
Future Generation Computer Systems 24 (2008) 331–341
www.elsevier.com/locate/fgcs
Allocation strategies for utilization of space-shared resources in Bag of
Tasks gridsI

César A.F. De Rosea, Tiago Ferretoa, Rodrigo N. Calheirosa, Walfredo Cirneb,∗,
Lauro B. Costab, Daniel Firemanb

a Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
b Universidade Federal de Campina Grande, Campina Grande, Brazil

Received 28 January 2007; received in revised form 23 May 2007; accepted 29 May 2007
Available online 15 June 2007

Abstract

As the adoption of grid computing in organizations expands, the need for wise utilization of different types of resource also increases. A volatile
resource, such as a desktop computer, is a common type of resource found in grids. However, using efficiently other types of resource, such as
space-shared resources, represented by parallel supercomputers and clusters of workstations, is extremely important, since they can provide a
great amount of computation power. Using space-shared resources in grids is not straightforward since they require jobs a priori to specify some
parameters, such as allocation time and amount of processors. Current solutions (e.g. Grid Resource and Allocation Management (GRAM)) are
based on the explicit definition of these parameters by the user. On the other hand, good progress has been made in supporting Bag-of-Tasks
(BoT) applications on grids. This is a restricted model of parallelism on which tasks do not communicate among themselves, making recovering
from failures a simple matter of reexecuting tasks. As such, there is no need to specify a maximum number of resources, or a period of time that
resources must be executing the application, such as required by space-shared resources. Besides, this state of affairs makes leverage from space-
shared resources hard for BoT applications running on grid. This paper presents an Explicit Allocation Strategy, in which an adaptor automatically
fits grid requests to the resource in order to decrease the turn-around time of the application. We compare it with another strategy described in
our previous work, called Transparent Allocation Strategy, in which idle nodes of the space-shared resource are donated to the grid. As we shall
see, both strategies provide good results. Moreover, they are complementary in the sense that they fulfill different usage roles. The Transparent
Allocation Strategy enables a resource owner to raise its utilization by offering cycles that would otherwise go wasted, while protecting the
local workload from increased contention. The Explicit Allocation Strategy, conversely, allows a user to benefit from the accesses she has to
space-shared resources in the grid, enabling her natively to submit tasks without having to craft (time, processors) requests.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Computational grids; Resource management; Space-shared resources; Bag-of-Tasks
1. Introduction

Grid computing has enticed many with the promise to
allocate unprecedented amounts of resources to a paral-
lel application, and to make it with lower cost than tradi-
tional alternatives (based on parallel supercomputers) [1–4].
I This work was developed in collaboration with HP Brazil R&D.
∗ Corresponding address: Departamento de Sistemas e Computacao,

Universidade Federal de Campina Grande, Campina Grande, Brazil. Tel.: +55
83 3310 1365.

E-mail addresses: cesar.derose@pucrs.br (C.A.F. De Rose),
walfredo@dsc.ufcg.edu.br (W. Cirne).

0167-739X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.05.005
However, not all parallel applications are equally suited for exe-
cution in grids. Bag-of-Tasks (BoT) is an application model that
is especially suitable for execution in grids since it is composed
of several uniprocessor tasks that demand no communication
during its execution, tolerating network delays and faults. These
characteristics facilitate the utilization of volatile resources in
the grid, i.e. computational resources that join and leave the grid
with no previous notice, have unknown and varying power and
may return incorrect results. In order to achieve good perfor-
mance with this type of resource, an eager scheduler [5–7] can
be used. It uses task replication to tolerate computational power
variability without relying on resource performance forecasts.

http://www.elsevier.com/locate/fgcs
mailto:cesar.derose@pucrs.br
mailto:walfredo@dsc.ufcg.edu.br
http://dx.doi.org/10.1016/j.future.2007.05.005


332 C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341
However, space-shared resources do not match well with the
definition of volatile resources, thus making it very hard for
a scheduler that expects volatile resources to use space-shared
resources. This is unfortunate because space-shared resources
(such as parallel supercomputers and clusters of workstations)
are among the most powerful resources available in a grid, and
could greatly expedite the execution of BoT applications.

Space-shared resources are used through a formal job
submission to the resource scheduler specifying the number
of processors needed and the amount of time these processors
should be allocated to the incoming job. This job submission
interface becomes a problem for grid users to execute their
loosely coupled applications using space-shared resources.
Besides, eager schedulers are not prepared to craft such a
request, since they assume that all they have to do is to
send a task that may eventually be executed by the resource.
The current way to make space-shared resources available
to eager schedulers consists of delegating the formal job
submission to the user. However, this approach presents
important performance and scale limitations considering that
a grid may contain many different space-shared resources.

We present in this paper the Explicit Allocation Strategy,
which aims to use space-shared resources efficiently in a
grid. It uses heuristics automatically to craft formal space-
shared requests from grid-brokers’ requests in order to provide
resources to grid users. This strategy is related to our previous
work on automated strategies for using space-shared resources
in grids called the Transparent Allocation Strategy [8]. The goal
of this strategy was to use opportunistic computing techniques
providing idle resources from space-shared resources to grid
users.

It is important to realize that these strategies are
complementary, in the sense that they play very different roles
within a grid. The Transparent Allocation Strategy enables
a resource owner to raise its utilization by offering cycles
that would otherwise go wasted, while protecting the local
workload from increased contention. Clearly, a job running
opportunistically via the Transparent Allocation Strategy has
a lower quality of service than a space-shared job (i.e. one
which specifies a formal (time, processors) request). Moreover,
not all jobs can benefit with the same ease from opportunistic
resources. However, such resources can be very useful for BoT
applications.

