
System-level impacts of persistent main memory using a search engine

Taciano Perez a,n, Ney Laert Vilar Calazans b, César A.F. De Rose b

a HP R&D, Porto Alegre, Brazil
b PUCRS, Faculty of Informatics, Porto Alegre, Brazil

a r t i c l e i n f o

Article history:
Received 2 June 2013
Received in revised form
1 November 2013
Accepted 6 November 2013
Available online 26 November 2013

Keywords:
Non-volatile memory
Persistent main memory
PCRAM
RRAM
Memristor

a b s t r a c t

Computer memory systems traditionally use distinct technologies for different hierarchy levels, typically
volatile, high speed, high cost/byte solid state memory for caches and main memory (SRAM and DRAM),
and non-volatile, low speed, low cost/byte technologies (magnetic disks and flash) for secondary storage.
Currently, non-volatile memory (NVM) technologies are emerging and may substantially change the
landscape of memory systems. In this work we assess system-level latency and energy impacts of a
computer with persistent main memory using PCRAM and Memristor, comparing the development and
execution of a search engine application implementing both a traditional file-based approach and a
memory persistence approach (Mnemosyne). Our observations show that using memory persistence on
top of NVM main memory, instead of a file-based approach on top DRAM/Disk, produces less than half
lines of code, is more than 4� faster to develop, consumes 33� less memory energy, and executes
search tasks up to 33� faster.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the beginning of mainstream commercial computing,
memory hierarchy used in computer design has been employing
volatile, high speed memory technologies (SRAM and DRAM) for
caches and main memory, and non-volatile, low speed technolo-
gies (magnetic disks and flash memory) for secondary storage [1].

Currently, non-volatile memory (NVM) technologies are emer-
ging and may substantially change the landscape of memory
systems. Non-volatile memory (NVM) technologies such as
phase-change RAM (PCRAM), magnetic RAM (MRAM) and Mem-
ristor promise to enable memory chips that are non-volatile,
require low energy and have density and latency closer to current
DRAM chips [2]. The creation of byte-addressable, non-volatile
solid state memory could make a significant amount of persistent
main memory available to computer systems, allowing for
consolidating these two different levels of the storage hierarchy
– main memory and secondary storage – into a single level.

In the previous work [3], we have already assessed some of the
implications of NVM, considering elements as computing time and
power consumption. This work extends it, presenting an evalua-
tion of a search engine application in a hypothetical computer
with persistent main memory. Through the use of simulation, we
aim to identify the major system-level impacts of persistent main
memory in latency and energy. To the best of our knowledge, this

is the first study evaluating both PCRAM and Memristor using a
programming interface specific to persistent main memory, while
considering timing, energy, and impacts on code development
effort and complexity.

2. Emerging memory technologies

There are several new non-volatile memory (NVM) technolo-
gies under research today [4]. This study focuses on two of these
technologies: phase-change RAM (PCRAM) and Memristor, since
they are among the most mature candidate technologies for DRAM
replacement. Table 1 compares the main properties of traditional
memory/storage technologies with PCRAM and Memristor. Data
was obtained from [2,5,4,6–9].

2.1. Phase-change RAM (PCRAM)

Phase-change random access memory (also called PCRAM,
PRAM or PCM) is currently the most mature of the new memory
technologies under research. It relies on phase-change materials
that exist in two different phases with distinct properties: an
amorphous phase, characterized by high electrical resistivity, and
a crystalline phase, characterized by low electrical resistivity [10].
These two phases can be repeatedly and rapidly cycled by applying
heat to the material [10,2].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

0026-2692/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mejo.2013.11.001

n Corresponding author. Tel.: þ55 51 21213915.
E-mail address: taciano.perez@hp.com (T. Perez).

