
Applying Virtualization and System Management in a Cluster to Implement an
Automated Emulation Testbed for Grid Applications∗

Rodrigo N. Calheiros, Mauro Storch, Everton Alexandre, César A. F. De Rose
Pontificial Catholic University of Rio Grande do Sul

Porto Alegre, Brazil
{rcalheiros,storch}@inf.pucrs.br,{everton.alexandre,cesar.derose}@pucrs.br

Marcus Breda
HP Brazil R&D

Porto Alegre, Brazil
mbreda@hp.com

Abstract

Although grid systems have evolved in such a way that
they are largely used both in industry and academy, tech-
niques to test and evaluate them, such as simulation and
emulation, have limitations on both their applicability and
their reliability. We are investigating the utilization of par-
avirtualization techniques merged with systems manage-
ment tools to build an automated emulation framework for
grid experiments. This framework accesses standard net-
work resources to manage communication among virtual
nodes, allowing virtual machines to behave like a real grid
environment. The development of this framework involves
the mapping of virtual machines to physical hosts, auto-
matic deployment and management of virtual machines, au-
tomatic configuration of virtual network and experiment
control. In this paper, we address these issues and present
results demonstrating the feasibility and advantages of our
approach.

1. Introduction

Grid computing has become an important technology for
both academy and industry. Several projects rely on grid to
provide processing power to their experiments. Moreover,
enterprise grids are becoming an alternative to comply with
internal demand of resources of many companies. However,
as the interest in grid research and utilization rises, so do the
complexity of researched systems.

Intricate issues that arise when running grid experiments
concern resource access and replication of experiments be-

∗This work was developed in collaboration with HP Brazil R&D.

cause of the lack of control over the elements spread among
several administrative domains that interfere in the tests.
An alternative approach to grid experimentation is simula-
tion [12, 22], which simplifies the low-level details of the
environment in order to represent high-level aspects of the
system in a reasonable time, at the cost of loss of accuracy
of the experiment results.

Another approach for experimentation of grid systems is
emulation [17]. In this approach, real applications run in a
testbed which emulates the behavior of real grid infrastruc-
tures. The drawback of system emulation is that it requires
a complex software stack encompassing emulation, control-
ling of physical resources, simulation of some system struc-
tures, and sometimes modification in the operating system
supporting the testbed. Emulation may also require unusual
hardware to adequately host the experiments.

These disadvantages of emulation can be avoided if vir-
tualization [20] tools were used to simplify the emulation
software. In this approach, the Virtual Machine Monitor
(VMM) controls the resources multiplexing, and the emula-
tion software uses VMM services to generate and configure
virtual nodes. However, currently available virtualization-
based emulation tools require that users configure the vir-
tual environment, either by direct operation of the VMM
or by the use of some virtualization-support tool. In both
cases, it is required that the user learn how to use these ex-
tra tools.

To circumvent this limitation, we present an automated
emulation framework for grid computing experiments. To
achieve such a goal, two main aspects were addressed (i) ap-
plication of systems management protocols [11, 21] to au-
tomate the installation and execution of experiments, and
(ii) solution of the mapping problem of virtual machines

20th International Symposium on Computer Architecture and High Performance Computing

1550-6533/08 $25.00 © 2008 IEEE

DOI 10.1109/SBAC-PAD.2008.12

97

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

(VMs) to hosts as well as the mapping of virtual links be-
tween virtual machines to real paths among hosts. To the
best of our knowledge, no emulation tool based in virtual-
ization addresses both these issues.

2. Virtualization and Paravirtualization

In this paper, the word virtualization is used with the
meaning of system virtualization. This is the technique that
allows a single computer to host one or more virtual ma-
chines (VMs). Each VM runs a complete operation sys-
tem. Each operating system has its own memory area, CPU
time, system resources and so on. However, resources used
by the virtual machine’s operating system are only a sub-
set of the overall resources of the host. Sharing and access
control of resources are provided by a software layer be-
tween hardware and VMs called Virtual Machine Monitor
(VMM) [20].

Operating systems running over a VMM were developed
for a given hardware platform and do not have to be mod-
ified to run in a virtual environment. However, to increase
system performance, it is possible to apply the technique
called paravirtualization, where the operating systems run-
ning over the VMM are adapted to become aware of the
virtual environment. Recent hardware-assisted virtualiza-
tion [14] allows unmodified operating systems to run over
paravirtualization software.