On the other hand, a user of a BoT application may also
have access to a number of space-shared resources within
the grid, and she might want her job to run faster than
“opportunistically”, taking advantage of the better quality of
service her formal requests enjoy. However, different space-
shared resources have dissimilar characteristics, and she does
not want manually to craft requests for each of these resources.
She only wants to run her job at the highest speed possible,
using whatever space-shared resources she can access, as
well as whatever opportunistic resources become available.
The Explicit Allocation Strategy allows her transparently to
benefit from space-shared resources she can access, enabling
her natively to submit tasks without having to craft resource-
specific (time, processors) requests.
Both strategies were implemented in OurGrid [9] and
validated using different simulation scenarios. Our analysis
concluded that the two strategies are complementary, providing
two distinct qualities of service, relying on space-shared
resources utilization characteristics and policies.

The rest of this paper is organized as follows: Section 2
presents how a space-shared scheduler works and some
issues related to its utilization in grids. Section 3 describes
the Transparent Allocation Strategy, whereas Section 4
evaluates the Explicit Allocation Strategy. Section 5 presents
a comparison of both strategies and an analysis of using both
strategies together. Finally, Section 6 presents our conclusions
and future work.

2. Space-shared resources

Space-shared resources, such as distributed-memory parallel
supercomputers or clusters of workstations, are high-end
machines designed to support the execution of parallel
applications, promoting its performance. In this architecture, a
parallel application receives a dedicated partition of resources
for exclusive utilization. In order to obtain this partition, it is
necessary to perform a formal request specifying p, the number
of processors to be allocated to the application, and tr, the time
requested for the execution of the application. This request is
sent to a space-shared resource scheduler, which manages the
space-shared resource and provides the access to a dedicated
set of resources.

There are a handful of space-shared resource schedulers
currently in production. These include Easy [10], PBS [11],
Crono [12] and Maui [13] schedulers. In practice, however, the
behavior of such schedulers varies from site to site. Even when
the same scheduling software is used, each site configures its
own policies, causing the behavior of their schedulers to differ.
Therefore, we used a conservative backfilling approach as a
good representative of today’s schedulers and as a scheduler
that is accepted as attaining good performance [14,15]. The
main idea is that an arriving job is inserted into the first queue
hole it fits. If the first job in the queue cannot be executed
because there are not enough processors, the scheduler sweeps
the queue looking for the first request that (i) can be executed
with current available resources (free processors) and (ii) does
not delay the start of any job in the queue. Such an approach
guarantees predictability, giving an upper-bound to the job
completion.

Regarding the utilization of space-shared resources in
grids, commonly, request submissions to the grid for
resources are not performed manually by users. Instead,
discovering grid resources and submitting user’s tasks in such
resources is performed by grid schedulers [16] (typically, grid
brokers), usually implementing an eager scheduling policy.
Currently, examples of grid schedulers include Condor-G [17],
Nimrod/G [18], GridWay [19] and MyGrid [20]. These systems
perform task scheduling using some heuristic in order to
optimize the overall application execution. Due to the variety of
space-shared resources in a grid, and the diversity of interfaces
provided by each scheduler, it is necessary to use an adaptor



C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341 333
in the grid, which provides a standard interface to the grid
user, and converts the request, with the number of processors
and time, to the format specified by the chosen scheduler.
Grid Resource and Allocation Management (GRAM) [21] is
currently the best known implementation of such an approach,
owing to the widespread utilization of the Globus Toolkit [22]
to build grids.

However, the problem is that in the grid, users of BoT
applications do not want to (in some cases, cannot) determine
the number of processors and time to be requested. In
this case, techniques such as performance models [23] and
prediction models [24,25] can be used. However, while the
latter does not make possible supplying a precise model
for complex applications, the former requires an underlying
software structure that is not always available to the prediction
software.

Moreover, grid schedulers assume that all they need to do
is to send a task to be executed in an available resource.
Note also that the grid scheduler should not demand an
explicit space-shared request from the user. Typically, a
grid may contain many resources unknown to the user and
user’s runtime estimates are notoriously bad even when
accessing homogeneous and known resources of a single
supercomputer [26–29]. Thus, it is inappropriate to ask the
user to estimate runtime (a key element of the request) in grid
systems, as their resources are heterogeneous and unknown to
the grid user.

To overcome such problems, in the next sections, we present
two automated strategies to enable grid users to use space-
shared resources in their applications. Section 3 presents the
Transparent Allocation Strategy and Section 4 presents the
Explicit Allocation Strategy.

3. Transparent allocation strategy

One of the challenges in grid computing is: “How to
convince computing centers with a large amount of machines
to donate their resources to a grid infrastructure?”. The main
excuses to not join a grid include: security problems, higher
management costs, difficulty to manage and also account for
resource utilization by grid users, among others. However,
the main impact is observed in local users. Typically, users
of large computing centers face the problem of sharing high
performance resources with other local users. This usually
results in delays, in terms of hours, or even days, to obtain
the necessary resources. Enabling grid users to allocate these
resources can increase even further this delay, resulting in
greater discontentment of local users.

Despite the long queue resulting from local users requests,
there are usually several fragments representing unused
resources, that can be found in the queue. The amount of
fragments is highly dependent on resources and requests
characteristics. For example, the Horseshoe Bewolf cluster
from the Danish Center for Scientific Computing presents an
average idleness of 10%, which represents 80 CPU cores [30].
Instead of just losing this amount of computation power, it
can be easily donated to the grid, without harming local
users. Besides, current grid applications, more specifically BoT
applications, do not need the same guarantees of dedicated
resources and time, as parallel applications executing in space-
shared resources.

The Transparent Allocation Strategy [8] is based on an
idle cycles exploitation mechanism, i.e. when the space-shared
resource is not fully allocated by local users, all remaining
processors are transparently donated to the grid. The strategy
prioritizes local users on behalf of grid users in relation to the
guarantees for resource exclusive utilization, while simplifying
resource access by grid users. This simplified access results
from the utilization of space-shared resources as regular volatile
ones.