Microelectronics Journal 45 (2014) 211–216

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2013.11.001
http://dx.doi.org/10.1016/j.mejo.2013.11.001
http://dx.doi.org/10.1016/j.mejo.2013.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2013.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2013.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2013.11.001&domain=pdf
mailto:taciano.perez@hp.com
http://dx.doi.org/10.1016/j.mejo.2013.11.001

2.2. Memristor

A Memristor is a two-terminal device whose resistance
depends on the magnitude and polarity of the voltage applied to
it and the length of time that voltage has been applied. When the
voltage is turned off, the Memristor remembers its most recent
resistance until the next time it is turned on. The property of
retaining resistance values means that a Memristor can be used as
a nonvolatile memory [11].

This first Memristor device created consisted of a crossbar of
platinumwires with titanium dioxide (TiO2) switches. Each switch
consists of a lower layer of stoichiometric titanium dioxide (TiO2),
which is electrically insulating, and an upper layer of oxygen-
deficient titanium dioxide (TiO2�x), which is conductive. The size
of each layer can be changed by applying voltage to the top
electrode. If a positive voltage is applied, the TiO2�x layer thick-
ness increases and the switch becomes conductive (ON state). A
negative voltage has the opposite effect (OFF state) [12,13,11].
Several oxides other than TiO2 are known to present similar
bipolar resistive switching, and there are multiple research
projects in motion to explore these other materials for similar
memory device implementations [2].

3. Persistent main memory

These novel non-volatile memory technologies can potentially
make a significant amount of persistent main memory available to
computer systems. It would allow a collapse of two different levels
of the storage hierarchy – main memory and persistent storage –

into a single level, something that has never been practically
feasible before. The advent of main memory as the primary
persistent storage may deeply affect most computing layers,
including application software, operating system, busses, memory
system and their interaction with other devices, such as processors
and I/O adapters [14,15]. In order to fully assess system-wide
impacts on latency, energy, heat, space and cost, it is required to
take into account all these different layers when modeling or
simulating a hypothetical computer system with persistent main
memory.

Initial proposals for the application of NVM technologies
evaluated the individual replacement of existing memory hierar-
chy levels (such as processor cache, main memory and persistent
storage) by NVM counterparts, with gains of performance and
efficiency at subsystem level [16–19]. Most of these proposals do
not imply a radical redesign of computing systems as a whole, but
localized changes to specific subsystems.

More recently, proposals for more radical system redesigns
were published. A good example is the architecture of Nanostores
[15] that proposes parallel systems with a massive number of
low-cost processors co-located with non-volatile data stores. This
system is targeted for data-centric workloads, such as search, sort

and video transcoding, and particularly suited for scale-out server
environments.

In the present study, we explore a simple commodity system
where DRAM is fully replaced by non-volatile memory, either
Memristor or PCRAM. No other significant changes will be applied.
The system aspects being analyzed are timing and energy.

4. Experimental setup

4.1. Simulation environment

The simulated system (guest) is a single-processor x86 64-bit
(Hammer) computer with 4 GB of main memory. It was simulated
using Virtutech Simics [20], a full-system simulator. The main
parameters of the simulation are described in Table 2. This setup
enables us to exercise variations in the memory technology
parameters in a very simple commodity system. We believe that
future systems with persistent main memory will have different
characteristics, such as a much larger memory size (comparable to
current hard disks), and different physical memory organization,
since JEDEC's DDRx does not support hundreds of Gigabytes. Our
purpose is to have a first-order approximation of the impact of
persistent main memory in current designs.

We executed a set of computing tasks (described in the next
section) in three different scenarios: DRAM, PCRAM and Memris-
tor. For each scenario, the memory latency and energy parameters
were set as shown in Table 3, using a customized version of the
trans-staller module in Simics. The latency values at device-level
were derived from [21–23]. A low clock frequency was used in
order to expedite test execution. As validation, we observed the
ratio between in-memory/file-based using DRAM in both the
simulated computer and real ones, and found them to be con-
sistent. We believe that the number of memory loads/stores,

Table 1
Comparison of memory/storage technologies.

Maturity SRAM DRAM Disk NAND Flash PCRAM Memristor
Product Product Product Product Adv. Dev. Early dev.

