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SUMMARY

Cloud computing allows the deployment and delivery of application services for users worldwide. Software
as a Service providers with limited upfront budget can take advantage of Cloud computing and lease the
required capacity in a pay-as-you-go basis, which also enables flexible and dynamic resource allocation
according to service demand. One key challenge potential Cloud customers have before renting resources
is to know how their services will behave in a set of resources and the costs involved when growing and
shrinking their resource pool. Most of the studies in this area rely on simulation-based experiments, which
consider simplified modeling of applications and computing environment. In order to better predict service’s
behavior on Cloud platforms, we developed an integrated architecture that is based on both simulation and
emulation. The proposed architecture, named EMUSIM, automatically extracts information from applica-
tion behavior via emulation and then uses this information to generate the corresponding simulation model.
We performed experiments using an image processing application as a case study and found that EMUSIM
was able to accurately model such application via emulation and use the model to supply information about
its potential performance in a Cloud provider. We also discuss our experience using EMUSIM for deploy-
ing applications in a real public Cloud provider. EMUSIM is based on an open source software stack and
therefore it can be extended for analysis behavior of several other applications. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Cloud computing has become a valuable platform for startups and small companies to deploy their
application services for large-scale consumption on a pay-as-you-go basis. Such platform allows
businesses to lease resources that can grow and shrink according to customer services’ demand,
thus offering an attractive option to build and maintain a data center to cope with a peak demand.

It is important that Cloud application developers, before deploying an application in the Cloud,
understand its behavior when subject to different demand levels to better exploit the elastic provi-
sioning of Clouds. This allows developers to understand application resource requirements and how
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596 R. N. CALHEIROS ET AL.

variation in demand leads to variation in required resources. This information is paramount to allow
proper quality of service (QoS) to be set and to estimate the budget required to host the application
in the Cloud.

Experimentation in a real environment is (i) expensive because it requires a significant number of
resources available for a large amount of time; (ii) time costly because it depends on the application
to be actually deployed and executed under different loads and for heavy loads, long delays in exe-
cution time can be expected; and (iii) not repeatable because a number of variables that are not under
control of the tester may affect experiment results, and elimination of these influences requires more
repetition of experiments, making it even more time costly. Therefore, other techniques for applica-
tion evaluation are preferred. Two such alternative techniques available to developers are simulation
and emulation. The main difference between them is the way software is represented during the
evaluation process. Simulation relies on models of software and hardware for evaluation, whereas
emulation uses the actual software deployed in a model of the hardware infrastructure [1].

The different characteristics of these techniques make each of them more suitable to some activi-
ties than to others. For example, simulation can be used in the early development stages to evaluate
concepts and strategies to be used in a project, whereas emulation is more suitable to be used once
an application software prototype is already available. Moreover, simulation typically requires less
hardware resources than emulation for the experimentation and makes it easier for developers to
test the model with a large number of application execution requests received from customers of
the Cloud service, because these requests are also simulated, whereas emulation requires applica-
tion execution requests to be actually generated and sent to the application under test (e.g., via a
benchmarking software).

Even though simulation requires a smaller hardware platform for testing and enables easier
evaluation of different scenarios, its utilization is difficult because it requires developers to cor-
rectly model the application behavior. If the application is not properly modeled, results obtained
during simulation may not be achieved once the application is deployed. Therefore, an accurate
model of the application is paramount for accurate and relevant simulations. A way of producing a
better model of an application is through acquisition of relevant parameters obtained via analysis of
software behavior during its execution.

We propose an integrated environment—called EMUSIM—that combines emulation and simu-
lation to extract information automatically from the application behavior (via emulation) and uses
this information to generate the corresponding simulation model to help developers to obtain more
accurate models of their applications and to estimate performance and cost of the application in
the Cloud. Such a simulation model is then used to build a simulated scenario that is closer to the
actual target production environment in terms of computing resources available for the applica-
tion and request patterns. Moreover, EMUSIM operates uniquely with information that is available
for customers of public IaaS providers, namely number and characteristics of virtual machines, to
perform the evaluation. We describe how each methodology is used and how they are combined, so
data about application behavior is extracted during emulation and used to generate a more accurate
simulation model of the application behavior. EMUSIM is built on top of the two following software
systems: automated emulation framework (AEF) [2] for emulation and CloudSim [3] for simulation.
The proposed environment can also be extended to support other tools for these activities, as long
as they provide an API that can be used to automate the process.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 presents
the motivation for the development of EMUSIM and a brief overview of the systems used in our
architecture. Section 4 introduces EMUSIM and describes its architecture and operation details.
Section 5 describes a use case to evaluate our approach. Section 6 discusses our experience devel-
oping EMUSIM, its limitations, and how to apply our approach with other simulation and emulation
tools, and Section 7 concludes the paper and proposes future research directions.

2. RELATED WORK

The use of discrete event simulation for evaluation of response time of applications in the Cloud has
been successfully achieved in the CloudAnalyst project [4]. CloudAnalyst allows users to model

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe

 1097024x, 2013, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.2124 by C

A
PE

S, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 597

scenarios where Software as a Service (SaaS) data centers and users are in different geographic
locations. Output of experiments consists of response time for requests and cost of keeping the
infrastructure based on the Amazon EC2 cost policy. EMUSIM differs from CloudAnalyst in two
ways. First, EMUSIM does not enforce any specific simulation scenario. Second, the data for
modeling application behavior is extracted automatically from an emulation experiment.

The idea of combining simulation and emulation to leverage distributed systems experiments has
been explored with different goals and different techniques.