The VMM used in our prototype is Xen [3], a paravirtu-
alization software. In Xen terminology, VMs are known as
domains. One of such domains – called dom0 – is a privi-
leged domain that manages other domains as well hosts the
real device drivers. The other domains – called domU –
do not have direct access to hardware. Instead, the device
drivers running on these domains only forward requests to
the real device drivers in dom0.

When a VM in Xen is created, the amount of memory
of the VM must be defined. This value can be dynamically
changed via dom0. The CPU usage is controlled with both
the assignment of virtual processors to virtual machines and
the definition of the length of the CPU time slice to each
VM.

Xen network architecture presents a set of real and vir-
tual components. Xen’s dom0 is responsible not only for the
management of this components but also for the support of
network communication among virtual machines. Virtual
switches are used in dom0 to connect both real and virtual
interfaces. A virtual machine can have one or more virtual
interfaces connected by one or more virtual switches. These
virtual switches can run in one of three modes: bridge,
router, and NAT.

Figure 1. Emulator architecture.

3. The Automated Emulation Framework

The Automated Emulation Framework architecture is
represented in Figure 1. The target architecture of the
framework is a cluster of workstations. The emulator runs
in the cluster frontend. The cluster nodes can be either ho-
mogeneous or heterogeneous, and they can be connected by
any network topology. The VMM is mandatory only in the
cluster nodes (it is not required that the cluster frontend run
a VMM), and all the nodes must run the same version of it.
Each module of the framework interacts with one compo-
nent of the virtualized system. This interaction is explained
in Section 3.2.

3.1. Installation and Configuration Work-
flow

The first step to run an experiment in the proposed frame-
work is the installation and configuration of the virtual grid.
It is done according to the workflow presented in Figure 2.

The system input is the description of the virtual environ-
ment and the experiment, supplied by the user via a graph-
ical user interface. The description of the cluster is known
by the emulator and includes information about the network
(e.g., cluster network topology), specification of each ma-
chine (e.g., their capacity, amount of RAM memory avail-
able, and network addresses), version of the virtualization
software in use, and amount of physical resources in use by
the VMM on each machine. The description of the virtual

98

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Installation and configuration work-
flow.

system supplied by the user contains the sites, virtual hosts
belonging to each site, its configuration, and network char-
acteristics.

A Mapper module, described in the next section, uses
the user input to determine both where each VM will run
and the physical path that will correspond to each virtual
link between virtual nodes. After the specification of the
target environment, the Deployer module automatically in-
stall the equivalent virtual grid and starts virtual machines
on the hosts (i.e., the cluster nodes). Afterward, the Net-
work Manager module configures the network environment
to comply with user demands. After these steps the virtual
grid is built and the required experiment is started by the
Experiment Manager.

3.2. Framework Components

This section describes each component of the proposed
emulation framework.

3.2.1 Mapper

Mapping of virtual resources to real resources is a key issue
not only for emulation software, but also for several virtu-
alization projects. The mapping problem, in the context of
emulation, is addressed in [19], namely the solver assign.
However, because our approach uses also virtualization, we
must consider variables that the basic problem does not con-
sider: assign, for instance, does not consider utilization
of memory, CPU, and other physical resources in its assign-
ments.

In [23], the problem of setting virtual routes representing
real links between machines is formalized and proved to be
an NP-Hard problem. Thus, solutions for this problem must
be addressed with the use of heuristics. The requirements of
a solver for the mapping problem in the context of our work
are the same requirements presented by Ricci et al. [19]:

(i) the problem must be solved in a short period of time,
avoiding that a significant part of the experiments time be
spent in this stage, and (ii) the solver must reduce the overall
usage of physical resources for a single mapping, allowing
multiple executions of experiments at the same time (space
sharing).

The current heuristic in use in the Mapper module is a
greedy heuristic that tries to reduce communication among
hosts, placing guests with links between them in the same
host, if possible, or randomly choosing a host otherwise.
Development of new heuristics and methods to test and
evaluate them are research subjects of this project.

3.2.2 Deployer

After mapping the guests to the hosts, it is necessary to start
the virtual machines in the selected hosts. The Mapper gen-
erates an abstract representation of the virtual environment.
Afterward, the Deployer module translates this internal rep-
resentation to a representation understandable by a VMM
deployment tool, which will load and configure each VM in
the hosts selected by the Mapper.