Grid users access processors not in use in the space-shared
resource through a grid scheduler, as made for regular volatile
resources. The processors are not exclusively allocated to the
grid user, i.e. there is no guarantee about the amount of time
that the resource will be available to the grid. When a local
user request needs to use processors being donated to the grid,
the space-shared resource scheduler pre-empts and aborts all
grid tasks being executed, in order to complete the local user’s
request, and removes the processors from the list of available
resources in the grid. The grid scheduler handles this situation
as a regular processor fault, and schedules the aborted tasks to
other available resources, as usual.

One of the main goals of this strategy is the transparency
of grid utilization to local users. Local users are not aware
of resources utilization by grid users, since grid users do not
perform a formal allocation of resources, and the processors
donated to the grid are presented as idle in the space-shared
resources scheduler queue. The strategy also does not change
how local users use the resources. They still need to allocate
resources performing an explicit request specifying the amount
of processors p, and time tr needed. If the local user request
needs processors in use by grid users, then the grid tasks are
aborted in these processors, and they are removed from the list
of available resources, as explained before.

The implementation of the Transparent Allocation Strategy
requires a loosely coupled integration between space-shared
resource scheduler and grid scheduler. In order to facilitate
this integration, both components need to provide open
interfaces. The main issues regarding the grid scheduler
include: advertising available processors, removing “faulty”
processors and aborting grid tasks. In the space-shared resource
scheduler side, the main issue is to simplify the access and
execution of tasks in the available processors.

One implementation of the Transparent Allocation Strategy
is the CronoGuMP [8]. It interacts with the Crono [12]
cluster resource manager in order to provide resources to the
OurGrid [9] Community, which consists of several universities
and research centers from Brazil [9,31]. Fig. 1 presents
CronoGuMP. It is connected to Crono in order to identify
when there are idle nodes that can be donated to the grid,
and when local users want to use local resources, in order to
take the resources off the grid. Resources can be in two states:
being used by local users (marked with L in the figure) or by
grid users (marked with G in the figure). When a resource



334 C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341
Fig. 1. Architecture of CronoGuMP.
is released (marked with R in the figure), CronoGuMP starts
the OurGrid’s agent module, called UserAgent (UA), on each
released resource. Once started, the UserAgent contacts the
OurGrid Peer to inform their availability, and the Peer makes
these resources available to grid users.

When a local user requests resources (marked with A in
the figure), CronoGuMP deactivates the UserAgent on each
resource being allocated. Once the UserAgent is disabled, the
resources are ready to be used. It is not necessary to inform
the Peer about the change, as the Peer itself keeps track of grid
resources availability. Thus, it will detect the resource loss and
will remove it from the resource pool.

Results presented in [8] show that the Transparent
Allocation Strategy is particularly useful for applications
comprising a large number of short duration tasks to be
executed in space-shared resources with medium or low load.
Applications composed of medium duration tasks in these
resources should experiment with an acceptable turn-around
time. For those who need to execute large tasks or need to
execute their applications in space-shared resources with a
heavy load, another strategy must be applied.

4. Explicit allocation strategy

In this section we present the Explicit Allocation
Strategy which implements a different approach from the
Transparent Allocation Strategy. The previous strategy provides
transparency and priority to local users. However, there are
cases where a grid user has access (an account) to several space-
shared resources and wants to use these resources at a higher
local priority. This strategy’s approach is based on adapting
requests from Grid Scheduler to request resources to the space-
shared resource scheduler.

Based on the factors presented in Section 2, the main
problem in using space-shared resources with eager schedulers
in a grid environment is such a detailed request. The choice
of the parameters (tr and p) could render great impact in turn-
around time [15]. In fact, several research works address the
behavior of space-shared resources considering issues related to
request area and backfilling [10,14,26,28,32,33] and the great
impact that request area could cause in waiting time. On the
other hand, a greater area allows more processing to be done. It
is, thus, not clear whether one should issue a few large requests
or many small ones.

4.1. Requested time issues

In order to specify a good value for tr, we should know the
time needed to execute a grid task (a task sent by the grid broker
or simply a task). Such a value should prevent us from: (i)
crafting useless requests (in which the time is not enough to
execute the task completely) or (ii) crafting big requests where
significantly larger than needed (it may render long waiting
times). This suggests that a way to specify this parameter is
to ask the user how much time should be requested for a task
(i.e., how much time is needed to execute a task). However,
such an approach would be a quite difficult procedure since,
in general, users do not have this kind of knowledge about the
execution of their applications on every space-shared resource
available on the grid.

Therefore, we propose that space-shared resource requests
can be adapted by the grid middleware (request adaptor
component) which estimates good values for time needed by
one task. By adaptation we mean that parameters used to craft
the requests can change dynamically such that new requests
crafted could be better than old ones.

4.2. Number of processors issues

Coming up with the number of processors is easier than
with the requested time, in the sense that a bad value for this
parameter does not make impossible the task completion (that
is, it does not render requests in which the time is not enough
to execute the task completely). Nevertheless, it also impacts
on how much faster a request could be processed. This happens
because, as we have already mentioned, the execution start time
of a space-shared job is directly related to its area (number of
processors and amount of time requested); that is, a bigger area
is harder to fit into the schedule, and hence tends to wait longer
in the queue.

Note that a request for processors from a BoT grid broker
can be broken into several independent space-shared requests,
each one asking for fewer processors than the total number of
needed processors (number of tasks) with no implication on the
correct execution of the application. Therefore, each request



C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341 335
Fig. 2. Schedulers involved in running BoT applications on space-shared resources.
can fit into smaller free slots across the schedule and thus its
execution can begin earlier. In the limit, one can issue many
requests, each asking for a single processor.

However, all sites we know impose limits (via administrative
policies) to the number of requests that a user can have
in the system at any given moment. The idea seems to
preclude “monopolization” of the system. This policy renders
the specification of the number of nodes a harder task because
we cannot simply submit lots of one-processor requests.

