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Abstract

Distributed systems emulators built with the aid of virtu-
alization tools allow testing of systems in a testbed whose
number of real elements are orders of magnitude smaller
than the number of virtual elements being tested. How-
ever, to allow testers to benefit from these systems, opera-
tion of the virtual environment should be hidden from them
and performed automatically by the emulator. Moreover,
testers may be unsure on the exact needs of their environ-
ment, and thus can request an environment that does not
fit the experiment. In this paper we present our achieve-
ments in providing an emulation framework able to provide
environment reconfiguration if the requested one does not
comply with experiment’s demands. Also, it supplies ser-
vices such as execution log, environment monitoring, and
automatic management of applications running in the vir-
tual environment.

1. Introduction

Although research and development in subjects such as
grid computing [8], utility computing [13], and cloud com-
puting [3] has grown noticeably in the last years, testing
of applications for these distributed environments is still a
challenging task. This is mainly because these topics de-
mand access to distributed resources where no entity has
control over all the components of the system. Moreover,
availability of these resources can vary along the time. This
lack of control and access over third-party resources limits
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both the cases that can be covered during the test and the
possibility of reproduction of tests.

To overcome such limitations of tests in real environ-
ments, several distributed system emulators built upon vir-
tualization technology were proposed [1,4,5,7,9,12]. These
projects aim at delivering a scalable and controlled testbed
where a tester can evaluate the behavior of the actual sys-
tem. The main advantage in using virtualization to develop
emulation tools is that it allows a simpler implementation of
the emulator because issues related to host resources (e.g.,
memory, CPU time) multiplexing and network multiplexing
are performed by the virtual machine monitor (VMM). A
VMM enforces multiplexing of resources by managing the
distribution and sharing of resources among isolated virtual
machines (VM).

A major drawback in the effective use of emulators to
test distributed systems relates to usability, since most ap-
proaches require that testers directly operate the platform.
As a result they must know how to use virtualization tools
to configure both virtual machines and the virtual network.
Also, testers must specify the amount of resources required
by each entity. However, testers may be unsure on the exact
needs of their environment, which can lead to a poor choice
of VM configuration parameters. Bad choices compromise
the scalability of the experiment (due to overestimation of
VM and/or network requirements) or cause concurrency ef-
fects because of the lack of physical resources (due to un-
derestimation of VM and/or network requirements).

To circumvent these issues, we present in this paper an
architecture that enables self-managed emulation of dis-
tributed systems. Our architecture also enables the dynamic
reconfiguration of the emulated environment during the ex-
ecution of the experiment in order to get the most effective
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Figure 1. Automated Emulation Framework
architecture.

use out of the available physical resources. It implements
services such as an execution log, environment monitoring,
and automatic management of applications running in the
virtual environment. These features run automatically in a
cluster of workstations.

2. Automated Emulation Framework

The work presented in this paper is part of the Automated
Emulation Framework [4], whose architecture is presented
in Figure 1. The target architecture of the framework is a
cluster of workstations. The control software runs in the
cluster frontend. Cluster nodes can be either homogeneous
or heterogeneous, and they can be connected by any net-
work topology. The Virtual Machine Monitor software is
required only in the cluster nodes, and all the nodes must
run the same version of it. Each module of the framework
interacts with one component of the virtualized system.

The system receives from tester as input descriptions of
the virtual environment and of the experiment. Cluster de-
scription is known by the system and includes information
about network (e.g., cluster network topology), specifica-
tion of each machine (e.g., their capacity, amount of mem-
ory available, and network addresses), version of virtual-
ization software in use, and amount of physical resources
in use by virtual machine monitors on each machine. De-
scription of the virtual environment supplied by the tester

Figure 2. Self-managed adaptive infrastruc-
ture. Boxes represent modules. Also, it is
shown the role of each component in the re-
configuration process.

contains the nodes in such environment, their configuration,
and configuration of connections between elements. De-
scription of the experiment contains applications that run
on each node, its parameters, and lower and upper bounds
of resource usage by both virtual and physical resources.

In the environment building cycle, the Mapper module
uses the tester input to determine both where each VM will
run and the physical path that will correspond to each vir-
tual link between virtual nodes. This mapping is used by
the Deployer and Network Manager to create the virtual
environment and configure the network, respectively. Fi-
nally, the Experiment Manager, using the Web-Based En-
terprise Management (WBEM) resource management spec-
ification [10], manages the execution of the experiment, ac-
cording to the description supplied by the tester.

3. Self-managed Experiment Execution

Originally, the Automated Emulation Framework could
only build the environment in a static way. Also, its Exper-
iment Manager could neither manage applications running
in the virtual machines nor monitor network and resources
conditions. The architecture presented in this paper, which
is an enhancement in the Experiment Manager Module, al-
lows the system to support not only automatic reconfigura-
tion of the environment if it does not behave the way tester
determined in the experiment description but also automatic
execution of the experiment, by triggering applications in-
side each VM.