This module is composed of two parts: the first one, the
Converter, translates the internal representation of the vir-
tual grid to the language of the specific deployer. The sec-
ond part, the Actor, transmits to the VMM the instructions
generated by the Converter. The Actor can be an external
deployment tool or can be a module from the emulator.

The Deployer module is the emulator component that
provide support to different VMMs. Because it is the only
framework module that interacts directly with the VMM,
different VMMs could be used if a module translating the
framework internal virtual environment representation into
the language of the new deployment tool were added to it.
In our current implementation, the VMM currently in use
is Xen [3], and the deployment is made with the XSM [9]
tool.

3.2.3 Network Manager

The Network Manager module has two functions. The first
one is to provide the grid behavior for the virtual machines
taking part in the emulation. To provide such a behavior,
the module must provide isolation among VMs that virtu-
ally belongs to different networks. This module must also
generate the network conditions required by the user. Typi-
cally, it means to set the bandwidth and the latency between
guests in such a way that the communication behaves like a
wide area network.

The second function of this module is to offer “virtual
services” to the virtual environment. These services are
confined DHCP and DNS servers that run as threads of the
emulator and avoid the use of real DHCP and DNS servers
to attend virtual nodes.

99

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

The automatic configuration of the environment is made
with the Simple Network Management Protocol (SNMP)
[21]. This protocol was chosen because it is a fast and
simple system management protocol, even though power-
ful enough to support the low level configuration required
by the module.

The Network Manager Module implements the SNMP
manager, while the SNMP agents run in the VMM on each
cluster node. The agents receive SNMP operations from
the manager and perform the received configuration in their
hosts. The possible configuration include applying network
isolation and setting of network link parameters such as
bandwidth and latency.

In our prototype we use Xen, where the configuration is
applied with iptables configuration rules. It is done in
the dom0, a special domain that has high privileges access-
ing the system.

To use other VMM, only the SNMP agent must be ported
to it. Porting the SNMP agent means translating each con-
figuration operation executed by the Xen agent to the equiv-
alent operation in the target VMM.

3.2.4 Experiment Manager

The Experiment Manager controls the execution of the ex-
periment, according to the description supplied by the user.
This module must address issues such as how the applica-
tions will be configured, how it will be started and stopped,
and how the results of the execution will be returned to the
users.

Regarding application configuration, this issue is trivial
in a virtualization-based environment: both the application
and their configuration must be present in the operating sys-
tem image being loaded in the virtual machine. This way,
loading an experiment means loading a set of pre-built vir-
tual machine images stored in a place accessible by the em-
ulation system.

The other issues, start and stop of applications and re-
trieval of results, are currently being addressed with the use
of the WBEM system management protocol [11]. WBEM
was chosen to be used in this module because, unlike the
SNMP, it is able to control high-level applications, in spite
of being slower and more complex than SNMP.

The Experiment Manager implements the WBEM client,
while the WBEM provider is present in the virtual ma-
chine image. Thus, replacement of VMM does not require
changes neither in the Experiment Manager Module nor in
the WBEM provider. It is required, however, an implemen-
tation of the WBEM provider for each operating system
running in the VMs.

4. Testing Grid Applications

Testing grid applications is not an easy task and involves
many variables that directly affect the application. One of
the main points to guarantee a good quality assurance test-
ing [16] is being able to replicate and reuse the same run-
ning environment. Our emulator allows it, using virtualiza-
tion to build the grid environment.

Testing can be mapped in a matrix with levels and
techniques. Four different testing levels are presented in
[16]: component, integration, system, and acceptance. We
believe that our solution brings a great improvement on
system-level tests, being an interesting platform for scala-
bility and fault tolerance tests.

Scalability test may be very limited using only physical
systems due to limited hardware resources present in a test-
ing environment. A virtualized environment allows mea-
surements regarding the system behavior with more nodes
than the available in the physical environment.

Another relevant achievement in our solution is the pos-
sibility to apply fault tolerance testing, especially when it is
necessary to simulate a fail of a node, or when it is required
to introduce network interference (such as huge latencies)
or even when the intention is to verify the behavior of a sys-
tem with slow nodes.

Performance testing is not easily applied in virtualized
environments because it adds an extra layer that degrades
system performance.