Therefore, when using a grid environment with space-shared
resources and eager schedulers, the decision to craft requests
must consider the relation between the number of processors
needed, and the resource load and number of pending requests
allowed in order to improve the turn-around time of the grid
application.

4.3. Automatically crafting requests

Based on such a scenario and issues described in
Sections 4.1 and 4.2, we propose an adaptive heuristic to craft
the requests. The main goal of this heuristic is to convert a
request for NoT processors from grid broker into several space-
shared requests for (p, tr) providing a smaller turn-around time
to the grid job (the collection of tasks). We intend to achieve
such a goal trying to maximize task throughput (that is, the
ratio between the number of finished tasks and the requested
turn-around time).

Fig. 2 represents our model. There is a grid broker that
receives the grid job from the user. The request adaptor receives
the grid broker requirements (number of tasks to run) and
tries to provide workers. This is done via a submission of
space-shared requests crafted by heuristics. Each worker is a
component (one per processor) that at a given moment runs
only one task; that is, each processor can run several tasks
during the requested time but only one at a given moment. The
common use is a daemon that accepts grid broker invocations
(e.g. MyGrid’s UserAgent and Condor’s Glide-In [17]).

Users submit their tasks to the grid broker which asks
resource providers for processors. The request adaptor is
one provider that elaborates space-shared requests (p, tr) and
submits it to the resource scheduler queue. In the meantime, the
space-shared resource has its local users that are also submitting
space-shared requests.
In order to choose the parameters for requests, the request
adaptor should obtain some information about the space-
shared resource state (e.g. the requests in the queue), space-
shared resource scheduler administrative policies (that impose
some restrictions to requests) and the grid application. The
information the request adaptor must know about the resource
is as follows:

(1) the maximum allowed number of pending requests that
grid broker can have on a space-shared resource scheduler
(maxPendingRequests);

(2) the maximum allowed number of processors per request
(maxProc);

(3) the maximum allowed amount of time requested per request
(maxTr);

(4) the queue state.

The knowledge about grid applications is obtained by
observing the execution of tasks; that is, the grid broker or
request adaptor does not know anything about the grid job on its
submission. As time goes by, it acquires knowledge about the
application. The request adaptor saves (i) requested amounts
of time, and (ii) whether the requested time of each task was
enough for a task completion. Based on this information, the
requested time is adapted. It can be enlarged (time was not
enough) or shrunk (time was enough) for future requests.

4.3.1. The heuristics

The request adaptor uses heuristics to craft the requests. This
section presents two heuristics to make requests: (i) static, a
naive solution and (ii) adaptive, which makes requests based
on previous task execution and on the state of space-shared
resources. They are executed every time the grid broker asks
for processors or when a space-shared request finishes.

The static heuristic asks for fixed requests of nProcs =
numberOfPendingTasks

maxPendingRequests processors and tr = maxTr as requested
time. Of course, nProcs should be an integer value (e.g. we
cannot ask for 0.5 processor), so we use dnProcse. If the number
of tasks is too high (greater than the maximum possible number
of processors requested), several new requests can be asked
when old ones finish. The complete algorithm of the static
heuristic is shown in Algorithm 1.



336 C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341

1 The number of simulations was defined in order to provide a confidence
level of 95% with an error less than 5% — based on procedure described in [36].
The naive solution can provide good throughput; however,
it uses the biggest possible area. As we have explained, big
areas are harder to fit into a scheduling queue, thus rendering
long turn-around times. In order to solve such problems, we
propose the adaptive heuristic. Its adaptation occurs in both
parameters, requested time and the number of processors; that
is, the requests should be dynamically elaborated by learning
from previous requests and the queue state of the resource
providing better throughput.

To calculate throughput, we must estimate task runtime. The
adaptive heuristic makes an initial estimate (based on a default
time). If tasks could be successfully finished in this time, the
estimated runtime will be the runtime of the longest task. If
the requested time is not enough to run tasks, the estimated
task runtime will be the requested time multiplied by an integer
factor (abrupt decision). Our inspiration to enlarge or shrink
requested time is based on TCP congestion window ideas,
which in bad situations make abrupt decisions and in good ones
is careful.

Based on the estimated time to run a task, the heuristic
sweeps the requests queue choosing the best (greatest
throughput) set of possible requests in a greedy manner. An
initial set with a maximum number of pending requests allowed
is created with the first possible requests. After that, if a
new possible request could improve the throughput, a previous
chosen request is discarded and the new request is inserted into
the set of chosen requests. If the chosen set provides more
processors than the number of tasks, requests in the chosen
set will be issued with fewer processors. The chosen set is
requested and the process can be repeated if the requests were
not enough to run all the tasks.

4.4. Strategy evaluation

We have analyzed the presented heuristics via simulations.
Our simulator is based on the model depicted in Fig. 2. In order
to ease the analysis of the adaptive heuristic behavior, there
is only one space-shared resource available to a grid broker.
We used conservative backfilling as an idealized scheduler
heuristic, as mentioned in Section 2.

In order to represent the user’s requests from local users, we
applied real supercomputer workloads as input for simulations.
They are traces of real machines and were obtained from
the Parallel Workload archive [34]. We filtered out jobs with
missing request times. The workloads used are described in
Table 1.

Unfortunately, grid workloads availability is not the same
as supercomputer workloads. In fact, grid workloads are
not available and the current state of practice utilizes
supercomputer workloads as grid workloads. Besides, this is
not applicable in the case studied here because these traces
do not provide the information necessary (e.g. there is no
way to know how many tasks were executed). Therefore, we
decided to use a synthetic grid workload, which creates a large
set of combinations in order to cover several possibilities. In
our model, a job can vary in the number of tasks, task mean
execution time, task heterogeneity (1x, 2x, 4x) and submission
time. Two jobs are of the same type if they have exactly the
same values for the number of tasks, task mean execution
time and task heterogeneity. The task heterogeneity of 1x
(homogeneous) means that all tasks run in the same time, 2x
obeys a uniform distribution U (mean/2, 3mean/2) and 4x is
U (mean/4, 7mean/4). Table 2 summarizes the parameters to
generate grid jobs, rendering 36 possible combinations for job
types. The submission time was a random number that could
assume any time in supercomputer trace interval with the same
probability.

