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Abstract

|-Cluster is an HP Laboratories Grenoble initiative, in collaboration with the ID-IMAG
laboratory of INRIA Rhone-Alpes, HP Brazil and the Catholic University of Rio Grande
do Sul (PUCRS). I-Cluster consists of a framework of tools that transparently takes advantage
of unused network resources and federates them, in order to crystallize into specific virtual
functions such as supercomputing. By doing this, |-Cluster enables automatic real-time analy-
sis of the availability and workload of machines on an intranet. When the instantiation of a
supercomputing function is requested by a user, |-Cluster determines the most appropriate
set of machines for carrying out this function, allocates the machines into a virtual cluster
and proceeds with the execution of the function. In order to address security issues, I-Cluster
uses an ‘“‘execution sandbox’’ on each machine of the intranet, which is transparent to the user
and enables the use of local computing resources at idle periods, while securely protecting the
local user data and jobs.
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In this paper we introduce the |-Cluster initiative and its overall architecture and present the
main issues addressed in the conception of the |-Cluster framework, such as solving peer-
to-peer computing security issues using OS sandboxing, self-organization and resilience to
unanticipated disconnections of large and heterogeneous community of computers, as well
as automatic resource collection. To validate the I-Cluster framework we both present exper-
imental results obtained with a small scale prototype and simulated results for environments
with a larger number of resources.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This article presents I-Cluster, a joint initiative between Hewlett-Packard Labora-
tories Grenoble and the INRIA (ID-IMAG laboratory, France), in collaboration
with Hewlett-Packard Brazil and the Research Center in High Performance Com-
puting (CPAD — PUCRS/HP) of the Catholic University of Rio Grande do Sul
(PUCRS, Brazil). It aims at providing an environment, the Cloud, that federates
computing resources of all sorts and aggregate idle machines into high-throughput
virtual clusters. In this paper, such computing resources will be called “nodes” or
“machines” without distinction.

The idea to use idle cycles of network connected computers dates back to the Con-
dor project in the 1980s. The emergence of the world-wide web and the new possi-
bilities offered by collaborative computing projects such as SETI@home' have
incentivated new research on the theme, like the Holo Project [1], that offers support
for parallel autonomic computing. The main concern in current works are:

o the new scale that distributed resources may reach, since a big company’s intranet,
for instance, may host up tens of thousands nodes distributed worldwide;

e security issues, since using idle cycles from such a wide pool of resources only can
be considered if the normal users do not suffer any damage with their data.

The I-Cluster, which we present here, is a realistic attempt to tackle these issues. We
show here how it has been conceived in the ID-IMAG laboratory and Grenoble’s HP
labs, and validated through a real implementation in Brazil. Simulations have also
been used in both teams to evaluate |-Cluster’s scalability on tens of thousands nodes.

This article is structured as follows: Section 2 presents some environments for dis-
tributed computing, such as Condor, one of the milestones in the use of idle cycles,
or Mosix, which introduced the gossiping algorithms that I-Cluster uses to propagate
information in the Cloud. In Section 3 we introduce the I-Cluster environment, its key
principles and the different modules it is made of. In order to evaluate |-Cluster we
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developed a prototype at CPAD — PUCRS/HP, which is the focus of Section 4. Due
to the limited number of nodes of our prototype (25), we have been using simulation
in order to validate I-Cluster’s gossiping algorithm on a realistic number of nodes
(Section 5). Finally we conclude in Section 6.

2. Related work

Many projects have tackled the issue of federating idle cycles of large scale distrib-
uted resources for high-performance computing. In this section we consider the re-
search made on Condor, a problem-solving environment called DIeT, the global
computing project XtremWeb and the well-known Mosix system of which I-Cluster
is very much inspired.

2.1. Condor

Condor [2] is an on-going 15 years old project that aims at using idle cycles. The
authors have tackled the problem of harnessing nodes from different pools to form
an unique flock of resources on which jobs may be scheduled in a transparent way
[3]. Since then Condor has embraced the Globus Computing effort [4].

Condor uses a system of remote procedure calls associated to checkpointing in
order to execute (independent) tasks on the computing nodes. Currently Condor also
provides a master/slave scheme to parallelize large applications. Nodes are organized
in pools, one of them being the central manager (CM), which administers the other
nodes and verifies their availability. Each node runs two daemons, one called
“schedd” that queues the jobs that are assigned to this node, and the ““started” which
controls the ping-pongs with the CM and the starting and halting of the jobs. The
CM also has a matching system to determine, based on the nodes’ characteristics, on
which node it has to run given jobs.

To handle inter-pools job exchanges, each pool has one or more nodes acting as
Gateways. Gateways maintain information about each other, and regularly check
availability of the nodes in their pool. The CM itself is informed about the available
nodes in the other pools and takes them into account in order to schedule its own
jobs. Inserting or removing a node simply requires to inform the pool’s CM. It will
then relay the information to other collaborating nodes.

