infor-
matics, 5th IEEE Int Conf, pp. 595–600, 2006.

16. Tringe SG, Rubin EM, Metagenomics: DNA sequencing of environmental samples,
Nat Rev Genet 6(11):805–814, 2005.

17. Kurokawa K, Itoh T, Kuwahara T et al., Comparative metagenomics revealed commonly
enriched gene sets in human gut microbiomes, DNA Res 14(4):169–181, 2007.

18. Maidak BL, Cole JR, Lilburn TG, Parker CT, Jr., Saxman PR, Farris RJ, Garrity GM,
Olsen GJ, Schmidt TM, Tiedje JM, The RDP-II (Ribosomal Database Project), Nucleic
Acids Res 29(1):173–174, 2001.

19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL,
BLAST+: Architecture and applications, BMC Bioinformatics 10:421, 2009.

20. Lin HS, Ma XS, Feng WC, Samatova NF, Coordinating computation and I/O in mas-
sively parallel sequence search, IEEE T Parall Distr 22(4):529–543, 2011.

21. Oehmen C, Nieplocha J, ScalaBLAST: A scalable implementation of BLAST for high-
performance data-intensive bioinformatics analysis, IEEE T Parall Distr 17(8):740–749,
2006.

22. Tange O, GNU parallel ��� the command-line power tool, The USENIX Magazine
36(1):42–47, 2011.

23. Rapier C, Bennett B, High speed bulk data transfer using the SSH protocol, Proc 15th
ACM Mardi Gras Conf, pp. 11, 2008.

24. Giongo A, Davis-Richardson AG, Crabb DB, Triplett EW, TaxCollector: Modifying
current 16S rRNA databases for the rapid classi¯cation at six taxonomic levels, Diversity
2(7):1015–1025, 2010.

25. NCBI Taxonomy database. Available at ftp://ftp.ncbi.nih.gov/pub/taxonomy/.
26. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW, GenBank,

Nucleic Acids Res, 2011.
27. Sait SM, Al-Mulhem M, Al-Shaikh R, Evaluating BLAST runtime using NAS-based high

performance clusters, Computational Intelligence, Modelling and Simulation (CIMSiM),
2011 Third Int Conf, pp. 51–56, 2011.

28. Black PE, Big-O notation, Dictionary of Algorithms and Data Structures, 2007.
29. Graham RL, Woodall TS, Squyres JM, Open MPI: A °exible high performance MPI, Lect

Notes Comput Sci 3911:228–239, 2006.
30. Wong L, Introduction ��� some new results and tools for protein function prediction,

RNA target site prediction, genotype calling, environmental genomics, and more, J
Bioinform Comput Biol 9(6):v–vii, 2011.

MPI-blastn and NCBI-TaxCollector

1450013-15

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Raquel Dias received BS Degree in Biology from the Catholic University of Rio

Grande do Sul ��� (PUCRS, Porto Alegre, RS, Brazil, 2010) and MSc degree in

Computer Science from the PUCRS, 2012. Since 2012, she is a PhD student at the

Microbiology and Cell Science Department of the Institute of Food and Agricultural

Sciences at the University of Florida. Her research interests include phylogenetic

reconstruction, high-throughput DNA sequencing analysis, genome assembly, an-

cestral sequence reconstruction, and structural biochemistry.

Miguel G. Xavier holds a degree in Information Systems from the Ponti¯cal

Catholic University of Rio Grande do Sul ��� (PUCRS, Porto Alegre, RS, Brazil,

2011), MSc in Computer Science from the Ponti¯cal Catholic University of Rio

Grande do Sul ��� (PUCRS, Porto Alegre, RS, Brazil, 2013), and MBA in Project

Management Software from the Ponti¯cal Catholic University of Rio Grande do

Sul ��� (PUCRS, Porto Alegre, RS, Brazil, 2012). He is currently a researcher at the

PUCRS and a consultant in Software Development in a variety of companies. He has

vast experience in the area of Computer Science, Specializing in the following topics:

Cloud Computing, Virtualization, Parallel and Distributed Processing, and Net-

works.