Read latency o10 ns 10–60 ns 8.5 ms 25 μs 48 ns 10–100 ns
Write latency o10 ns 10–60 ns 9.5 ms 200 μs 40–150 ns 10–100 ns
Static power Yes Yes Yes No No No
Endurance 41015 41015 41015 4104 4108 41012

Nonvolatility No No Yes Yes Yes Yes

Table 2
Experimental target configuration setup (guest).

Processor x86-64 (Hammer) 20 MHz (single-core)

L1 Cache Size: 16 Kb (D-cache)þ16 Kb (I-cache)
Associativity: 4-way (D-cache), 2-way (I-cache)
Penalty: 100–1000 ps
Replacement policy: LRU

L2 Cache Size: 512 Kb
Associativity: 8�
Penalty: 10 ns
Replacement policy: LRU

Main memory Size: 4096 MB
Penalty: technology-dependent (see Table 3)

Disk 20 GB

OS Fedora Core release 5 (Bordeaux)
Kernel: 2.6.15-1.2054_FC5

T. Perez et al. / Microelectronics Journal 45 (2014) 211–216212

which is the other main metric gathered during the simulation, is
not significantly affected by higher process frequencies.

In order to estimate the overall energy consumption of each
memory technology scenarios, we used an energy model that
considers two separate elements:

1. Dynamic energy – the energy consumed in order to read/write
memory addresses.

2. Refresh energy – the energy consumed to keep the memory
contents alive. It is only relevant for DRAM, since PCRAM and
Memristor do not need refresh due to their own persistent
nature.

Subthreshold power leakage is the third important component of
the total energy consumption. NVM should have leakage at least
similar to DRAM, or possibly even lower, since idle memory banks
can be turned off. This study did not consider leakage due to the
lack of published information on the leakage of Memristor
memory devices at this moment.

The energy parameters in Table 3 were obtained using CACTI
[24] (for DRAM) and NVSim [25] (for PCRAM and Memristor).
Latency and energy parameters refer to memory operations (load/
store).

The Virtutech Simics architectural simulator (host) was exe-
cuted in a server with 32 Xeon 2.4 GHz cores, 64 GB of memory
and 115 GB of local storage.

The present study does not address mechanisms to improve
NVM endurance, assuming that wear leveling techniques such as
those described in [21,22,8,16] will be employed.

The next section describes the computing tasks used as work-
load for our experiments.

4.2. Workload

As workload we have chosen the tasks of indexing and
searching terms in a set of text documents. This is a critical,
well-known real-world task, performed both in personal compu-
ters (e.g. e-mail search) and huge parallel machines (e.g. web
search), which depends critically on persistent data that can be
easily held either in memory or in files [26].

We have implemented and executed this task using two
different approaches: (1) a traditional implementation using files;
(2) an implementation using a programming interface specific for
persistent main memory. The motivation is to investigate if
alternative programming interfaces can have significant impact
on the overall performance.

As interface for memory persistence, we used Mnemosyne [14],
a modern framework available as open-source. Mnemosyne
enables programmers to make in-memory data structures persis-
tent without converting it to serialized formats, bypassing soft-
ware layers such as system calls, file systems and device drivers,
using transactional memory constructs in order to ensure consis-
tency. It provides a simple interface for the programmer, ensuring

consistency across modifications and being compatible with exist-
ing commodity processors.

In order to make a data structure persistent in Mnemosyne, it
has either to be declared using a modifier specific to indicate
persistence, or alocated with a persistent memory allocation
function (pmalloc). During every program execution, persistent
data structures keep their previously set values.

We have created a basic search engine using concepts pre-
sented in [26]. The features of our search engine implementation
can be thus summarized:

� Generates inverted index, receiving plain text files as input.
� Allows boolean retrieval of documents by term.
� Uses Blocked Sort-Based Indexing (BSBI) for the file-based

implementation approach.
� Uses a Red-Black Tree data structure for the Mnemosyne

implementation approach.