The value used as the maximum requested time was 64 800
s (the lowest among the greatest values found in supercomputer
workloads used). The initial time value to run a task was one
hour (3600 s). We have run simulations where the limit for
maxPR was 1, 2, 3, 4, 5 and 6 (the maximum value among sites
considered [35]).

Therefore, the number of possible scenarios is: 36 types
of job × 6 values for maxPR × 3 workloads of space-shared
resources × 2 heuristics (static and adaptive) = 1296. Note that
simulations are independent of each other, i.e. to every job there
is a new simulation that does not consider previous information
(e.g. adapted requested time).

The static heuristic is used as a baseline to adaptive heuristic
performance evaluation. Thus, we present results as the speedup
of adaptive heuristic over static heuristic; that is, the turn-
around time obtained with the static heuristic divided by the
turn-around time of the same job obtained with the adaptive
heuristic. Thus, values greater than 1 indicate that the adaptive
performed better and values smaller than 1 showed otherwise.
Each point shown in the graphics is the speedup of the mean
value for job execution time for simulations of at least 100 jobs
with the same type.1 Therefore, each point is related to one job
type.



C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341 337
Table 1
Used workloads

Trace System Number of
processors

Number of
requests

Offered load
(%)

Period

SDSC SP2 San Diego Supercomputer Center SP2 128 73 496 72 April/1998–December/2000
SDSC
BlueHorizon

San Diego Supercomputer Center
BlueHorizon

1152 250 440 73 April/2000–December/2000

CTC SP2 Cornell Theory Center SP2 512 79 302 54 July/1996–July/1997
Table 2
Possible values for each job parameter

Heterogeneity 1xU (mean, mean), 2xU (mean/2, 3mean/2)

and 4xU (mean/4, 7mean/4)

Task mean execution time 100, 1000 and 10 000 s
Number of tasks per job 100, 1000, 10 000 and 100 000

Table 3
Average Speedup of adaptive heuristic over static heuristic

Workload Average speedup

SDSC SP2 2.05
SDSC BlueHorizon 2.37
CTC SP2 14.74

The adaptive heuristic obtained better job execution time for
most cases. The main difference in the results is due to the
change of workloads. Table 3 summarizes the average speedup
of adaptive heuristic over static heuristic for each workload.

The graphics in Fig. 3 show the speedup between static
and adaptive heuristics for all jobs utilizing the SDSC SP2
workload. From Fig. 3, it is easy to see that the adaptive
shows better results in most cases (speedup for most cases is
greater than 1). Moreover, the differences between Fig. 3(a)
(homogeneous), (b) (heterogeneity 2x) and (c) (heterogeneity
4x) suggest that heterogeneity almost does not impact the
results. Results in detail from SDSC BlueHorizon were omitted,
since they are very similar to those from SDSC SP2.

Despite the fact that global results are better for adaptive
heuristics, adaptive does worse for jobs with long task mean
time (10 000 s) and few tasks (100 or 1000). Fig. 4 shows
the speedup for such cases. These jobs render worse results
to adaptive in comparison to static because the first requests
issued by the adaptive heuristic cannot finish a task (which
is very large); that is, static heuristic crafts “useful” requests
(i.e. requests that can run at least a task) before “useful”
requests from adaptive heuristic. The adaptive heuristic loses
some requests during the process to estimate task runtime
before making “useful” requests to a space-shared resource
scheduler. It means that the learning process (generate a
request, wait in queue, wait for execution, make a new request
and repeat such cycle many times before making a good
estimate) is longer than the necessary time to requests from the
static heuristic finish.

The biggest jobs (10 000 or 100 000 tasks of 1000 s or
10 000 s) present results of quite similar turn-around times (see
Fig. 5); the speedup rates are around one. This happens because
the needed time to estimate the task time is small in relation to
(a) Homogeneous.

(b) Heterogeneity 2x.

(c) Heterogeneity 4x.

Fig. 3. Grid jobs speedup of adaptive heuristic over static heuristic for SDSC
SP2 workload.

the total job time and the requests crafted by the static heuristic
already provide good throughput. Indeed, the requests produced



338 C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341
Fig. 4. Job speedup for cases with few tasks of long duration.

Fig. 5. Speedup for biggest jobs.

Fig. 6. Grid jobs speedup of adaptive heuristic over static heuristic for CTC
workload.

by the adaptive heuristic are similar to those of the static one
after the learning phase.

Fig. 6 shows the same results for the CTC SP2 workload.
As heterogeneity does not render noticeable differences, we
decided to present all workloads in only one figure. The
adaptive heuristic performance was better in all cases (every
point is greater than 1 in Fig. 6). The main difference is that
CTC’s load is smaller than that of the SDSC SP2. This implies
more opportunities of backfilling to adaptive heuristic requests
as they ask for fewer processors while static requests keep going
to the end of the queue (they ask the maximum number of
processors).

Another fact that to load explains this difference is the
impact of the learning cycle performed by adaptive solution.
In the cases in which the load is high, the time consumed on
each iteration (mainly the waiting in queue) makes the learning
process much longer.

In order to reinforce the analysis of load impacts, we
artificially increased the CTC SP2 offered load to 78% by
multiplying the submission time by a factor of 0.7. The jobs
behaved similarly to the SDSC SP2 and SDSC BlueHorizon
cases with a mean speedup of 1.83.

5. Strategies comparison

In this section we compare both strategies, analyze the
results obtained from the experiments and provide some
insights about situations where each strategy is better applied.
We also describe a scenario that can benefit from utilization of
both strategies.