5. Evaluation

In this section, we present a series of tests that show the
feasibility and advantages of our approach for grid emula-
tion. The cluster hosting the virtual grid is composed of
8 Pentium 4 2.8GHz with 1MB of cache and 2560MB of
RAM memory. Cluster machines are connected by a dedi-
cated Fast Ethernet switch. Machines run Xen VMM 3.1,
and the Xen’s dom0 uses 328MB of the available RAM
memory. Thus, 2232MB were available to the guests on
each host. No network traffic but the one generated by this
experiment was present in the physical environment during
the tests.

5.1. Evaluating Network Emulation

Our first test had the goal of evaluating the effectiveness
of our network bandwidth control. In this test we considered
both communication between VMs hosted in a same host
(referred as local) and communication between VMs hosted
in different machines (referred as remote).

To evaluate bandwidth emulation, a 300MB file was
transmitted in each case (local and remote VMs), and the
bandwidth between sender and receiver varied on each test.

100

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Network bandwidth between local
and remote VMs.

Secure Copy Protocol was used to transmit the file among
the nodes. Data obtained in this test were used to compute
the average latency.

Figure 3 shows the result of this test. In this figure, hor-
izontal axis represents the demanded value of bandwidth,
and the vertical axis represents the observed bandwidth in
the measurements. Each point in the figure represents an
average of 100 samples, with a standard deviation of 2%.
The straight line represents the configured value (this is the
expected value if the configurator had an accuracy of 100%)
for the bandwidth. The dotted lines represent the values of
bandwidth obtained in each of the test scenarios (local and
remote communication).

The deviation from the configured value to the measured
value increases as the desired bandwidth increases, both in
local and remote communication. This effect is caused by
the bandwidth control mechanism, whose operation over-
head increases with the increase of the configured band-
width value. Thus, for low bandwidth values the overhead
are negligible, while for high bandwidth values it has a
higher effect in the system. In a distributed environment,
low values of bandwidth are more common than high val-
ues, so in the most experiments this approach will generate
a low deviation in the obtained bandwidth.

To evaluate latency emulation, ICMP echo/request pack-
ages were transferred between both local and remote VMs.
Each test sent and received 1000 ICMP packages, and the
average value of the 1000 values composes one sample.
From this data the average latency was calculated and pre-
sented in Figure 4.

Figure 4 shows the results of the test. In this figure, hor-
izontal axis represents the demanded value of latency, and
the vertical axis represents the observed latency in the mea-
surements. The straight line represents the configured value
for the latency. The dotted lines represent the values of la-
tency obtained in each of the test scenarios (local and re-
mote communication). Each point in the figure represents
an average of 32 samples, with a standard deviation smaller
than 1%. It is noticeable that the obtained latency values
have a higher deviation from the configured value to lower
latency values.

Figure 4. Network latency between local and
remote VMs.

The deviation decreases as the latency value increases.
This effect is caused by the latency control mechanism, that
causes an overhead almost constant, independent of the con-
figured value of the latency. So, the impact of this overhead
is greater for low values of latency than for higher values.
In distributed environments, high values of latency are more
common than low values, so in most cases this approach
will also generate low deviation.

5.2. Running a Grid Experiment

The next test aimed at show the capacity of our emula-
tion framework to successfully run a grid application. The
grid middleware used was the OurGrid [8]. In the OurGrid
system, each peer is responsible for communicating with
other peers in order to get resources to comply with its lo-
cal demands and also to provide resources to other peers, in
an economic model known as network of favors [1]. Grid
resources, which run the software named UserAgent or the
one named SWAN, are supplied to grid users, through the
MyGrid scheduler.

The virtual environment built in the test is composed
of three sites, each one containing a proxy which is con-
nected to the other proxies, as shown in Figure 5. Each site
has a different number of hosts. The bandwidth between
each site is 1Mbps. The total number of virtual machines
was 32, each one with 256MB of RAM memory. The ma-
chines labeled vm00 on each virtual site are the OurGrid
peers, and they are responsible for communicating with
other peers in order to get machines to meet their users’ de-
mands. Peers discover each other through the corepeer
component, which run in site 1, in the same VM running the
OurGrid’s peer. Each VM belonging to a site has access
to the other VMs belonging to the same site, emulating an
Ethernet LAN.

One machine in each site is used to run the applica-
tion. These machines run the MyGrid component of the
OurGrid, accessing the grid through the peer in the same
site where the user is located. The rest of the machines
in the sites are worker machines (GuMs in OurGrid termi-
nology) and run the UserAgent component of OurGrid,

101

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Virtual grid environment built for the
tests.

being able this way to execute grid tasks. No other services
besides the OurGrid components were running in the VMs
used in the experiment during these tests.