In order to keep it simple, the search engine does not implement
more sophisticated features such as index compression, document
scoring or stemming. It is organized around three main
subsystems:

1. Index and search algorithms – the common algorithms used for
indexing and searching terms independent of the implementa-
tion approach. It includes (a) reading input files (documents),
assigning a docID for each one, tokenizing them and issuing
term/termID pairs; (b) intersecting the results in case of multi-
ple term searches; (c) a “main” function to parse input para-
meters and invoke index or search actions.

2. File-based storage – implementation of storage in the file
system using Blocked Sort-Based Indexing (BSBI), a concept
described with details in [26]. For each document and each
term unique numeric IDs are assigned. The index stores in a file
a pair termID/docID for every document that contains a given
term. A set of files containing such pairs compose the BSB
Index. The contents of the files are always sorted by termID, in
order to make the queries more efficient (only the files
containing the desired terms are scanned when a query is
issued).

3. In-memory storage – implementation of in-memory storage
using a Red-Black Tree persisted through Mnemosyne. It uses
a modified version of an open-source Red-Black Tree [27],
changed to allocate internal data structures using Mnemosyne.

The BSBI indexing process requires reading each input file and
creating intermediate output index files with pairs termID/docID
(BSBI entries), without repeating entries. After all the intermediate
index files are created, they are merged, i.e., a new and final set of
index files with the ordering of all BSBI entries. Index files have a
maximum size, and when they fill up a new file is created. The
goal is to avoid keeping all the indices in memory. In our
implementation, each BSBI entry is 8 bytes long, and the max-
imum BSBI index file size is 256 KB. There are three indices in
memory: (a) a term/termID map; (b) a doc/docID map; and (c) an
index to the first and last termID contained by each index file.

Table 3
Technology parameters for the three simulated scenarios: DRAM, Memristor and
PCRAM.

Parameter DRAM Memristor PCRAM

Read latency (ns) 50 100 50
Write latency (ns) 48 100 150
Read energy (nJ) 3.4539 0.129 6.75
Write energy (nJ) 3.4475 1.109 9.872
Refresh power (mW) 0.0867 0 0
Feature size (nm) 45 45 45

Table 4
Workload development: size and effort metrics.

Scope LOC # Classes Dev. hours (h)

1 Index & search 603 7 30
2 File system 499 3 40
3 In-memory 241 3 8
4 Red-Black Tree 440 N/A 4
5 Total 1783 13 77

T. Perez et al. / Microelectronics Journal 45 (2014) 211–216 213

These indices are also backed up to files, and loaded to memory
during program startup. The search process receives a set of terms.
Each one is translated to its corresponding termID, then the index
in memory is consulted to identify which file(s) contain(s) the BSBI
entries for that termID. Finally, the file is read sequentially until
these references are found, and its corresponding docIDs are
identified. This process is repeated for every search term, and at
the end they are intersected to return the results of a logical AND
operation between the terms.

Table 4 displays the main metrics related with development
size, complexity and effort. These metrics were chosen to allow a
comparison of the two different implementation approaches in
terms of development efficiency. The number of lines of code and
comments help understanding the software size. The number of
classes associated with the number of lines of code can be used as
an indicator of complexity. The number of development hours
informs the effort applied to develop each scenario. Line 1 includes
components common to both implementation approaches. Line
2 includes components specific to the file-based approach. Lines
3 and 4 include components specific to the Mnemosyne approach.
Line 5 lists the total metrics for both approaches.

4.3. Corpus

A set of textual data was used as the corpus to be indexed and
searched. It consisted of Shakespeare complete works, obtained as
a set of plain text files from the University of Sydney [28]. It
contains a set of 44 documents with total size of 7372 KB
containing 24,427 distinct terms.

The in-memory storage scenario assumes that persistent
memory is the main storage location, and its contents will not
be swapped to secondary storage. For this reason, a corpus with a
total size larger than the processor caches but smaller than
memory is considered sufficient for the experiment.

5. Results and discussion

We have measured individually the execution of three different
tasks:

1. Index generation – the task of reading the complete corpus and
generating an inverted index, either in memory or disk.