Allocating a node to a job requires to match the job’s requirements and possibil-
ities. The ClassAd mechanism is used to describe both, and a distributed matching
algorithm compares each one of the two descriptions. When the matcher finds a right
needs/offer association, it sends the address of the potential correspondent back to
the node and to the requester. It is then up to these ones to connect in a “peer-to-
peer” way, without any more interaction with the Matcher. A processor allocation
therefore costs 2 messages (the Matcher sends a message to both the requester and
the node), and 1 more to transfer the job from requester to the executing node.

Our proposed platform, I-Cluster, differentiates from Condor in two ways: first we
aim at treating fine-grained applications, not necessarily embarrassingly parallel.
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This type of application is not currently well suited to the Condor system, which is
based on preemption and migration of processes, although recent efforts to treat
MPI applications may be a move in this direction. Second, I-Cluster includes a
sandbox mechanism that tackles security issues not taken into consideration by
Condor.

2.2. Diet

DieT [5] is an environment developed within the ReMap project, in the LIP
laboratories (Lyon, France). Its goal is to provide a Grid-like environment for
distributed computing (Network Enabled Server Applications) that could deal
with:

e managing a pool of computing resources;

e providing a framework to describe a computing problem;

e looking for the data location;

e evaluating the execution time required on the various possible nodes of the
environment;

e choosing the right nodes to run a computation that asks for resources (scheduling
issue).

An environment close to DIET is NETSOLVE [6], since they both aim more at providing
a Problem Solving Environment (PSE) rather than computational resources
themselves.

DieT is made of the following components:

e The Master Agents (MA), that are in charge of receiving an application’s requests
and to chose the nodes on which it shall be executed. They are therefore respon-
sible for the scheduling decisions.

e The Local Agents (LA) are intermediaries between the MAs and the nodes. They
collect information about the available resources on each set of nodes.

Each computing node hosts a Computation Resources Daemon that informs about
the computing capacity of the node (which can in turn host many processing units).
It also hosts a Server Daemon (SeD) that manages the available data and the load of
the processing units.

Both at MAs and at LAs levels, different distributed architecture may be faced by
DieT. [5] does not give any detail on a specific architecture for the MAs neither for
the LAs. The given example presents results for one MA and a tree of LAs.

Diet works with the help of two intermediary independent layers: the MAs use
SLiM to describe and interpret the problem to be solved. SLiM classifies the prob-
lems and solutions within an LDAP compliant structure (such as Globus for in-
stance). FAST, on the other hand, handles the performances forecasting, based on
the information given by the SeD, and is used by the LAs which will transmit these
forecasts to the MAs in order to decide a scheduling.
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The construction of the computational Grid is made in a tree-like way, each LA
being inserted to its “father””. The hierarchy has to be described to the MA by the
administrators and may, for instance, reflect some administrative or geographic cri-
teria. In the case presented in [5] there is only one MA, which is therefore the root of
the tree.> The article envisions the use of a Broadcast between the MAs regarding
request processing, but does not explain how the architecture would be initialized.

The main differences to the I-Cluster are the focus on providing a Problem Solving
Environment (PSE) rather than computational resources and the hierarchical way
available resources are organized in the Grid (tree-like). This implies a significant
management overhead specially in dynamic environments, with lots of resources
entering and leaving the Grid. Security issues are also not taken into consideration
in Diet, playing a major role in the |-Cluster.

2.3. XtremWeb

XtremWeb [7] is an experimental Global Computing platform. XtremWeb shares
its architecture with SETI@home [8], but is not limited in the number of available
applications (from genome exploration to ray tracing).

Fig. 1 shows a global view of the XtremWeb model. An XtremWeb System is
composed of a network of Servers and Workers. Each Server owns some Workers.
Upon user request, a Worker can submit an Application to the system by sending
it (and the files needed for it) to the Server. Then the Server splits the Application
into tasks. When a Worker owned by this server becomes idle (this is noticed by
the use of the screen-saver for example), it asks the Server for a task to compute.
When the computation is finished, the Server pushes the result in a Result Server.
When a new Worker connects to a Server, it is included in a list of owned Workers.
A disconnected Worker is suppressed from the Server’s list of owned Workers and
the aborted task is reassigned.

Security issues are also not taken into consideration in XtremWeb and SETI@
home. The use of cycle steeling through screen-savers that are running in user space
represent a major threat to local security. This was one of the main motivations to
improve security in the |-Cluster through a sandbox.

2.4. Mosix

Mosix is a Multicomputer Operating System for Unix [9]. It is a several-decades-
old project from Jerusalem’s Hebraic University. Mosix’s goal is to provide a set of
adaptive mechanisms to share resources in order to handle a processors farm as a
single system, optimizing the performance through efficient use of the network.
The processors farm is composed of standard machines that may be heterogeneous,
linked by a standard LAN.

2 Since there is only one MA, the scheduling decision is centralized, such as in Netsolve.
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Fig. 1. XtremWeb communication structure.

Mosix is based on a modified Unix kernel, so that it can migrate the processes be-
tween nodes in the processing farm. Mosix also makes use of algorithms to distribute
the nodes load information, to detect the load differences between nodes and to
migrate the tasks from the most loaded nodes to the least loaded ones (PPM — Pre-
ventive Process Migration). The system is symmetric and distributed, without any
centralized control.