Three users, each one located in a virtual site, run an ap-
plication. The application is composed of 20 tasks. Each
task stages in 1 MB of data, sleeps during 10 minutes and
stages out 1MB of data. In order to provide more data trans-
fer among sites, applications were configured to run in a site
different from the one they were triggered. So, for example,
tasks from the user 1, located at site 1, can only run on sites
2 and 3. All the applications were triggered at the same
time.

The mapping generated by the mapper is represented by
the dotted lines around the nodes in Figure 5. As expected,
the mapper was able to place 8 virtual machines in each
host. Thus, only 4 from the 8 available physical hosts were
used in this test.

In order to validate the environment, the OpManager net-
work manager [15] was used to discover the network topol-
ogy of the virtual environment. The three sites were cor-
rectly identified. Virtual machines belonging to each site
were correctly identified as well. No direct access was pos-
sible between machines hosted in the same host but belong-
ing to different sites. The three grid jobs successfully exe-
cuted in the environment. Due to OurGrid scheduling char-
acteristics, some of the resources were preempted to be do-
nated to another user. Even though, the jobs completed after
4 resources preempted from user 1, 3 resources preempted
from user 2, and none from user 3. User 1 received 18 re-
sources, user 2 received 10 resources and user 3 received 11
resources. As tasks finished their execution in different mo-
ments, some resources were relocated to another user, that
explains why the sum of resources used is greater than the
amount of resources in the environment.

5.3. Modifying Experiment Behavior

We were able to use the same grid environment used in
the previous test to perform another grid experiment. In
this new experiment, three users executed the same job pre-
sented in the last section. However, this time all the users
were located in the site 1. Thus, only resources from sites 2
and 3 were used. This test did not require a new installation
and configuration process. It was only necessary to run the
user application from the new site.

Modification of experiment behavior without building a
new environment is a very useful feature of our emulation
framework, because it allows not only a quickly observation
of the effects of different conditions in the grid application,
but also a quickly reuse of the environment. As stated in
Section 4, replication and reuse of running environments
are key points to good quality assurance tests. So, this ex-
periment shown that our framework allows users to have
effective quality assurance tests.

5.4. Scaling the Virtual Grid

Next, we tested the scalability of the environment. We
successfully scaled the grid from 32 to 128 machines, using
all the cluster nodes and reducing the amount of memory of
each VM from 256MB to 128MB. To run this new experi-
ment, the previous experiment was removed from the clus-
ter and a new installation and configuration process were
run. The new machines were equally distributed between
site 2 and site 3. The three users were in the same site, as in
the previous experiment.

It shows that our emulation framework effectively sup-
ports scalability test. As pointed in Section 4, these tests
are limited in physical systems. As our proposal is able to
circumvent this restriction of physical systems, it emerges
as an interesting alternative for performing scalability tests.

5.5. Comparing to a real-world experiment

To compare results of an emulated experiment to a
real-world experiment, we emulated the measurement of
makespan of jobs running in a OurGrid grid using the SRS
scheduler [4]. The environment used for the real world test
is composed of 50 machines in 2 OurGrid sites, each one
located 4000 Km apart. One site has been used as a re-
source consumer, and the other has been used as a resource
provider, which hosted a cluster whose machines have been
opportunistically delivered to the grid. The supplier had 48
grid machines plus one OurGrid peer. The consumer site
had only one machine, which contained both the peer and
the MyGrid scheduler.

The grid job executed in both experiments contains 12
tasks, each one sending a file, executing a sleep call of 5

102

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

Table 1. Observed makespan of jobs running
in a real environment and in the emulated en-
vironment.

File size Real Emulated Deviation
0 313s 309s 1.28%

100kB 398s 387s 2.76%
1MB 1283s 1227s 4.36%
10MB 10100s 9138s 9.52%

minutes, and receiving a file of the same size of the file
sent. The job was executed 4 times: the first one without file
transferring and the others with different file sizes: 100KB,
1MB, and 10MB. To simulate the dynamism of a grid en-
vironment, resources are randomly removed from the grid
every 10 minutes.

The network parameters used in the virtual network were
obtained with the observation of the bandwidth obtained in
a data transfer using scp (for the bandwidth) and with the la-
tency measured by the hping2 tool, which were respectively
2Mbps and 200ms.