To deliver the features presented previously, a self-
managed adaptive infrastructure is proposed. This infras-
tructure delivers three core services, namely environment
management, alarms triggering, and environment rebuild-
ing. These services are provided by three modules. These
modules and its relation to the reconfiguration cycle are pre-
sented in Figure 2 and are detailed next.
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3.1. Virtual Environment Management

The Virtual Environment Management is the service
from the self-managed adaptive infrastructure that acts di-
rectly on both the physical and virtual environments. The
Virtual Environment Manager Module provides this ser-
vice. This module supplies services to monitor and control
the life cycle of virtual machines. Additionally, it provides
services to control applications that are executed inside the
virtual machines.

Figure 3 presents a detailed architecture of the Virtual
Environment Manager Module. It has two main compo-
nents, the Service Management running in the frontend, and
the Environment Management running atop the Virtual Ma-
chine Monitor.

The first main component, the Service Management, of-
fers a group of services to other modules from the infras-
tructure. This component receives requests from the higher-
level modules and invokes the Environment Management
located on each cluster node. Services of this compo-
nent are accessed by other components through a Java API.
This API offers methods such as getVMMemory() and
getVMCPU() to answer queries related to usage of virtual
machine resources.

Internally, these queries correspond to services pro-
cessed with the use of the WBEM specification [10]. Each
service of this component has an associated WBEM client
intended to perform requisitions to the WBEM servers
present in each Manager of Virtual Environments. Such
requisitions can represent either a request of any informa-
tion, such as the amount of CPU used by a certain virtual
machine, or the invocation of a command, such as the cre-
ation of a virtual machine.

The second main component, the Environment Manage-
ment, runs in the privileged level of the VMM of each
host of the cluster. It is composed of a WBEM server
that responds to client requests, and a set of local and
remote providers that manage specific features. Local
providers manage features of their respective host and also
perform virtual machine management operations, while Re-
mote providers are installed inside each virtual machine and
manage applications running on top of it.

3.2. Alarms Triggering

Monitoring of resource usage in both physical and vir-
tual environment is important to detect violations in the uti-
lization of resources. Once such an exception is detected,
an action must be taken in order to reconfigure the environ-
ment and avoid further problems in the system. This is done
by the Monitor Module, which deals with them through a
mechanism of alarms triggering. This module has two pur-
poses. The first purpose is to supply for tester information

Figure 3. Virtual Environment Manager Mod-
ule.

about usage of resources from hosts, virtual machines, and
network. This information is delivered as execution logs af-
ter experiment execution, and it is stored in a system repos-
itory. The second purpose of this module is to generate
alarms to the Rebuilder Module warning it about violations
in the resources usage, according to rules defined by the
tester. For example, the tester may determine that the band-
width of a given virtual link should not exceed a specific
value. In this case, if the value is exceeded, an alarm is
generated and sent to the Rebuilder module, through a Java
API, which can decide to start a system reconfiguration.

Alarms can be caused by events related to physical com-
ponents of the infrastructure, events related to virtual com-
ponents of the infrastructure, or both. A unique number
that is a power of two is assigned for each different con-
dition that can trigger an alarm (e.g., CPU overutilization,
link overload, and so on). The use of powers of two facili-
tates the identification of combined events by the Rebuilder
Module. There is also the possibility that, during the ex-
ecution of a specific experiment, some of these conditions
may be disabled. This is a feature, since only conditions
appointed by the tester in the experiment description should
generate alarms. The alarm is forwarded to the Rebuilder
Module as a message containing both the identifier of the
exception and a list of the resources where such violation
was observed.

3.3. Environment Rebuilding

The Environment Rebuilding service has two functions.
The first one is to determine the characteristics of the vir-
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tual environment, e.g., amount of machines and amount of
resources allocated to each one. The second function is to
map the virtual environment in the real environment, defin-
ing where each virtual machine will run and how the virtual
links among them will be allocated in the real network.

The module from the Experiment Manager that han-
dles system reconfiguration is the Rebuilder Module. It re-
ceives the alarms from the Monitor module, and, consider-
ing the specific alarm, defines the action to be taken. The
alarms might be set due to resources underutilization (in
which case the environment can be scaled up) or due to re-
sources overutilization (which leads to an environment scal-
ing down). Nevertheless, at the same time more than one
kind of alarm can be triggered. So, the Rebuilder module
must deal with more complex situations than simple “scal-
ing ups” and “scale downs”. For example, at the same time,
a given set of components can trigger alarms of CPU un-
derutilization and network overutilization. In this case, it
is possible that, after increasing network bandwidth, more
data will arrive in the application running in hosts, increas-
ing CPU utilization and making the later reach the expected
usage. In this example, one action (increase bandwidth)
solves two problems in the environment.