GRAS [5], part of the SimGrid [6] project, allows researchers to use the same code for both sim-
ulation and actual deployment. Such a code uses a special library to allow communication among
processes. Our approach, on the other hand, extracts performance information, via emulation, of
already implemented software that may be written in any language and for any operating system
that may run in a virtual machine.

RC2Sim [7] is a simulation and emulation-based tool for testing large-scale Cloud management
systems. The system emulates an underlying Cloud provider and simulates virtual machine images
on such infrastructure. The simulated virtual machines are subject to the management policies
aimed at being evaluated by the tool. Our approach, on the other hand, focuses on the evalua-
tion of applications running in the Cloud rather than the software managing the application and
the platform.

Emuproxi [8] applies emulation to execute actual applications in a test environment and simula-
tion to model network behavior in such an environment. Communication of the real application is
forwarded to the simulation engine via Virtual Private Network, and delivery of network packets in
the destination is delayed according to simulation results. The main goal of simulation in Emuproxi
is modeling the network of the emulation experiment and it is applied simultaneously with emula-
tion, whereas EMUSIM applies emulation and simulation in different stages of the experiment with
different goals.

Netbed [9] is a platform that supports both simulation and emulation of networks for testing
of distributed applications. Wide-area links are emulated in the links between actual cluster nodes
used by the platform. Moreover, the system can be scaled with simulated nodes, links, and Internet
traffic, allowing tests in larger scales than what is supported by the actual cluster nodes. The goal
of simulation and emulation in Netbed is to increase scalability of the system, and therefore, it does
not support modeling of application behavior as does EMUSIM.

BigSim [10] supports simulation and emulation of parallel machines such as IBM’s
BlueGene. Emulation is used to execute actual applications, whereas simulation is used to model
network latency and execute models of the application obtained during emulation. The target
application of BigSim is Message Passing Interface (MPI) applications, which are the typical target
for High Performance Computing machines. Our architecture focuses in master/slave applications,
which represents applications more suitable to Cloud providers. Moreover, because BigSim does
not rely on virtualization technology, tests in larger scales than what is supported by the cluster is
only possible via simulation, whereas emulation allows larger scale of emulation experiments with
utilization of virtual machines.

NEPI [11] is a tool that enables execution of simulation, emulation, and in situ experiments from
a single API and front end. NEPI provides a single description language and a GUI that is used
as input for the experiments. NEPI has backends to several simulation, emulation, and in situ tools
that translate the NEPI input to the specific tool’s input. Therefore, with a single input, users can
create experiments combining approaches, or run the same experiment using different approaches.
However, the goal of NEPI is to facilitate execution of experiments and not to increase accuracy and
scalability of experiments, as does our approach.

WORKEM [12] is an application service emulator for workflow applications. It receives tasks
from workflow engines and instead of executing them in actual resources, it emulates execution
of the application using information available about it. WORKEM’s goal is helping in designing,
planning, and debugging of workflow applications, whereas the goal of emulation in EMUSIM is
supplying an accurate representation of the application for a simulator. Because EMUSIM does not
support emulation of workflow applications, WORKEM and EMUSIM could be used together for
enabling accurate simulation of this type of application.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe
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598 R. N. CALHEIROS ET AL.

Integrated simulation/emulation tools were also applied successfully in Sensor Networks.
J-Sim [13] applies simulation in the application layer of sensor networks and emulation in
the network level, so actual network packages are exchanged between simulated sensor nodes.
Girod et al. applied combined mixed simulation/emulation tools to support research and devel-
opment of heterogeneous sensor network systems [14]. Our target environment, on the other hand,
is distributed systems, and we apply emulation to extract information from actual applications and
use simulation to test applications operating in large scales.

3. MOTIVATION AND BACKGROUND TECHNOLOGIES

Consider the scenario where a company wants to provide a rendering service to create videos based
on frame descriptions submitted by their customers (referred as users in Figure 1). The application
offered can be considered as an SaaS application. Moreover, the application is intrinsically CPU-
intensive and can be parallelized by distributing different frames, or part of frames, to multiple CPUs
to be processed.

One of the main challenges of the service provider is to know how the application response time is
affected by variable demand for the service [15]. Because multiple users can simultaneously request
the service, they can share the same resources. The service provider may also want to scale-up the
resource pool in order to meet users’ QoS. However, time and cost are involved in the process of
scaling up or scaling down both the rendering software and computing resources.

One method that could be used to define performance of the application depending on the number
of requests and number of machines is via deployment and benchmarking of the application. How-
ever, this method requires deployment of the application in a physical infrastructure, which limits the
scale of the experiment in terms of available servers or budget for running the test. Moreover, repro-
ducing the experiment with different conditions requires generation, submission, and processing of
user requests, which may be time costly.

Without actually executing the application, it is difficult to model the application in a way it could
run in a simulator, because its performance depends heavily not only on its own but also on char-
acteristics of the infrastructure hosting the application. Therefore, if information about application
performance under different loads is not available, the service provider needs another mechanism to
improve the understanding of both its application and Cloud resources without having to deploy the
services in the Cloud. This would then require paying for a large number of resources that will be
used for testing purposes only and so they are not generating any revenue for the service provider.