From the experiments discussed in Section 3 and presented
in [8], we can observe that the Transparent Resource Allocation
strategy provides a reasonable performance for grid users when
the execution time of each task is not large and the space-shared
resources have medium to low utilization. It is even possible
that long duration tasks could be executed in an acceptable time
in space-shared resources with low utilization: what can happen
in some periods, such as holidays, weekends and vacations. The
main goal here is minimum influence to local utilization.

In spite of loss of performance when executing grid tasks,
this strategy is well suited to use in sites where local users
need higher priority in resource access, because resources will
always be available to such users. We believe that this is
acceptable because, commonly, grid users can obtain resources
in more than one site, while local users of space-shared
resources (typically, running high performance computing
applications) usually depend on it efficiently to execute their
applications, because, in general, tightly-coupled applications
cannot be split efficiently among several sites. As intrusiveness
caused by the Transparent Allocation Strategy is almost
negligible, this strategy may motivate administrators to donate
resources to the grid.

On the other hand, the Transparent Allocation Strategy will
generate, to the grid user point of view, more faults, because
resources can be pre-empted on behalf of local users any time;
thus, the grid application can be aborted at any time, and
it adds more costs (related to rescheduling) to the grid user
application. However, experiments show that, depending on
the characteristics of the application, overheads added by this
strategy are acceptable. Moreover, one must remember that
these resources would be wasted otherwise. Enabling the grid
user to deliver speed-up from them is a definite plus.

Regarding the Explicit Allocation Strategy, experiments
presented in Section 4 show that it is a useful strategy to
be applied even in long duration tasks or in sites with high



C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341 339
load. Nevertheless, both the Transparent Allocation Strategy
and Explicit Allocation Strategy can be used efficiently in sites
with low and medium loads. The Explicit Allocation Strategy
is a costly strategy, as it should reserve resources to grid
users. In such a strategy, grid users are deemed as local users,
and therefore must be accepted by the local administrator as
such. Therefore, we expect a given user to be able to use
the Explicit Allocation Strategy on a smaller number of sites
than she can reach via the Transparent Allocation Strategy.
The best effort, non-intrusive characteristics of the Transparent
Allocation Strategy encourage system administrators to make
their resources more widely available. However, the utilization
of resources by unknown users (from the grid) can also be
a problem to the site administrator due to accounting and
security.

Evaluating the intrusion of donating the resources and
guarantees given by both strategies, we can distinguish the
approximate cost in using the resources that can be applied
to the strategies. Resources obtained using the Transparent
Allocation Strategy are cheaper, since these resources would
go idle otherwise. On the other hand, the cost of resources using
the Explicit Allocation Strategy are more expensive, since there
is an explicit reservation of resources that could be used by local
users that “pay” for this privileged access.

We envisage a mixed utilization of both strategies using an
economy model. The decision as to what strategy to use to
request resources is based on the cost of the resources and the
time available to obtain the results from the application. In this
economy model, users need to “pay” for resources access and
to specify a policy in which a grid scheduler will scavenge
resources. This policy will decide whether the scheduler will
minimize the spending, or accelerate execution completion, or
even, try to execute the application based on a specific deadline
with the minimum cost.

6. Conclusions and future work

Grid computing has been shown as an important tool to
both science and industry in order to have access to more
computational resources. These resources can be scientific
instruments, storage, network bandwidth and processors.
Processors used in grids can vary from idle workstations to
space-shared resources, such as clusters of workstations or
supercomputers.

This work presented the Explicit Allocation Strategy, which
consists in deploying a heuristic to make a smart use of space-
shared resources, granting to grid users access to an amount of
resources as soon as possible. This strategy is a counterpart of
our previous work, called the Transparent Allocation Strategy,
which consists in donating to the grid resources while they are
not in use by any local cluster users, preempting resources from
the grid when they are requested by local users.

An important issue concerning the Transparent Allocation
Strategy is the efficient fault tolerance support. This issue is
critical, since the strategy aborts grid tasks being executed in
nodes requested for local utilization. Since we focus on BoT
applications, the integrity of the application is not affected when
a task is aborted. The aborted tasks are inserted again in the
set of tasks to be executed and resubmitted when processors
become available. The main drawback of this approach is that
the application or grid middleware must take explicit care of
these faults.

A new type of resource scheduler, called Site Resource
Scheduler (SRS), was introduced in [31]. It represents the site
resources in the grid, making them available to higher Grid
Schedulers, managing access rights and resources utilization.
In such an approach, users ask (one or more) SRS about site
capability. Based on the answers from the SRS site, users can
divide their jobs among sites, delegating for each site an amount
of tasks proportional to the site’s declared capacity. Afterwards,
users can probe the status of the application, in order to identify
whether the application had already finished or is taking too
much time to be completed. By the application completion, the
grid user can retrieve results generated by the application.

The Explicit Allocation Strategy can exploit the well-
researched area of eager schedulers without modification as the
allocation was opportunistic. The results show that it is possible
to use the resources and the behavior of the heuristics: (i) the
naive, static heuristic and (ii) adaptive heuristic. The adaptive
heuristic performs better in most cases. Such a solution was
also implemented for OurGrid [9].

In spite of being two different approaches to the same
problem, the strategies are actually complementary: it is
possible to deploy both techniques, allowing some users to
use explicit allocation (due to the fact that those users are
local users, or because the user payed to do that, or simply
because the grid user already has an account for that space-
shared resource), while others can only obtain transparent
allocation. In fact, allowing different policies to different users
can encourage systems administrators to deploy resources to
the grid, increasing grid communities and contributing to the
advancement of science. In future work, we intend to explore
the economic incentives for site administrators to provide
resources for the grid (via either or both strategies), as well as
to determine whether and in which conditions we can support
tightly coupled applications.

References

[1] W. Sudholt, K.K. Baldridge, D. Abramson, C. Enticott, S. Garic,
C. Kondric, D. Nguyen, Application of grid computing to parameter
sweeps and optimizations in molecular modeling, Future Generation
Computer Systems 21 (1) (2005) 27–35.