The set of actions this module can choose from can be
either simple actions, caused by single alarms, or complex
actions, caused by the activation of more than one alarm.
To deal with these different cases, the Rebuilder sums the
value assigned by the Monitor to each alarm. This value,
as explained in the previous section, is a power of two. So,
a current event is defined by the Rebuilder as the sum of
the alarm numbers currently set. For example, the value as-
signed for memory underutilization is 1 (20) and to CPU
underutilization is 4 (22). Consequently, the event 5 means
both memory and CPU underutilization in one or more
VMs.

For each event number, there is a list of actions to be
taken. If the first element of the list does not solve the
problem, the next one is applied. An action consists of a
set of instructions for environment changes. It can be one
or more adjustments in the amount of resources assigned
to virtual machines (e.g., memory). However, these ad-
justments may require more resources than available in the
hosts. Hence, commonly adjustments in resources parame-
ters are followed by changes in the scale of the system. If
such modification is required, it is done according to tester’s
instructions. So, some actions cannot be applied because it
might violate the minimum or maximum amount of virtual
machines specified by the tester.

To avoid instabilities, e.g., that after a change from a con-
figuration A that overutilizes resources to a configuration B
that underutilizes resources the system go back to config-
uration A, this module contains a mechanism that removes
contradictory actions (e.g., actions that performs the reverse

of the applied action) from the actions list of the new con-
figuration.

3.4. System Reconfiguration

In this section, it will be detailed how the three previ-
ously described components execute the automatic recon-
figuration of an emulated environment in order to comply
with tester requirements. The information required as in-
put, despite environment and experiment description, is the
interval (maximum and minimum values) in which the re-
sources (e.g., memory, bandwidth) must be. With this infor-
mation, the Monitor Module builds lists to determine which
services from the Virtual Environment Manager Module
must be accessed and periodically access them to verify sys-
tem behavior.

Thus, at a regular time interval defined by the tester,
each service from the list is invoked, through a specific Java
method defined in the module’s API. The value received in
response is analyzed to verify whether it is within the in-
terval specified by the tester or not. If not, a new alarm
is generated, and the element in the system that caused the
alarm is associated to it.

After all the relevant information is obtained, elements
that caused similar alarms are grouped together to gener-
ate a single alarm related to that specific violation (e.g.,
CPU overutilization). Subsequently, each alarm generated
is passed to the Rebuilder Module through the invocation of
a Java method.

The Rebuilder receives all the alarms and queries its in-
ternal tables to look for the actions related to the specific
alarm. Actions are selected according to the policy de-
scribed in the previous section. A new virtual environment,
which contains the modifications proposed by the action, is
built and forwarded, via Virtual Environment Manager, to
the Mapper from the emulator (shown in Figure 1).

If a new mapping for a given environment is not found,
the Rebuilder tries to apply another action from the list. If
the actions list is exhausted and either the problem could
not be resolved or the proposed new environment could not
be mapped, the experiment runs with the last configuration
found and a report describing the violations during experi-
ment execution is generated to the tester together with the
regular experiment output.

When the new mapping is found, services from the Vir-
tual Environment Manager Module that allow modification
of VMs (destruction, migration or change of configuration,
depending on the action) are invoked by the Rebuilder Mod-
ule. These commands are translated in WBEM actions that
actually change the environment. When the new environ-
ment is ready, the Rebuilder invokes services related to ap-
plications triggering in the VMs and the experiment starts
again.

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 821

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:14:13 UTC from IEEE Xplore.  Restrictions apply. 



4. Evaluation

In this section we present the results of an experiment to
show that the Application Manager Module can effectively
detect violations in resource usage by applications and re-
act accordingly, creating a new environment able to comply
with tester specification.

The physical environment consists of four Pentium 4
2.8GHz with 1MB of cache and 2560MB of RAM mem-
ory. Cluster machines are connected by a dedicated Fast
Ethernet switch. Machines run Xen VMM [2] version 3.1,
and Xen’s dom0 uses 328MB of the available RAM mem-
ory. Thus, 2232MB are available to the guests on each host.
No network traffic but the one generated by this experiment
was present in the physical environment during the tests.

The experiment input for the framework was a partial de-
scription of a local area network. The original configuration
proposed by the tester is composed of 32 virtual machines
with 256MB of memory each. According to the input rules,
the system can be scaled down to 2 machines, and can be
scaled up without limit, as long as the use of memory on
each virtual machine is kept below 80%.