2. Search 1 (simple) – the task of searching the index for a given
term (“Brutus”).

3. Search 2 (intersection) – the task of searching the index for two
given terms (“Brutus” and “Calpurnia”) and intersecting the
results (logical “AND”).

All three tasks (index, search 1 and search 2) were executed using
both implementation approaches (file-based, Mnemosyne) in each
of the three simulated memory technologies (DRAM, Memristor
and PCRAM). Every execution was repeated three times. The
running time for each execution ranged between a few minutes
and around 3 h.

5.1. Implementation approach

A major benefit of using memory persistence (Mnemosyne) is
relative to application development and complexity. Table 4 shows
that development using memory persistence produces less than
half lines of code and is more than 4� faster to develop than
using disk.

These results support the case for not only replacing current
hardware designs using NVM, but also taking different approaches
at software level, such as memory persistence.

5.2. Execution time

Complete execution times are shown in Table 5. Fig. 1 high-
lights a comparison between the file-based approach/DRAM and
Mnemosyne using both Memristor and PCRAM. When using the
traditional file-based approach, Memristor and PCRAM executions
are up to 56% slower than DRAM. This is explained by the larger
latency to read/write Memristor and write PCRAM, as previously
shown in Table 3. PCRAM latency was considered equivalent to
DRAM, and thus tasks dominated by reads (i.e., searches) in
PCRAM have results similar to DRAM.

Although Memristor is considered here 2� slower, and PCRAM
write latency 3� slower than DRAM, the average overall task
performance impact is less steep. This is consistent with the
results published in similar studies [8,16,21,22,29]. The main factor
behind this phenomenon is the high rate of L1 and L2 cache hits in
a typical workload, which in our experiments were consistently
above 93% for L1 Read and 92% for L2 Read. This observation
reinforces the idea that main memory using Memristor or PCRAM
still needs processor caches in order to avoid severe performance
penalties. Design proposals for caches using NVM are explored in
[5,17–19,30].

On the other hand, the implementation approach using mem-
ory persistence (Mnemosyne) is significantly faster than its coun-
terpart using file-based persistence in secondary storage. Indexing
the input text files using memory persistence is 1.5� faster using
Memristor and 7� faster using PCRAM. Search time is in average
more than 33� faster than its file-based counterpart.

The file-based approach using secondary storage is slower
because it must go through the I/O subsystem to perform durable
reads and writes. Operating systems typically use memory caches
for most I/O operations reducing the latency impact, but it is still a
significantly longer and more complex affair than simply issuing
load/store memory instructions. In our experiment, the index
operation using file-based persistence reads 7.9 MB from second-
ary storage, and writes 2.5 MB to it; the search operation reads in
average 2.3 MB from secondary storage, and writes 5 KB to it. The
in-memory approach, as the name implies, does not require I/O to
secondary storage.

Table 5
Execution times for experimental workloads, in seconds.

Approach Task DRAM Memristor PCRAM

File-based Index 550.83 771.22 726.44
File-based Search 1 13.24 20.65 13.26
File-based Search 2 13.36 19.75 13.34

Mnemosyne Index — 354.49 84.38
Mnemosyne Search 1 — 0.41 0.39
Mnemosyne Search 2 — 0.43 0.40

File/DRAM Mnem./Memristor Mnem./PCRAM

0.01

1

100

Index Search1 Search 2

Fig. 1. Comparison of File/DRAM vs. Mnemosyne/Memristor and Mnemosyne/
PCRAM task execution times (in s), using a logarithmic scale.

T. Perez et al. / Microelectronics Journal 45 (2014) 211–216214

5.3. Energy

The detailed energy consumption results for each execution can
be seen in Table 6. Fig. 2 highlights a comparison between the file-
based approach/DRAM and Mnemosyne using both Memristor and
PCRAM. The main impact of non-volatile memories (PCRAM and
Mnemosyne) is on the energy footprint of main memory, which is
significantly smaller in non-volatile technologies than DRAM, due
to the absence of energy consumption for refresh. Using Memris-
tor with memory persistence (Mnemosyne) consumes 33� less
memory energy than using DRAM/Disk with a file-based approach.