Our solution relies on improving simulation accuracy by extracting relevant application
information via emulated executions of the service provider’s application in a virtualized envi-
ronment. Emulation allows execution of the actual application in a small-scale environment that
models the actual production infrastructure [1], whereas simulation allows assessment of how a sys-
tem/application behaves in response to different conditions, such as different request arrival times
and amount of work, in a controlled manner. Moreover, our solution operates uniquely with informa-
tion that is available for customers of public IaaS providers, namely number and characteristics of

Figure 1. Case study scenario with a rendering service in a Cloud provider.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe
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EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 599

virtual machines, to perform the evaluation. Information that is typically not disclosed by platform
owners, such as location of virtual machines and number of virtual machines per host in a given
time, is not required by EMUSIM.

Users of our solution are service providers, which are able, with the help of EMUSIM, to answer
questions such as (i) ‘how many resources are required to have a given response time considering
a specific service request arrival distribution?’ (ii) ‘how changes in the request arrival rate affect
application response time?’; and (iii) ‘how changes in the number of resources affect application
response time?’

The answers of these questions can be used by Cloud software platforms to allow more efficient
deployment of the SaaS application in the actual Cloud provider. Moreover, the estimation given by
EMUSIM in terms of resources required by the software platform can be used to help application
service providers to estimate the cost of running the application in public Cloud providers. In the rest
of this section, we briefly describe the technologies supporting our proposed solution for emulation
and simulation of Cloud applications.

3.1. Automated emulation framework

Automated emulation framework [2] is a framework for automated emulation of distributed systems.
The target platform for AEF is a set of computer resources running a virtual machine manager
(its current version supports Xen [16]). AEF requires two XML files for an emulation experiment.
The first one describes the virtual environment to be used in the experiment. It consists of one or
more sites containing a number of machines connected through a virtual WAN. Therefore, descrip-
tion of such an environment contains characteristics of machines on each site (e.g., memory, disk,
and operating system) and characteristics of the virtual WAN (latency and bandwidth). The second
file describes the application to be executed (for each machine, which application has to be executed
and files to be transferred).

Each machine defined by the user is converted into a virtual machine that is automatically mapped
onto a computer node by AEF and deployed on the chosen host. More than one virtual machine may
be created in a single host, as long as the amount of resources required by the virtual machines
(VMs) does not exceed the node’s capacity. Network information is used to automatically configure
a virtual distributed system in the computer infrastructure, in a way that isolation among virtual sites
is respected and communication between sites occurs according to WAN parameters defined in the
input file.

3.2. QAppDeployer

QoS-aware application deployer [17] is responsible for managing the execution of applications
and is started in one virtual machine by AEF during the emulation process. Similarly to grid
brokers [18–20] focusing on parameter sweeping executions [21], QAppDeployer is responsible for
mapping application tasks to VMs, transferring application input data to each VM, starting
application execution, and collecting the results from the VMs to the front end node.

Figure 2 illustrates the main modules of QAppDeployer. The task generator receives the applica-
tion and its parameters; and at the same time, the AEF generates a machine file with all the available
resources (step 1 and 2). The scheduler then selects a set of VMs that meet the defined requirements
(step 3). The task manager starts an executor on each VM and transfers all required files for the
application (step 4). The executors then fetch and execute tasks (step 5). Every time an executor
finishes a task, it sends a message to the task manager asking for another task. QAppDeployer can
be configured to send a group of tasks to each executor rather than a single task.

3.3. CloudSim

CloudSim [3] is a development toolkit for simulation of Cloud scenarios. It supports modeling
and simulation of data centers containing hosts with different hardware capacities such as simu-
lation of users accessing such services and modeling of different algorithms for resource and VM
provisioning, and scheduling of CPUs to VMs at virtual machine monitor level.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe

 1097024x, 2013, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.2124 by C

A
PE

S, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



600 R. N. CALHEIROS ET AL.

Figure 2. QoS-aware application deployer.

CloudSim is not a framework, that is, it does not provide a ready to use environment for execution
of a complete scenario with a specific input. Instead, users of CloudSim have to develop the Cloud
scenario they wish to evaluate, define the required output, and provide the input parameters. Descrip-
tion of the scenario includes the definition of the number of data centers in the simulation and their
characteristics such as definition of the number of hosts on each data center, definition of hardware
configuration of each host (memory, bandwidth, number of cores, and power of each core), and
policies for allocation of hosts and CPU cores to virtual machines.

Besides the definition of the data center modeled in the simulation, CloudSim users have also
to define the behavior of simulated Cloud customers. This includes number of customers, how and
when customers request virtual machines and from which data center, and how customers schedule
applications to create virtual machines. The exact meaning of ‘Cloud customer’ is not defined by
CloudSim. It means that one data center can request VMs and submit applications to other data
centers (or even to itself) if the simulated scenario requires it.

4. EMUSIM ARCHITECTURE AND OPERATION

This section describes EMUSIM, its components and interactions and execution flows. As stated
previously, EMUSIM was developed with the use of the state-of-the-art tools for simulation, emu-
lation, and execution of applications. The three components in use (AEF for emulation, CloudSim
for simulation, and QAppDeployer for load generation) are implemented in Java and have APIs that
allow them to be used by other programs. Nevertheless, the same methods presented in this section
can be applied to take advantage of other tools to carry on those tasks, as long as such tools can be
externally accessed via an API.

4.1. Architecture

Figure 3 depicts the internal organization of EMUSIM and the role of each component. EMUSIM
itself coordinates execution of different open source tools to work together in order to achieve its
goal of accurate emulation and simulation of Cloud applications. It is responsible for activating
each of the system components that set up the emulation environment with different configurations,
coordinate dispatching of varying number of tasks for execution, and perform the simulations with
proper configuration files.