[2] M. Cannataro, D. Talia, P. Trunfio, Distributed data mining on the grid,
Future Generation Computer Systems 18 (8) (2002) 1101–1112.

[3] S. Smallen, W. Cirne, F. Berman, S. Young, M. Ellisman, J. Frey,
R. Wolski, M.-H. Su, C. Kesselman, Combining workstations and
supercomputers to support grid applications: The parallel tomography
experience, in: HCW’00: Proceedings of the 9th Heterogeneous
Computing Workshop, IEEE Computer Society, Washington, DC, USA,
2000, p. 241.

[4] J.R. Stiles, J. Thomas M. Bartol, E.E. Salpeter, M.M. Salpeter, Monte
carlo simulation of neuro-transmitter release using mcell, a general
simulator of cellular physiological processes, in: CNS’97: Proceedings of
the Sixth Annual Conference on Computational Neuroscience: Trends in
Research, 1998, Plenum Press, New York, NY, USA, 1998, pp. 279–284.



340 C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341
[5] D. Paranhos, W. Cirne, F. Brasileiro, Trading cycles for information:
Using replication to schedule Bag-of-Tasks applications on computational
grids, in: Proceedings of Euro-Par 2003: International Conference on
Parallel and Distributed Computing, 2003, pp. 169–180.

[6] E. Santos-Neto, W. Cirne, F. Brasileiro, A. Lima, Exploiting replication
and data reuse to efficiently schedule data-intensive applications on grids,
in: D.G. Feitelson, L. Rudolph (Eds.), Proceedings of 10th Workshop
Job Scheduling Strategies for Parallel Processing, in: Lecture Notes in
Computer Science, vol. 3277, Springer-Verlag, 2004, pp. 210–232.

[7] N. Fujimoto, K. Hagihara, Near-optimal dynamic task scheduling
of independent coarse-grained tasks onto a computational grid, in:
Proceedings of ICPP’2003 — 32th International Conference on Parallel
Processing, 2003, pp. 391–398.

[8] M.A.S. Netto, et al., Transparent resource allocation to exploit idle cluster
nodes in computational grids, in: Proceedings of the 1st International
Conference on e-Science and Grid Computing, IEEE Computer Society
Press, Melbourne, 2005, pp. 238–245.

[9] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade, R. Novaes,
M. Mowbray, Labs of the World, Unite!!!, Journal of Grid Computing 4
(3) (2006) 225–246.

[10] D. Lifka, The ANL/IBM SP scheduling system, in: D.G. Feitelson,
L. Rudolph (Eds.), Proceedings of 1st Workshop Job Scheduling
Strategies for Parallel Processing, in: Lecture Notes in Computer Science,
vol. 949, Springer-Verlag, 1995, pp. 295–303.

[11] A. Bayucan, Portable Batch System Administration Guide, Veridian
System.

[12] M.A.S. Netto, C.A.F. De Rose, CRONO: A configurable and easy to
maintain resource manager optimized for small and mid-size GNU/Linux
cluster, in: Proceedings of the 2003 International Conference on
Parallel Processing, IEEE Computer Society Press, Kaohsiung, 2003,
pp. 555–562.

[13] D.B. Jackson, Q. Snell, M.J. Clement, Core algorithms of the Maui
scheduler, in: Proceedings of the 7th Workshop on Job Scheduling
Strategies for Parallel Processing, 2001, pp. 87–102.

[14] D.G. Feitelson, A. Mu’alem, Utilization and predictability in scheduling
the IBM SP2 with backfilling, in: Proceedings of 12th International
Parallel Processing Symposium, 1998, pp. 542–546.

[15] A.W. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling, IEEE
Transactions on Parallel & Distributed Systems 12 (6) (2001) 529–543.

[16] J. Nabrzyski, J.M. Schopf, J. Wȩglarz (Eds.), Ten Actions When Grid
Scheduling, Kluwer Academic Publishers, Norwell, 2003, pp. 15–23
(Chapter 2).

[17] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke, Condor-G: A
computation management agent for multi-institutional grids, Journal of
Cluster Computing 5 (3) (2002) 237–246.

[18] D. Abramson, J. Giddy, L. Kotler, High performance parametric modeling
with nimrod/g: Killer application for the global grid? in: IPDPS’2000,
IEEE Computer Society Press, Cancun, 2000, pp. 520–528.

[19] E. Huedo, R.S. Montero, I.M. llorente, Experiences on adaptative grid
scheduling of parammeter sweep applications, in: Proceedings of the
12th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, IEEE Computer Society Press, A Coruna, 2004, pp. 28–33.

[20] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro,
J. Sauvé, F.A.B. da Silva, C.O. Barros, C. Silveira, Running Bag-
of-Tasks applications on computational grids: The mygrid approach,
in: Proceedings of ICPP’2003 — 32nd International Conference on
Parallel Processing, IEEE Computer Society Press, Kaohsiung, 2003,
pp. 407–416.

[21] I. Foster, C. Kasselman, The Globus project: A status report,
in: Proceedings of the Seventh Heterogeneous Computing Workshop,
IEEE Computer Society Press, Orlando, 1998, pp. 4–18.

[22] I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit,
The International Journal of Supercomputer Applications and High
Performance Computing 11 (2) (1997) 115–128.

[23] M.A. Marsan, G. Balbo, G. Conte, Performance Models of Microproces-
sor Systems, MIT Press, 1987.
[24] R. Wolski, Experiences with predicting resource performance on-line
in computational grid settings, SIGMETRICS Performance Evaluation
Review 30 (4) (2003) 41–49.

[25] S.A. Jarvis, et al., Performance prediction and its use in parallel and
distributed computing systems, Future Generation Computer Systems 22
(7) (2006) 745–754.