To force the alarm mechanism to be activated, experi-
ment description includes instructions to run an application
that allocates 200MB of RAM memory on each virtual ma-
chine. With this application, we could assure that memory
utilization on virtual machines was above the threshold and
thus the alarm and reconfiguration mechanism would be ac-
tivated. Additionally, we could also observe the mechanism
for automatic triggering of applications inside virtual ma-
chines in action.

The experiment description and the virtual environment
description were supplied to the Automated Emulation
Framework. The later built the virtual environment. Then,
the Experiment Manager has been invoked to run the exper-
iment. The Experiment Manager, through the Virtual Envi-
ronments Manager Module, triggered the application in the
virtual machines.

Figure 4(a) shows the memory utilization of one virtual
machine during the experiment and Figure 4(b) shows the
number of virtual machines running in the experiment. Ini-
tially, there is no information about resource usage because
this data has not been collected in any of the running virtual
machines. After 3 minutes (as defined by the tester in this
experiment), information about memory utilization is col-
lected. The Monitor Module detects that memory utilization
in the virtual machines is above the configured threshold of
80% and triggers an alarm that activates the Rebuilder Mod-
ule. The first reconfiguration action considered (doubling
the amount of memory on each VM) fails because there
is no enough physical hosts to accommodate 32 VMs with
512MB of RAM. The second action, doubling the memory
and reducing the number of VMs from 32 to 16, allows the

(a)

(b)

Figure 4. (a) Memory utilization of one virtual
machine (b) Number of virtual machines in
the experiment.

Mapper to find a valid mapping. In the new mapping, 4
virtual machines run in each host. Because a valid mapping
was found, reconfiguration procedures were triggered in the
system.

After the reconfiguration of the environment, that fin-
ished at t=480s, the experiment and the Monitor Module
were started again. With this new configuration, the mem-
ory usage in the virtual machines (detected 3 minutes later)
was below the defined threshold and the experiment finished
without further reconfigurations, which is the expected be-
havior of the system.

5. Related works

Several emulation tools build upon virtualization tech-
nologies have been proposed recently. vBET [11] can con-
figure emulated networks automatically in a single host.
However, it cannot run in a distributed environment like
a cluster, what limits scalability of the environment. V-
DS [12] can run static experiments from scripts. However,
it does not support tools for running applications inside vir-
tual machines. Other approaches, such as NEPTUNE [5]
and V-eM [1] does not support automatic configuration of
the environment, so this task is delegated to testers. Test-
Grid [7] relies on GridBuilder [6] to deploy the system. It
also cannot provide tools to run applications inside a vir-
tual machine. None of these systems provide experiment
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management and dynamic reconfiguration, as does our ap-
proach. DieCast [9] uses a different approach for the emu-
lation, applying a concept of time dilation to overcome re-
strictions in resources availability.

The same issues considered in our work in the context
of grid emulation are addressed by HARMONY [14] in the
context of load balancing in storage and computing data-
centers. HARMONY provides an environment for monitor-
ing usage of conditions and remapping virtual machines and
virtual disks in order to meet SLA criteria from datacenter
users. This difference in the usage of the system leads to
differences in both approaches: for example, HARMONY
must make decision in real time, in order to not violate SLA
agreements. Also, all the remapping actions must be per-
formed without interruption in the services. So, decisions
of mapping in HARMONY consist in virtual machine mi-
grations only, while our approach consider also changing
the amount of resources allocated to the virtual machines.

6. Conclusion and future works

The current availability and reliability of system virtual-
ization software enabled a large range of new applications
to this old technology. One of these applications is allowing
the building of emulated distributed environments in regu-
lar clusters of workstations. The emulated environment can
be used to test and evaluate software in a scale hard to be
achieved in real environments before deploying it in a real
environment.

In this work, we presented an architecture that allows
execution logs, automatic management of applications run-
ning in an emulated environment, environment reconfig-
uration, environment monitoring, and dynamic adaptation
of the environment. All these services run automatically,
which is a differential among the current approaches for the
same problem.

Our evaluation demonstrates the effectiveness of the
three modules composing the Experiment Manager of our
Automated Emulation Framework in not only managing the
virtual environment but also controlling applications run-
ning inside the virtual machines. Furthermore, this manage-
ment allowed the detection of violations in the experiment
configuration, being a basic requirement for environment
reconfiguration.

In the future, we intend to develop more efficient heuris-
tics to map a virtual environment to a network of worksta-
tions and investigate the applicability of our adaptive em-
ulation to other distributed execution platforms. We be-
lieve that the tools and methodology presented here can be
applied directly, or with minor adaptation efforts, in other
contexts that require automatic management and adaptation
of virtualized environments. The most promising of these
contexts is the emerging Cloud Computing [3] platform, in

which our solution might be applied to provide WBEM-
based management, deployment, and automatic reconfigu-
ration of VMs to the infrastructure.
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