Basically, execution of EMUSIM is composed of two main activities. The first activity,
emulation, is the stage where an application is submitted for execution with varying number of
execution requests and varying number of available resources. In this step, actual instances of

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe
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EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 601

Figure 3. EMUSIM organization overview.

the application are executed in the environment that mimics the operation of a Cloud provider
(therefore, we have the actual software executing in a model of the hardware, what is the definition
of emulation proposed by Gustedt et al. [1]).

For each request, the application is executed on the available hosts. The application itself is a
Bag-of-Tasks (BoT) application, which means that tasks can spread over the available resources to
speed up their execution time. Thus, each request for execution of the Cloud application translates
to execution of one BoT application, and each application generates one or more tasks that are sub-
mitted to VMs. It allows the application to be evaluated regarding its scalability (i.e., how it behaves
in the presence of different number of resources) or its divisibility (i.e., how it behaves with a fixed
number of resources and different task partitioning). Resources in this case are virtual machines,
which are deployed on a physical environment that is used by EMUSIM.

Virtualization enables isolated machines, behaving as actual servers, to be deployed on a phys-
ical infrastructure. This performance isolation is required for a proper extraction of application
behavior information. Nevertheless, utilization of a virtualized environment is also required because
it is widely used in Cloud providers. Therefore, utilization of virtualization allows us to better
approximate the behavior of an application on its intended target environment.

In the second activity, simulation, profiling information extracted during emulation is used to
model the application in the simulator. Unlike in the previous stage, what is executed in this stage is
a simulation model of the software in a simulation model of the hardware, according to the defini-
tion of simulation given by Gustedt et al. [1]. The simulation allows evaluation of the application’s
behavior in the presence of different request arrival rate patterns for the application execution.

If an EMUSIM user wants to evaluate different simulated scenarios using the same application,
the emulation stage of the experiment can be skipped: in this case, profiling information generated in
a previous emulation execution can be reused, and only the input parameters of the simulation have
to be reconfigured by users to reflect the new evaluation scenario. This enables quick evaluation of
different simulated scenarios after a single round of (potentially slow) emulation.

To enable such activities to run automatically, EMUSIM requires the following input:

Description of the physical environment hosting the emulation. The emulator needs to know
about the physical machines available to host the virtual machines used in the emulation.
Because EMUSIM is based on AEF, this information is supplied in the form of an XML file.

Description of the emulated environment. This includes information such as minimum and
maximum number of VMs necessary during the emulation. Moreover, VM image to be used
is also required information. In EMUSIM, this is configured in properties file.

Application configuration. Because emulation requires execution of an actual application, it
is commonly required by the application to receive some configuration. Such configuration
can be available in the VM image or exposed to EMUSIM in a file that is read as part of
experiment initialization.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe
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602 R. N. CALHEIROS ET AL.

Simulation configuration. It consists of a file that contains information of the simulation sce-
nario where the application is evaluated as follows: number of application users, application
user request arrival pattern, QoS metrics; and also configuration of the simulated data center:
number of hosts, its capacity, number of virtual machines, and internal policies for provi-
sioning and so on.

The aforementioned information, given in the form of four configuration files, is the only input
required by EMUSIM users. The whole process of deployment of VMs, submission of parallel
applications, acquisition and generation of application profile, execution of simulation, and gener-
ation of execution report is managed by EMUSIM itself. The execution report contains statistical
information about expected QoS of the SaaS application in the presence of the simulated workload.
SaaS providers, and/or PaaS services deployed on their behalf, then use this report to drive decision
about the number of VMs to be used to host the SaaS application.

4.2. Operation

In this section, we describe the operation of EMUSIM. As it was stated before, it is composed of the
two following stages: emulation and simulation. Emulation operation is presented in Algorithm 1.

After initialization of the emulator (Line 3) and the platform (QAppDeployer—Line 4), EMUSIM
starts all the required VMs progressively to compose the test environment (Line 5). This is
performed by dynamically adding VMs to the platform. The number of VMs tested starts from
one and goes until the maximum number of VMs, as set in the environment description file. Users
can control VM increments on each number of VMs tested. By default, it executes experiments with
three numbers of VMs such as the maximum number of VMs (as specified in the configuration file)
and the average of these two values.

The number of VMs is increased by submission, via ssh, of a file containing the list of machines to
be used. Then, the order policy for reading the file is sent via sockets to a listener in QAppDeployer
(Lines 6 and 7).

After platform reconfiguration, one request is sent for execution. This request is translated to a
BoT application that contains one task for each available VM. These tasks are sent to the available
VMs and EMUSIM waits for their execution. Once the whole request execution finishes, a summary
of the execution, containing a number of available VMs (which defines task parallelism), number of

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 603

simultaneous requests (concurrency), and execution time, is retrieved (Line 11). This information is
later used to extract profiling information from the application.

Once all the requests are completed, the number of requests is increased by one (simulating one
more user request). These requests are then simultaneously sent to the QAppDeployer (via threading
to allow better concurrency than obtainable in sequential execution). When all the summaries are
received, the number of requests is again increased by one, requests are simultaneously sent again,
and summaries are retrieved. The process is repeated (Lines 8 to 14) until the maximum number of
simultaneous user requests, as defined in the input file, is achieved.

Simultaneous submissions during emulation are carried out in order to determine how concur-
rency affects execution time of tasks. Similarly, the number of VMs is scaled to allow determination
on how parallelism affects the application. During the simulation, EMUSIM does not assume that
requests arrive simultaneously, and different submission patterns can be utilized.

The raw profiling information is then saved in a file, and automatically processed by EMUSIM,
that extracts relevant information from them (see next section) to generate information relevant to
the simulation. Execution of the simulation is depicted in Algorithm 2.