Table 1 presents the observed makespan of the job in
both real and virtual environment. It is also shown the de-
viation, e.g., the percentage’s difference between the result
observed in the real environment and the result from the
emulated environment. The deviation between the real and
emulated results were less than 10% for all the cases. How-
ever, this value increases with the size of the file being trans-
ferred. It happens due to the cumulative error in the network
emulation: when small files are transferred, the network is
less demanded, and the difference between the real and the
virtual network becomes smaller. However, the emulated
network is “faster” than the real network. So, when larger
files are transferred, the difference between the emulated
and the real network causes a bigger influence in the results
of the experiment.

There are several causes of the deviation in the emulated
and real networks. Some of them are the following:
Error in the acquisition of network parameters: Mea-
surement of network parameters (latency and bandwidth) is
a difficult task, specially when it involves machines belong-
ing to different administrative domains, in which common
methods to evaluate it (e.g., ICMP echo request to measure
latency) are blocked by systems administrators. To circum-
vent it, we used tools running in the application layer. So, it
is expected an inaccuracy in the values used to set the em-
ulated environment. It is possible to reduce the error using
more accurate methods to acquire bandwidth and latency
values.
Fluctuation in the real network traffic: The network pa-
rameters are not static, and variation in the network traffic
led to variation in the available latency and bandwidth. So,

the values of latency and bandwidth we measured had var-
ied during the execution of the real environment. In the
emulated environment, on the other hand, these parameters
were statically defined. In spite of being possible to ap-
ply techniques to insert variation in the experiment, it was
not made in this early evaluation. This fluctuation can be
injected in the experiment in the following way. The user
supplies the demanded value of latency and bandwidth in
the form of a probability distribution. Then, periodically the
Network Manager reconfigures network links with a value
randomly selected according to the probability distribution.
This way, it is possible to decrease the deviation between
real and emulated experiments.
Error in the network emulation: Finally, there are also
differences between the configured network parameters and
the values obtained in the emulated network, as shown in
Section 5.1. However, as presented in the same section, in
spite of the network mechanism interfere in the emulation,
this interference is not critical in the presented evaluation.

Even though all those factors can interfere in the results,
we were able to get results that are close to the ones ob-
served in the real experiment. As the results in Table 1
suggest, the error tends to accumulate in time. So, short-
time experiments tend to have better results than long-time
experiments. Nevertheless, even an experiment that took al-
most 3 hours to complete in a real environment presented an
deviation below 10%, what shows that, in spite of being a
prototype, the emulation framework presented in this paper
is able to successfully emulate grid systems.

6. Related Work

Several researchers have been developed grid and dis-
tributed systems emulation testbeds. Emulab [10], is one
well-succeeded project in this area. It uses BSD jail in
a network-complex environment to multiplex virtual hosts
into physical nodes. Our approach, in spite of supporting
only a subclass of the experiments supported by Emulab,
can run in regular clusters, and requires less complex soft-
ware to run, as it exploits capabilities of VMM software.

Another recent approach for distributed systems emula-
tion is the NET emulator [13], which allows emulation of
distributed and ad-hoc networks through the modification
of the operating systems network stack. This kind of ap-
proach restricts the diversity of environments being emu-
lated to the ones whose operating system is exactly the same
modified one. Approaches using paravirtualization (as the
one presented in this paper) are expected to be freed from
this limitation as more virtualization-enabled hardware be-
come available in physical environments.

Several projects apply VMM to support emulation of
grids and other distributed systems in a distributed environ-
ment, such as V-DS [18], V-eM [2], TestGrid [7], and NEP-

103

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

TUNE [5]. However, all of them lack in offer either auto-
matic mapping of guests in hosts with arbitrary topology or
automatic building and execution of arbitrary experiments.

Both V-DS and NEPTUNE require that users perform
deployment and configuration of the guests. The later is
able to perform the mapping, while the former requires that
users choose the host for every guest. V-eM supports only
low level experiments (such as network protocol tests) in
switched homogeneous clusters. TestGrid does not support
network emulation, and requires that users choose the host
for every guest, which can be configured and deployed with
the GridBuilder [6] tool.