[26] K. Aida, Effect of job size characteristics on job scheduling performance,
in: D.G. Feitelson, L. Rudolph (Eds.), Proceedings of 6th Workshop
Job Scheduling Strategies for Parallel Processing, in: Lecture Notes in
Computer Science, vol. 1911, Springer-Verlag, 2000, pp. 1–17.

[27] W. Cirne, F. Berman, A comprehensive model of the supercomputer
workload, in: Proceedings of WWC-4: IEEE 4th Annual Workshop on
Workload Characterization, 2001, pp. 140–148.

[28] W. Cirne, F. Berman, When the Herd is smart: The aggregate behavior in
the selection of job request, IEEE Transactions in Parallel and Distributed
Systems 14 (2) (2003) 181–192.

[29] C.B. Lee, Y. Schwartzman, J. Hardy, A. Snavely, Are user runtime
estimates inherently inaccurate? in: D.G. Feitelson, L. Rudolph,
U. Schwiegelshohn (Eds.), Proceedings of 10th Workshop on Job
Scheduling Strategies for Parallel Processing, in: Lecture Notes in
Computer Science, vol. 3277, Springer-Verlag, 2004, pp. 253–263.

[30] DCSC/SDU Supercluster Horseshoe Cluster Statistics.
http://www.dcsc.sdu.dk/docs/load/fairshare info.php.

[31] W. Cirne, F. Brasileiro, L. Costa, D. Paranhos, E. Santos-Neto,
N. Andrade, C.D. Rose, T. Ferreto, M. Mowbray, R. Scheer, J. Jornada,
Scheduling in Bag-of-Task grids: The PAUÁ case, in: Proceedings of
the 16th Symposium on Computer Architecture and High Performance
Computing, IEEE Computer Society Press, Foz do Iguaçu, 2004,
pp. 124–131.

[32] A. Downey, Using queue time predictions for processor allocation,
in: D.G. Feitelson, L. Rudolph (Eds.), Proceedings of 3rd Workshop on
Job Scheduling Strategies for Parallel Processing, in: Lecture Notes in
Computer Science, vol. 1291, Springer-Verlag, 1997, pp. 35–57.

[33] J. Pruyne, M. Livny, Parallel Processing on Dynamic Resources
with Carmi, in: D.G. Feitelson, L. Rudolph (Eds.), Proceedings of
1st Workshop on Job Scheduling Strategies for Parallel Processing,
in: Lecture Notes in Computer Science, vol. 949, Springer-Verlag, 1995,
pp. 337–360.

[34] Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/.

[35] NPACI Users Guide: Blue Horizon. http://www.npaci.edu/Horizon/, June
2004.

[36] R. Jain, The Art of Computer Systems Performance Analysis, 1st ed.,
Wiley Interscience, John Wiley & Sons, Inc., New York, NY, 1991.

César A.F. De Rose is an Associate Professor in
the Computer Science Department at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil. His primary research interests
are parallel and distributed computing and parallel
architectures. He is currently conducting research on a
variety of topics applied to clusters and grids, including
resource management, resource monitoring, distributed
allocation strategies and virtualization.

Dr. De Rose received his doctoral degree in
Computer Science from the University Karlsruhe, Germany, in 1998. He
currently leads the Research Center in High Performance Computing (CPAD-
PUCRS/HP) at PUCRS.

Tiago Ferreto is an Assistant Professor in the
Computer Science Department at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil. He received his B.E. and M.S.
degrees from the Computer Science Department,
PUCRS, Brazil, and is currently a Ph.D. candidate
in the Computer Science Department at PUCRS.
His primary academic research interests are resource
management, grid computing and virtualization.

http://www.dcsc.sdu.dk/docs/load/fairshare_info.php
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.npaci.edu/Horizon/


C.A.F. De Rose et al. / Future Generation Computer Systems 24 (2008) 331–341 341
Rodrigo N. Calheiros is a Ph.D. student in Computer
Science at Pontifical Catholic University of Rio Grande
do Sul (PUCRS), Porto Alegre, Brazil. He received
his Master’s degree from the same university in 2006.
His research interests include resource management
and scheduling, application of virtualization, and
programing in grid computing and distributed systems.

Walfredo Cirne is with Google’s infrastrucutre group
in California, USA. He is on leave of his faculty
position at the Computer Science Department of
the Universidade Federal de Campina Grande, in
Brazil. Dr. Cirne holds a Ph.D. from the University
of California San Diego, in the USA. Since 1997,
his research focuses on Distributed Systems and
Resource Management, having led the OurGrid
project from 2001 to 2006. Further information
and publications of Dr. Cirne can be found at

http://walfredo.dsc.ufcg.edu.br/index en.html.
Lauro B. Costa is a research assistant and developer
in OurGrid project at LSD (Distributed Systems Lab)
of UFCG (Federal University of Campina Grande) in
Brazil. He joined LSD in 2001 as an undergraduate
student, he received BS degree in Computer Science
from UFCG and he’s been contributing as research
assistant since the beginning of 2006, when he
concluded his Master thesis in Computer Science from
UFCG. Currently, his work is on folksonomy and
resource/service discovery for grids via P2P GIS.

Daniel Fireman is a M.Sc. student at UFCG (Federal
University of Minas Gerais) in Brazil and he is
researching on dynamic reconfigurable distributed
systems. Previously, he worked at LSD (Distributed
Systems Lab) of UFCG (Federal University of
Campina Grande). He had worked at LSD as part of
OurGrid team until 2006, when he received his B.S.
degree in Computer Science from UFCG.

http://walfredo.dsc.ufcg.edu.br/index%5Fen.html

	Allocation strategies for utilization of space-shared resources in Bag of Tasks grids
	Introduction
	Space-shared resources
	Transparent allocation strategy
	Explicit allocation strategy
	Requested time issues
	Number of processors issues
	Automatically crafting requests
	The heuristics

	Strategy evaluation

	Strategies comparison
	Conclusions and future work
	References