Simulation occurs in two steps. The first one is a validation round (Lines 1 to 3) to verify how
accurately the application performance model can be represented in the simulation. To do so, the
data center is configured with the same number of resources and runs a workload that reproduces the
load generated during the emulation. The output of this stage can be compared with the output from
the emulation, and it allows determination of the accuracy of the simulated model. Results of this
stage allow EMUSIM users to decide whether the model of the application achieved the accuracy
they expected or not. In case of the former, results of the next simulation step are accepted and can
be used as an indicative of the performance of the application in the Cloud. In case of the latter,
results can be rejected and the emulation step can be repeated, probably increasing the number of
generated data points.

In the second simulation step, generalized workload (Lines 4 to 6), a data center with the con-
figuration defined by the EMUSIM user is generated. This data center receives requests according
to a workload also defined by EMUSIM users. Execution of the workload will cause variable load
in the machines used for the application. By considering the load and arrival of requests, execution
time of incoming requests are calculated by the simulator and applied in such request. Each request
generates a number of tasks that are submitted for execution on the simulated VMs. Once all the
tasks are complete, the corresponding request is considered completed and its execution time is cal-
culated. Another situation that can emerge is that the platform can reject new requests when there
are no available resources to handle them. EMUSIM also tracks the number of rejected requests, as
it is also a QoS metric.

The final report contains the total number of requests submitted, number of executed and rejected
requests (both in absolute values and in rate), and average and standard deviation of response
time. The whole process of running the generalized workload step can be automatically repeated
at EMUSIM user discretion: users can define in the input properties file the number of times the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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604 R. N. CALHEIROS ET AL.

simulation needs to be repeated. This is especially useful for simulation that contains randomized
factors in any part of its scenario such as a workload that is based on probability distributions.

4.3. Performance model

The execution of the emulation stage generates data on the application performance with different
parallelism levels, that is, how long the application takes to complete considering its decomposition
in different number of tasks that execute on independent machines and also with different levels of
concurrency, that is, when a single application task shares resources with other tasks that belong to
different requests.

The execution times obtained during the emulation stage are stored and processed by an EMUSIM
Python script, which collects the average response time for tasks executed with the same parallelism
and concurrency level. This is stored in a table that is indexed by concurrency and parallelism level.

The information in such a table is used in the simulation stage to estimate request run time in
conditions that are different from the conditions found during the emulation. It means that in the sim-
ulation, requests can be divided in more parallel tasks than those achieved in the emulation or they
can share resources with more tasks than during the emulation. Therefore, a form of extrapolation
of execution time is required in the simulation stage.

Considering a bi-dimensional space composed of the concurrency level as one dimension and the
parallelism as the second dimension, response time of a single request in the simulation stage is
estimated as follows. If a response time for the given concurrency and parallelism level is defined
(either because the case was executed during emulation or because it was calculated before during
simulation), the value is retrieved and used as the runtime estimate for the request.

If an estimate for the runtime with the given concurrency and parallelism level has not been cal-
culated yet, an estimation is generated according to Algorithm 3 (Lines 1 to 12). The estimation
is based on a linear extrapolation of the runtime considering the two closest points defined during
emulation, first extrapolating the concurrency level (if necessary) (Lines 13 to 22) and then the par-
allelism level (Lines 23 to 32). This is because the parallelism level is evaluated more sparsely than
concurrency level during the emulation. If the estimation was executed before, the value is retrieved
(Lines 15 and 25).

Once an estimate is calculated, it is stored in the table for future utilization in the simula-
tion (Lines 20 and 30), when a request with the same conditions is submitted to the application
deployer. The module to calculate the estimation can be replaced or extended according to the target
computing environment.

5. PERFORMANCE EVALUATION

In this section, we present an evaluation of EMUSIM. We describe the hardware and software
components, along with metrics and analysis of results.

5.1. Experiment setup

The physical environment used in the experiment is a cluster composed of five nodes and one physi-
cal front end. All the machines are dual-core AMD Opteron 2 GHz with 8 GB of RAM and 250 GB
of storage running Xen 3.4.0. The cluster front end node runs Oracle Virtual Machine server as
well as EMUSIM and its components. The virtual environment comprises 10 virtual machines, each
with 1 GB of RAM, one CPU core, 5 GB of storage and Ubuntu Linux Operating System running
on the cluster nodes (therefore, two VMs per node). QAppDeployer runs on a VM with the same
configuration as the described VMs, but it was deployed on the physical front end rather than on
the physical cluster worker nodes. EMUSIM is installed and runs on a privileged virtual machine
(Xen’s Dom0) on the physical front end, so that it has administrative access rights to trigger the VM
deployment process on the cluster nodes.

The service application used in the experiment is an image rendering application based on the
Persistence of Vision Ray tracer ray-tracing [22] application. Requests for such service trigger

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 605

a process of rendering an image. The process is split across available VMs. As described in the
EMUSIM operation, the emulation process is repeated with 1, 5, and 10 VMs in this experiment.

Once the emulation runs, profiling files are automatically generated and the simulation stage
is triggered. Such a simulation consists in executing the same service application with both the
validation workload (to show how close simulated and emulated application performance are from
each other) and the workload model for BoT grid applications defined by Iosup et al. [23]. Accord-
ing to this workload model, inter-arrival time of a BoT application in peak time (between 8AM

and 5PM) and the number of requests received in a 30-minute period in off-peak time (which is called
daily cycle) follow Weibull distributions with parameters (4.25, 7.86) and (1.79, 24.16), respectively.
In the latter case, we assume that requests arrive in equal intervals inside the 30-minute period.