F�abio Diniz Rossi received his Master's degree in Computer Science from the

Ponti¯cal Catholic University of Rio Grande do Sul (PUCRS), Brazil (2008), and

Bachelor's degree from the University of the Region of Campanha, Brazil (2000). He

is currently pursuing PhD in Computer Science at the Ponti¯cal Catholic University

of Rio Grande do Sul (PUCRS), Brazil. His primary research interests are cloud

computing and energy e±ciency.

Marcelo Veiga Neves received his Master degree in Computer Science from the

Federal University of Rio Grande do Sul, Brazil (2009), and Bachelor's degree from

the Federal University of Santa Maria, Brazil (2005). He is currently pursuing PhD

in Computer Science at the Ponti¯cal Catholic University of Rio Grande do Sul

(PUCRS), Brazil. His primary research interests are high performance computing,

big data, and computer networks.

Timoteo Lange holds a degree in Technology of Data Processing from the Uni-

versity of Ivaiporã ��� (Univale, Ivaiporã, PR, Brazil, 1999), specialist degree in

Network Computer from Federal Institute of Paran�a (IFPR, Curitiba, PR, Brazil,

2002), and Master Degree in Computer Science from the Catholic University of Rio

Grande do Sul ��� (PUCRS, Porto Alegre, RS, Brazil, 2013). He is currently a

professor in computer Network and operating systems in the Unisc (University of

R. Dias et al.

1450013-16

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Santa Cruz do Sul) and works in Procergs (Company of Data Processing of State of

Rio Grande do Sul) as Database Administrator in e-government projects.

Adriana Giongo holds BS degree in Biological Sciences from the Federal University

of Rio Grande do Sul (UFRGS, Porto Alegre, RS, Brazil, 2000), MSc in Agriculture

and Environmental Microbiology from the Federal University of Rio Grande do Sul

(PPGMAA-UFRGS, Porto Alegre, RS, Brazil, 2003), PhD in Genetics and Molec-

ular Biology from the same university (PPGGBM-UFRGS, Porto Alegre, RS, Brazil,

2007), and a post-doctoral degree in Microbial Ecology from the University of

Florida (UF, Gainesville, FL, USA) from 2008 to 2011. Since 2011, she is a researcher

at the CEPAC ��� Center of Excellence in Research and Innovation in Petroleum,

Mineral Resources, and Carbon Storage from Catholic University of Rio Grande do

Sul (PUCRS, Porto Alegre, RS, Brazil), working on metagenomics approach applied

to the microbial diversity studies.

C�esar De Rose holds BS degree in Computer Science from the Catholic University

of Rio Grande do Sul ��� (PUCRS, Porto Alegre, RS, Brazil, 1990), MSc in Com-

puter Science from the Federal University of Rio Grande do Sul ��� (CPGCC-

UFRGS, Porto Alegre, RS, Brazil, 1993), and a doctoral degree from Karlrsruhe

University (Karlsruhe, Germany, 1998). Since 1998, he is a professor at PUCRS and

a member of the Parallel and Distributed Processing Group. His research interests

include resource management in parallel and distributed architectures and operating

systems. Since 2008, he is the lead researcher at the PUCRS High Performance

Laboratory (LAD-PCURS).

Eric W. Triplett received BS degree from Rutgers University in Biology, MS

degree in Botany from the University of Maryland, and a PhD from the University of

Missouri, Columbia in Agronomy/Plant Physiology in 1981. Over time, his interest

in bacterial genetics and genomics has grown particularly in plant-microbe interac-

tions. He is now Professor and Chair of the Microbiology and Cell Science Depart-

ment of the Institute of Food and Agricultural Sciences at the University of Florida.

His research interests include high-throughput DNA sequencing analysis, a microbial

role in type 1 diabetes, soil microbial ecology, and citrus greening disease.

MPI-blastn and NCBI-TaxCollector

1450013-17

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

14
.1

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

10
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	MPI-blastn and NCBI-TaxCollector:
	1. Background
	1.1. Taxonomic classification assignment with BLAST
	1.2. Post processing of BLAST results with TaxCollector

	2. Implementation
	2.1. MPI-blastn: Parallel nucleotide search for computing clusters
	2.2. NCBI-TaxCollector

	3. Results and Discussion
	3.1. MPI-blastn performance
	3.2. NCBI-TaxCollector performance

	4. Conclusions
	References