7. Conclusion and Future Work

In this paper we investigate the utilization of virtual-
ization techniques combined with systems management to
build an automated emulation framework for grid experi-
ments. This approach allows the configuration of a set of
virtual machines in such a way that they behave as a grid
infrastructure described by the user, implementing a con-
trolled and scalable environment to test grid software.

The main difference of our work and other emulators
based in virtualization technology is the ability to not only
automatically create, configure, and deploy the environment
but also automatically run the experiment. This is possible
with a modularized framework based on resource manage-
ment standards like SNMP and WBEM.

In spite of being a prototype, the framework presented in
this paper was able to successfully emulate a grid infrastruc-
ture, allowing the user to run a grid experiment, reproduce
the experiment with different user behaviors, and to scale
the environment. We believe it is already a very interesting
alternative to traditional techniques for testing and evalua-
tion of grid applications.

As future work, we will further investigate the adaptive
emulation and the mapping strategies applied in the frame-
work.

References

[1] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray. Auto-
matic grid assembly by promoting collaboration in peer-to-
peer grids. Journal of Parallel and Distributed Computing,
67(8):957–966, 2007.

[2] G. Apostolopoulos and C. Hassapis. V-eM: A cluster of
virtual machines for robust, detailed, and high-performance
network emulation. In 14th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2006.

[3] P. Barham et al. Xen and the art of virtualization. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems
Principles, 2003.

[4] R. N. Calheiros, T. Ferreto, and C. D. Rose. Scheduling
anf management of virtual resources in grid sites: the site
resource scheduler. Parallel Processing Letters, 2008.

[5] R. Canonico et al. Virtualization techniques in network em-
ulation systems. In Workshop on Virtualization/Xen in HPC
Cluster and Grid Computing Environments, 2007.

[6] S. Childs, B. Coghlan, and J. McCandless. GridBuilder:
A tool for creating virtual grid testbeds. In Proceedings of
the Second IEEE International Conference on e-Science and
Grid Computing, 2006.

[7] S. Childs et al. A virtual TestGrid, or how to replicate a
national grid. In The 15th IEEE International Symposium on
High Performance Distributed Computing (CDROM), 2006.

[8] W. Cirne et al. Labs of the world, unite!!! Journal of Grid
Computing, 4(3):225–246, 2006.

[9] F. Franciosi et al. Deploying and managing Xen sites with
XSM. In Workshop on Virtualization/Xen in HPC Cluster
and Grid Computing Environments, 2007.

[10] M. Hibler et al. Feedback-directed virtualization techniques
for scalable network experimentation. Technical Note FTN-
2004-02, University of Utah Flux Group, 2004.

[11] C. Hobbs. A practical approach to WBEM/CIM manage-
ment. Auerbach, 2004.

[12] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: the SimGrid simulation framework. In
Proceedings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2003.

[13] S. Maier, D. Herrscher, and K. Rothermel. Experiences with
node virtualization for scalable network emulation. Com-
puter Communications, 30(5):943–956, 2007.

[14] G. Neiger et al. Intel virtualization technology: Hardware
support for efficient processor virtualization. Intel Technol-
ogy Journal, 10(3):167–177, 2006.

[15] OpManager. OpManager. http://www.opmanager.
com/, 2008.

[16] J. F. Peters and W. Pedrycz. Distributed Systems: Concepts
and Design. Wiley, 1999.

[17] B. Quétier and F. Cappello. A survey of grid research tools:
simulators, emulators and real life platforms. In 17th IMACS
World Congress on Scientific Computation, Applied Mathe-
matics and Simulation (CD-ROM), 2005.

[18] B. Quétier, M. Jan, and F. Cappello. One step further in
large-scale evaluations: the V-DS environment. Research
Report RR-6365, INRIA, 2007.

[19] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the net-
work testbed mapping problem. ACM SIGCOMM Computer
Communication Review, 33(2):65–81, 2003.

[20] J. E. Smith and R. Nair. Virtual Machines: Versatile plat-
forms for systems and processes. Morgan Kauffmann, 2005.

[21] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and
2. Addison Wesley, 3 edition, 1999.

[22] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. Con-
structing a grid simulation with differentiated network ser-
vice using GridSim. In Proceedings of the 6th International
Conference on Internet Computing, 2005.

[23] A. I. Sundararaj et al. An optimization problem in adap-
tive virtual environments. ACM SIGMETRICS Performance
Evaluation Review, 33(2):6–8, 2005.

104

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:15:01 UTC from IEEE Xplore. Restrictions apply.