Once the QAppDeployer receives a request to execute the application, such request is translated
into a BoT job request. The number of tasks for such a new job is defined according to the workload
model; the class of such a request is determined following a Weibull distribution with parameters

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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606 R. N. CALHEIROS ET AL.

(1.76, 2.11). The class defines the number of tasks in a logarithmic scale; first class has 1 or 2
jobs, second class has 3–4 jobs, third class has 5–8 jobs, fourth class has 9–18 jobs, and so on until
the ninth class that has 1000 tasks. The actual number of requests is generated uniformly from the
range of allowed number of tasks from the chosen class. Execution time of each task in the simu-
lation is obtained by analysis of the emulation results, which were validated in the validation round
of EMUSIM’s simulation stage.

The whole process has been run with two rendering scenarios. The first one, Box, comprises the
approximation of a camera to an open box with objects inside. Time for rendering frames in this
scenario increases during execution. In the second scenario, Vase, the rendering comprises rotation
of a vase with mirrors around. Time for processing different frames in this scenario is constant.

Because requests might arrive to the application deployer in a higher rate than the rate on which
requests finished, some concurrency is incurred on the requests. We allowed up to five tasks to run
concurrently on each virtual machine. Every time a new request is received, the simulated applica-
tion deployer looks for one VM for each task that composes the request. If there is a room for all
tasks of the request, it is executed; otherwise, the request is rejected.

The simulation rounds consist of a simulation of 24-hour length submission of jobs to the simu-
lated data center according to the workload described earlier. Each simulation round was repeated
30 times, and the average of output metrics is reported. There are request acceptance, rejection rates,
and request response time. The process was repeated by varying the number of virtual machines in
the data center from 20 to 70, in steps of 10.

The time required to run each step of the experiment described in this section is shown in Table I.
Deployment times are initially large because VM images have to be transferred to the hosts where
they are deployed. Notice that AEF implements a cache mechanism in which, if a further deploy-
ment of the same image is required, the transfer process is skipped. In the Table, Execution of
emulation stage denotes the time to run the application for each number of VMs and for each num-
ber of concurrent requests. This time is application-dependent so the time taken to each rendering
scenario is shown.

Table I also shows that the time taken to process the emulation output and generate the simulation-
independent file is negligible when compared with the rest of the experiment execution. Interpreta-
tion of the file generated in such a stage is performed during the simulation stage. Finally, execution
of simulation stages (both validation and actual experiment) is also small compared with emulation
times. Because the output of a single emulation can be used to multiple simulations, we expect the
deployment and emulation times to be amortized along the time.

5.2. Results and analysis

Figure 4 presents the accuracy of application models generated by EMUSIM. In the plots, circles
represent the average application execution time, captured during emulation, with different number
of tasks (parallelism level) and with different concurrent tasks running on the same machine
(concurrency level). Crosses represent the average execution time of applications, in the same con-
ditions regarding parallelism and concurrency, observed during validation rounds of simulation, for
both rendering scenarios (box and Vase). Coefficients of variation of the simulated response times
were smaller than 7% and for most of cases below 3%.

Table I. Execution times of different steps of an EMUSIM experiment.

Step Time (s)

Emulation Initial VM deployment 1867
Execution of emulation stage 2207 (Box), 10390 (Vase)

Generation of application profile 0.02

Simulation Execution of simulation validation round 0.4 (Box and Vase)
Execution of simulation application 89.21 (Box) 126.61 (Vase)

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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Figure 4. Accuracy of simulated applications (crosses) compared with emulated results (circles) for different
rendering scenarios (a) Box and (b) Vase.
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Figure 5. Acceptance and rejection rates of requests with different number of available VMs for different
rendering scenarios (a) Box and (b) Vase.

The results show that execution times during simulation were very close to execution times dur-
ing emulation and thus EMUSIM was able to accurately model our two real applications. Moreover,
results show no trends regarding variation in parallelism and concurrency and increase in the
deviation between emulation and simulation results.

Figure 5 presents rates of accepted and rejected requests, for each rendering scenario, when
different numbers of VMs are deployed for the application. As expected, the more VMs are available
in the data center, the lower the rejection rate. We observed that increase in number of VMs in the
Vase scenario has a bigger effect in the acceptance rate than in the Box scenario. This is because the
Vase application has a longer execution time. Therefore, requests stay more time in the VMs being
processed, thus occupying resources and contributing for further requests to be rejected. It means
that the higher the execution time of a single request, the more VMs should be made available for
processing it.

The results also show that the Vase application reaches more than 99% of the accepted requests
with 60 VMs, whereas the same is achieved for the Box scenario with 70 VMs, even though 60
VMs already give for over 95% acceptance rate. Therefore, a provider of a rendering application on
the Cloud expecting access patterns that resembles those of Grid BoT applications would have to
deploy 70 static VMs to keep 99.9% acceptance rate. Rejections cannot be completely eliminated
because there are always some bursts generated by the distribution that exceed system capacity.
Nevertheless, each simulation generated in average 5156 requests, therefore an acceptance rate of
99.9% means that in average only five requests were rejected. This could be improved by increasing
concurrency level (at the cost of higher response times in peak periods), with more VMs deployed
(at the cost of smaller utilization), or with the utilization of some technique for dynamic provision-
ing of VMs, which would enable higher utilization of VMs at the same time response time is kept
at acceptable levels.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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Figure 6. Average service time of requests with different number of available VMs for different rendering
scenarios (a) Box and (b) Vase.