The main memory energy footprint is similar for the file-based
and in-memory approaches when using persistent main memory.
However, the overall energy consumption becomes significant
when we consider the energy used for secondary storage (HDD/
SDD), which is not modeled in this work.

When comparing Memristor and PCRAM as base technology for
persistent main memory, we observe that PCRAM has a slight
advantage regarding execution speed, given the latency para-
meters used in this study. However, Memristor is significantly
superior from the energy standpoint, with savings up to 15� less
consumption.

6. Related research

Other studies have evaluated the usage of emerging non-
volatile memory technologies as persistent main memory using
appropriate programming interfaces.

Mnemosyne [14] is a simple interface for programming with
persistent memory, allowing creation and management of such
memory and ensuring consistency in the presence of failures. Their
study considered OpenLDAP and TokyoCabinet (a key-value store) as
performance benchmarks and modeled PCRAMmemory. The current
study uses Mnemosyne as persistent memory programming inter-
face, adding Memristor modeling and considering energy impacts,
which were not part of the original Mnemosyne study.

NV-Heaps [31] is another framework for exploiting persistent
memory, allowing the declaration of non-volatile heaps containing
persistent objects. PCRAM and STT-MRAM technologies were
modeled using workloads that manipulated several data struc-
tures such as trees and hash tables for benchmarking performance.
The current study also models Memristor and considers energy
impacts.

To the best of our knowledge, the current study is the first that
evaluates the usage of PCRAM and Memristor using a memory
persistence programming interface and considering both timing
and energy aspects, as well as evaluating development effort and
complexity concerns.

7. Conclusion

This work presented an evaluation of a search engine applica-
tion running in a hypothetical computer with persistent main
memory, through the use of experimental models and simulations,
aiming to identify the major system-level impacts of persistent
main memory in latency and energy.

Our observations confirm the previous observations that main
memory using Memristor or PCRAM still needs processor caches in
order to avoid performance penalties. Overall performance of non-
volatile technologies such as main memory using memory persistence
programming interfaces (Mnemosyne) is considerably superior to
traditional file-based implementations on top of DRAM and
hard disks.

The energy footprint of non-volatile memory technologies as
main memory is significantly smaller than DRAM. In our experi-
ments, Memristor with memory persistence consumes 33� less
memory energy than using DRAM/Disk with a file-based approach.

One remaining challenge for using these technologies as main
memory is their low endurance. Wear leveling techniques such as
those described in [21,22,8,16] are expected to contribute positively.

The experimental results support the feasibility of employing
emerging non-volatile memory technologies such as persistent
main memory. Our study indicates that performance penalties
should be mild and energy improvements should be significant.

This study compared the development and execution of a
search engine application using both a traditional filesystem
approach and a memory persistence approach (Mnemosyne).
Current programming interfaces have separate abstractions for
handling memory (data structures) and secondary storage (files,
databases), and a good deal of development and processing effort
is directed towards moving data between these two layers.
Development using in-memory persistence produced less than
half lines of code and was more than 4� faster to develop than
using a file-based approach. These results support the case for
different approaches at software level, such as memory persis-
tence. However, in order to successfully replace traditional file-
system or database approaches, it is necessary to have memory
persistence frameworks that allow sharing data seamlessly
between different programs and languages, as filesystems and
databases do. This is a research problem that is still pending.

We conclude that in order to reap the major rewards poten-
tially offered by persistent main memory, it is worthwhile to take

Table 6
Energy consumption of experimental workloads, in J.