Regarding average service time of requests, results for both rendering scenarios are depicted in
Figure 6. Coefficient of variance for service times was between 0.2 and 1.6, with 10 out of 12 mea-
surements points having the value above 1.0. The variance in service time is high because the run
time is directly affected by the concurrency level. In periods when system load is low, concurrency
level is low and applications can run in parallel without sharing resources with other processes.
Nevertheless, we allowed up to five concurrency requests per VM, which delays the application by
five times in peak time. Had we configured the system with a higher concurrency level, the expected
variance would be even higher.

Results for response time also show that reduction in the average response time for the Box
scenario presented little variation for more than 50 machines. After this amount of resources,
the extra resources enable more requests to be served; however, they are accepted in peak times,
when response time is high. The higher parallelism level achieved with the extra resources in
low traffic times are compensated by the time extra requests take to execute in peak times, and
then no improvement in response time can be seen, even though improvement in acceptance rate
was observed.

The same trend was not observed for the Vase scenario, which has been observed as more sensi-
tive to the number of VMs available in the data center. Moreover, we observed a slight increase in
the response time when 30 VMs were used instead of 20. This is caused by the biggest execution
time of the application in this scenario, which keeps resources in use for more time and makes the
system operate at a higher concurrency level.

Therefore, if response time observed by customer is an issue and a fixed number of resources have
to be divided among applications (for example, because of budget limitations), providers should
assign more resources to the Vase rendering scenario.

Moreover, because EMUSIM users can configure simulation, other deployment scenarios could
also be modeled and applied for evaluation purposes. For example, dynamic provisioning tech-
niques could be applied for changing the number of VMs available to applications accordingly to
the expected load in different periods.

Finally, by enabling application performance evaluation to be executed in a small number of
virtualized servers that possibly exist in an organization, EMUSIM enables savings in terms of
investment for experimentation purposes. For example, each simulation round of the evaluation
presented in this section requires 24-hour long executions. Therefore, reproducing our experi-
ment for the same number of VMs (from 20 to 70) for both scenarios in Amazon EC2 would
require 12,960 hours of VM usage for the execution nodes plus at least one extra node all the
time for load generation. This represents a cost of U$ 1126.08 if the cheapest Linux small instances
(single core, one EC2 compute unit, 1.7 GB of RAM, 160 GB of storage) are used. If the experiment
would be repeated 30 times, the total cost would be at least U$ 33782.40. Therefore, EMUSIM is a
cost-effective approach for evaluation of Cloud applications.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
DOI: 10.1002/spe

 1097024x, 2013, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.2124 by C

A
PE

S, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 609

1 2 3 4 5

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

EMUSIM

Public Cloud

Concurrency level
N

or
m

al
iz

ed
 s

er
vi

ce
 ti

m
e

Figure 7. Comparison of normalized service times, with 15 VMs and different concurrency levels, pro-
vided by EMUSIM and through execution of the application in a public Cloud provider for the Vase

rendering scenario.

5.3. Validation in a public Cloud

In order to evaluate the accuracy of the extrapolation procedure of service time in EMUSIM, we
evaluated the outcomes of the simulation stage of EMUSIM in a public Cloud. The evaluation
has been performed as follows. The output of the emulation step for the Vase rendering scenario
(described in Section 5.1), which contains emulation of up to 10 VMs and five concurrent tasks
per VM, has been submitted to a new simulation experiment. Such new simulation consists of a
simulated data center with 15 VMs that receive simultaneous submissions of the same numbers of
requests performed during the emulation stage of EMUSIM.

The same setup is reproduced in Amazon AWS EC2. A total of 16 VMs are deployed for the
experiment purposes. One instance is the front end, which generates the requests and submits to the
QAppDeployer (which is hosted in the same machine). The other 15 VMs are workers that process
the requests. All the VMs are Amazon EC2 High-CPU Medium Instances, which have 1.7 GB of
RAM and two CPU cores, each with 2.5 Compute Units (which Amazon defines as the capacity
of one 1.7 GHz Opteron‡ 2006 machine) and cost of U$ 0.17 per instance per hour. The operating
system of the VMs is Ubuntu Linux 11.10. We deployed this instance type because the nominal
processing power of one core of this instance type is closer to the power of the machine used in the
emulation stage. All the VMs were deployed in the same availability zone in the USA East Coast to
minimize network overhead.

Requests for execution were generated in the front end. Likewise in the simulation, submis-
sions go from 1 to 5 simultaneous requests, and each request is distributed to the 15 VMs. We
collected service times obtained for each request. Service times were normalized with the service
time obtained with a single request (i.e., concurrency level equals to one) to compensate for the
differences in CPU capacity between the machines used in the emulation and the Amazon machines.

Figure 7 presents results for this experiment. The figure shows that the difference between ser-
vice times obtained during simulation and during the public Cloud experiment increases as the
concurrency level increases. This is caused by the difference in performance between the machines
used in the emulation and the machines used in the Cloud. Because the service time is based in
the execution of a CPU-intensive application and data transfer, the computation–communication
rate of the application is different in both scenarios and this causes a deviation between speed ups
obtained in the local resources and in the Cloud, what results in estimation errors. We detail this
effect and how it can be tackled in the next section. Nevertheless, considering the differences in
performance between the machines (cluster machines performed 50% better than Cloud machines
for one request in one VM), results are satisfactory. We also expect that, as IaaS Cloud technology
matures, specification of actual capacity of Cloud resources will become more precise and enforced

‡http://aws.amazon.com/ec2/instance-types/

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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610 R. N. CALHEIROS ET AL.

via service level agreements, what will make differences in performance more predictable, reducing
the gap between results generated by analytical tools and simulation models and results obtained
with actual execution of applications.

6. DISCUSSION

As previously discussed by Gustedt et al. [1], there are different methodologies for evaluation of
distributed systems, and the definition of the most suitable approach depends on the objectives and
restrictions of the envisioned experiment. Emulation allows evaluation of actual software, but it has
limitations regarding scalability due to either hardware constraints or difficulty in generating large
and realistic workloads.

Simulation does not have these scalability limitations, but simulation results are as accurate as
the model of the software submitted to the simulator. Therefore, if testers want to evaluate software
in a simulator, they need to develop an accurate model of it. Our goal was to develop the process
of extracting the model of software so it can be evaluated in a simulator. Another requirement we
included in our design was that the process should be automated. In addition, our solution should
work in a wide range of available software and hardware and in a scale that even small companies
and research laboratories could also support.

With the aforementioned guidelines in mind and taking advantage of our previous experience with
emulation tools [2], we decided to use emulation to support real application execution. Even though
we used AEF for this purpose, any emulator that supports execution via scripts could be used for
this purpose.

In our system design, output from the emulation stage and input to the simulation stage were
loosely coupled; the emulation generated a performance file that was later translated into a simula-
tion model of the application. We chose this design because it allows EMUSIM users to replace any
part of the architecture without major changes in the core EMUSIM functionality. This is important
because different simulators are used for different modeling purposes; therefore, EMUSIM users
can choose the simulator that best suits their needs and only implement a converter to transform
the emulation output to simulation input. Other actions (like correctly invoking the simulator) are
performed via scripting.

We opted for tools that rely on platform virtualization technology to enable the use of our
architecture in a wide range of software and hardware platforms. The current AEF implementation,
and therefore EMUSIM, supports Xen for this purpose. However, a port for supporting VMware
can be easily developed in Java for AEF by extending interfaces designed to mediate the process
of VM deployment. With a little extra development in EMUSIM, a platform management tool such
as Eucalyptus could replace AEF. This, however, would require testers to develop solutions for
executing applications in such an infrastructure. We believe that, as private Clouds are increasing
in popularity, adding this support for tools such as Eucalyptus and another layer for management
application is an interesting topic to be investigated in future developments of this research.

6.1. Opportunities for enhancements

The results of experiments show that accuracy of the simulation increases as the difference in CPU
power of the machines used during emulation and the Cloud machines decreases. This is because
the computation–communication rate of the application changes; we observed a similar latency and
bandwidth in both environments, so the time for data transfer for user requests was similar in both
environments, but the processing times on each environment varied. We expect this effect to be less
evident for applications with little data transfer, as most service time will be caused by application
processing. Moreover, advances in virtualization technology, enabling a finer control on the amount
of CPU allocated to a virtual machine, or even a more precise definition of a machine’s computing
power, enforced via service level agreements, might also mitigate this effect.

The following approach could also be adopted in EMUSIM to tackle this limitation. A plug-in
could be added to the tool that can collect information about data transfer time for each request.
The plugin would enable determination of the specific contribution of data transfer and computation

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:595–612
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EMUSIM: AN INTEGRATED EMULATION AND SIMULATION ENVIRONMENT FOR CLOUDS 611

on the total service time of requests. The service time extrapolation procedure would have to be
modified to independently extrapolate each of these times to determine the contribution of each of
them to the total simulated service time.

7. CONCLUSIONS AND FUTURE WORK

Even though Cloud is already a consolidated platform for service applications deployment, an
efficient utilization of its resources depends on understanding the characteristics of the deployed
application. This understanding can be achieved with actual deployment, which is risky and cost-
ineffective, or can be achieved with support tools that allow deployment in a small scale and
extrapolation of results to the larger Cloud scale.

In this paper, we presented EMUSIM, an architecture that combines emulation (for extracting
profiling information of the actual application) and simulation (for evaluation of higher resource
scale and variable request workloads) to evaluate the effect of different number of resources and
patterns of requests for Cloud applications. Experiments showed that EMUSIM was able to accu-
rately model our two applications as a simulation model and use it to supply information about their
potential performance in a Cloud provider.

By using a small number of virtualized computers available in an organization, EMUSIM allows
accurate representation of applications that can be timely evaluated in terms of performance in a
simulated target higher-scale Cloud infrastructure. This is especially useful when the corresponding
in situ experiment has a complex input workload, what would require a special infrastructure and
resources just to generate the input load to the system, or when the experiment is supposed to run
for a long time, because simulation can speed up the experiment process.

Besides the savings in time and operational efforts for the evaluation, EMUSIM also reduces costs
for running such an evaluation because a local, small-scale infrastructure rather than a pay-as-you-go
public Cloud is used for evaluation purposes.

In the current version, EMUSIM supports loosely coupled CPU-intensive applications. We plan
to extend EMUSIM to support other types of applications such as Web servers, DBMS, and parallel
applications. Finally, we also plan to extend our tool to support modeling and evaluation of applica-
tions composed of dependent services, which may run in the same data center or in different ones.
This class of applications includes workflows, mash-ups, and multi-tier enterprise applications. We
also plan to extend EMUSIM to support evaluation of performance of applications when resource
allocation at infrastructure level (such as number of virtual machines in a host) changes. Finally, we
plan to develop plug-ins to allow extraction of more information during emulation (such as network
utilization), which will contribute towards enhancement of the precision of evaluation studies.
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