Technology Approach Task Dynamic Refresh Total

DRAM File-based Index 14.782 47.758 62.539
Search 1 0.818 1.148 1.966
Search 2 0.822 1.159 1.981

Memristor File-based Index 2.344 – 2.344
Search 1 0.018 – 0.018
Search 2 0.121 – 0.121

Mnemosyne Index 2.187 – 2.187
Search 1 0.007 – 0.007
Search 2 0.009 – 0.009

PCRAM File-based Index 36.226 – 36.226
Search 1 1.916 – 1.916
Search 2 1.878 – 1.878

Mnemosyne Index 34.670 – 34.670
Search 1 0.121 – 0.121
Search 2 0.130 – 0.130

0.00

0.01

0.10

1.00

10.00

100.00

Index Search 1 Search 2
File/DRAM Mnem./Memristor Mnem./PCRAM

Fig. 2. Comparison of File/DRAM vs. Mnemosyne/Memristor and Mnemosyne/
PCRAM total energy consumption (in J), using a logarithmic scale.

T. Perez et al. / Microelectronics Journal 45 (2014) 211–216 215

new programming approaches that do not conceptually distin-
guish main memory from secondary storage.

References

[1] B. Jacob, S. Ng, D. Wang, Memory Systems: Cache, DRAM, Disk, Morgan
Kaufmann Pub, 2007.

[2] G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan, R. Shenoy, Overview of
candidate device technologies for storage-class memory, IBM J. Res. Dev. 52 (4)
(2008) 449–464.

[3] T. Perez, N. Calazans, C. De Rose, A preliminary study on system-level impact
of persistent main memory, in: 13rd International Symposium on Quality
Electronic Design (ISQED), 2012, pp. 85–90.

[4] M. Kryder, C. Kim, After hard drives – what comes next? IEEE Trans. Magn. 45
(10) (2009) 3406–3413.

[5] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, Y. Chen, Circuit and microarchitecture
evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory
replacement, in: 45th ACM/IEEE Design Automation Conference (DAC), 2008,
pp. 554–559.

[6] D. Lewis, H. Lee, Architectural evaluation of 3D stacked RRAM caches, in: IEEE
International Conference on 3D System Integration (3DIC), 2009, pp. 1–4.

[7] J. Mogul, E. Argollo, M. Shah, P. Faraboschi, Operating system support for
NVMþ DRAM hybrid main memory, in: 12th Conference on Hot Topics in
Operating Systems, USENIX Association, 2009, p. 1–5.

[8] M. Qureshi, V. Srinivasan, J. Rivers, Scalable high performance main memory
system using phase-change memory technology, in: 36th Annual International
Symposium on Computer Architecture (ISCA), ACM, 2009, pp. 24–33.

[9] M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.
H. Seo, S. Seo, et al., A fast, high-endurance and scalable non-volatile memory
device made from asymmetric Ta2O5� x/TaO2�x bilayer structures, Nat. Mater.
10 (8) (2011) 625–630.

[10] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby, M. Salinga,
D. Krebs, S. Chen, H. Lung, et al., Phase-change random access memory: a
scalable technology, IBM J. Res. Dev. 52 (4.5) (2010) 465–479.

[11] R. Williams, How we found the missing memristor, IEEE Spectr. 45 (12) (2008)
28–35.

[12] D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found,
Nature 453 (7191) (2008) 80–83.

[13] J. Yang, M. Pickett, X. Li, D. Ohlberg, D. Stewart, R. Williams, Memristive
switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3
(7) (2008) 429–433.

[14] H. Volos, A. Tack, M. Swift, Mnemosyne: Lightweight persistent memory, in:
Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011, pp. 91–104.

[15] D. Roberts, J. Chang, P. Ranganathan, T. Mudge, Is Storage Hierarchy Dead? Co-
located Compute-Storage NVRAM-based Architectures for Data-Centric Work-
loads, Technical Report, HP Labs, 2010.

[16] P. Zhou, B. Zhao, J. Yang, Y. Zhang, A durable and energy efficient main memory
using phase change memory technology, in: 36th Annual International
Symposium on Computer Architecture (ISCA), 2009, pp. 14–23.

[17] C. Koh, W. Wong, Y. Chen, H. Li, The Salvage Cache: A fault-tolerant cache
architecture for next-generation memory technologies, in: IEEE International
Conference on Computer Design (ICCD), 2009, pp. 268–274.

[18] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, Y. Xie, Hybrid cache architecture
with disparate memory technologies, in: 36th Annual International Sympo-
sium on Computer Architecture (ISCA), ACM, New York, NY, USA, 2009, pp. 34–
45.

[19] X. Wu, J. Li, L. Zhang, E. Speight, Y. Xie, Power and performance of read-write
aware hybrid caches with non-volatile memories, in: Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2009, pp. 737–742.

[20] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Haallberg,
J. Hogberg, F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation
platform, IEEE Comput. 35 (2) (2002) 50–58.

[21] B. Lee, E. Ipek, O. Mutlu, D. Burger, Architecting phase change memory as a
scalable dram alternative, ACM SIGARCH Comput. Archit. News 37 (3) (2009)
2–13.

[22] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, D. Burger, Phase-
change technology and the future of main memory, IEEE Micro 30 (1) (2010)
143.

[23] P. Ranganathan, From microprocessors to nanostores: rethinking data-centric
systems, IEEE Comput. 44 (1) (2011) 39–48.

[24] S. Thoziyoor, N. Muralimanohar, J. Ahn, N. Jouppi, CACTI 5.1, HP Laboratories,
April 2008.

[25] X. Dong, C. Xu, Y. Xie, N.P. Jouppi, Nvsim: a circuit-level performance, energy,
and area model for emerging nonvolatile memory, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 31 (7) (2012) 994–1007.

[26] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,
Cambridge University Press, 2008.

[27] E. Martinian, Open Source Red-Black Tree 〈http://web.mit.edu/�emin/www.
old/source_code/red_black_tree/index.html〉, 2013 (accessed 2013-04-09).

[28] University of Sidney, Shakespeare Corpus 〈http://sydney.edu.au/engineering/
it/�matty/Shakespeare/〉, 2013 (accessed: 2013-04-09).

[29] G. Dhiman, R. Ayoub, T. Rosing, PDRAM: A hybrid PRAM and DRAM main
memory system, in: 46th ACM/IEEE Design Automation Conference (DAC),
IEEE, 2009, pp. 664–669.

[30] S. Sardashti, D.A. Wood, Unifi: leveraging non-volatile memories for a unified
fault tolerance and idle power management technique, in: 26th ACM Inter-
national Conference on Supercomputing (ICS), 2012, pp. 59–68.

[31] J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta, R. Jhala, S. Swanson, Nv-
heaps: Making persistent objects fast and safe with next-generation, non-
volatile memories, in: Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2011, pp. 105–
118.

T. Perez et al. / Microelectronics Journal 45 (2014) 211–216216

http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref1
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref1
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref2
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref2
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref2
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref4
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref4
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref9
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref10
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref10
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref10
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref11
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref11
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref12
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref12
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref13
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref13
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref13
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref20
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref20
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref20
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref21
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref21
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref21
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref22
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref22
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref22
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref23
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref23
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref25
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref25
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref25
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref26
http://refhub.elsevier.com/S0026-2692(13)00258-9/sbref26
http://web.mit.edu/~emin/www.old/source_code/red_black_tree/index.html
http://web.mit.edu/~emin/www.old/source_code/red_black_tree/index.html
http://web.mit.edu/~emin/www.old/source_code/red_black_tree/index.html
http://sydney.edu.au/engineering/it/~matty/Shakespeare/
http://sydney.edu.au/engineering/it/~matty/Shakespeare/
http://sydney.edu.au/engineering/it/~matty/Shakespeare/

	System-level impacts of persistent main memory using a search engine
	Introduction
	Emerging memory technologies
	Phase-change RAM (PCRAM)
	Memristor

	Persistent main memory
	Experimental setup
	Simulation environment
	Workload
	Corpus

	Results and discussion
	Implementation approach
	Execution time
	Energy

	Related research
	Conclusion
	References