Each process owns an initial node (UHN — Unique Home Node) which is gen-
erally the one on which the user is logged. The process’s body contains its user
context and some kernel level information which is independent from the site
where it is run. The process’s deputy owns the information depending from the
site and resides on the UHN. A communication link is established between the
deputy and the body to let the process access its local environment through
the deputy and also in order to let other processes communicate with it. The
migrated processes use local resources as much as possible, but resources such
as network connections or open files have to stay on the UHN and will be han-
dled by the deputy.

The load information is distributed using a gossiping algorithm [9]. Each node
updates (typically every 2 s) a vector of information about the load of each of the
other nodes in the processing farm. At regular time-steps (typically every 10 ms),
it will send this vector to a randomly chosen other node. Upon receiving such a
vector, its contents are combined with the local vector so as to keep only the
most recent information. If the load between two machines is very different, a
migration operation is done. Notice that the definition in Mosix for a node’s load
is a direct function of the quantity of available memory, and not of the CPU load
which is highly variable and hard to characterize. This avoids managing frequent
variations of the load that would imply an important overload in the gossiping
algorithm.

The diffusion by the gossiping mechanism has been shown to be quick. The Mosix
team proved [9] that the mean time of half-diffusion (mean time for an information
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to go from one server to half the nodes in the farm) is of the order of log(n), n being
the number of nodes.

We have been working on ways to improve the algorithm scalability (with a lim-
ited convergence speed however), and found that it was possible to store only a lim-
ited number of peers in each machine’s local database in order to preserve scalability.
Measuring the global system constituted by the Cloud starting from the simple
description of the gossiping algorithm of a single machine could not be done on a
real set of 10,000 machines, so we decided to build a simulation of the system to
validate its properties.

We consider a simulation with n nodes, all fully functional. The time is discretized
in synchronous steps. At step 0, one of the nodes updates its information. No other
information is supposed to change during the duration of the simulation. At each
step each of the n machines will connect to another one, randomically chosen be-
tween the n — 1 other ones, and send its information (if it already owns it) to the cho-
sen node. We study the number of nodes that received the information as a function
of the time-steps. Fig. 2 presents the results obtained for N = 100,000 nodes. The
simulation was run 20 times and the mean, minimum and maximum values are
drawn on the graph. It can be seen that the diffusion of the information is very fast,
lasting only 19 time-steps in the worst case. In order to reach half the number of
nodes, the diffusion takes 12 time-steps.

This result lets us anticipate valuable capabilities from the Mosix derivated algo-
rithms, which we expect to keep for the I-Cluster Cloud: self-organization, automatic
information collection about the nodes and scalability.
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Fig. 2. Mean number of neighbors reached vs. timesteps.
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3. The I-Cluster Cloud
3.1. Motivation

I-Cluster aims at organizing computing resources within a “Cloud” of processing
units at the user’s disposal. With this aim, it uses a Mosix-like gossiping algorithm to
propagate information about the nodes, in order to harness idle-cycles in the way
Condor does. The integration of a gossiping algorithm in a scalable way and respect-
ing the user’s concern about security was a challenging task.

3.2. Services

Different types of problems must be dealt with in order to organize the I-Cluster
Cloud:

e recognizing the nodes’ capabilities (CPU power, memory, etc.);

e propagating information within the Cloud;

e offering a high security level to users (both those who own the resources of the
Cloud and those who want to use them).

Node capabilities. Each machine belonging to the Cloud is provided with a sensor
whose function is to instrument the local resources such as number, type and fre-
quency of the processors, memory and disk size, and network connectivity. The
node’s IP configuration is automatically investigated, namely its current IP address,
sub-network and default gateway. In case of multiple possible network connections,
such as multiple Ethernet connectivity or concurrent Myrinet and Ethernet, each
connection is instrumented. The instrumentation occurs after each node’s state mod-
ification: upon boot, switch off, hibernation or even when network connectivity
changes.

Propagating information. The Cloud has to disseminate information about the
nodes it handles: when they are entering or leaving the system, nodes will be noticing
other nodes to which they are connected. Information about nodes activity also has
be propagated, in order to allocate new jobs to idle nodes. The algorithms to prop-
agate the information have to be scalable in order to take into account hundreds of
thousands computing nodes.

High-security level. The |-Cluster Cloud aims at harnessing nodes that may enter
and leave the structure dynamically. Thus it provides a natural way to use idle cycles
from machines loosely connected. In order to deal with implied security issues, we
have chosen (see [10]) to use a sandboxing mechanism: the nodes can operate in
two modes, the “user mode”, in which the “normal’ user (for instance, a student
in an university) works on the machine; and the “cluster mode”, in which the node
enters when idle, to join the I-Cluster Cloud. Entering cluster mode, the node’s OS
shuts down and another OS image is booted, which has limited access to the hard
disk i.e., only to the one partition where it has been installed (see Section 3.3.5).
Thus, a physical sandbox prevents from any malicious code running and damaging
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the node and the data it has in user-mode through isolation of user mode and cluster
mode data and applications.

3.3. Architecture

Fig. 3 presents the |-Cluster Cloud architecture. From the entry point (“‘control
point”) side, |-Cluster has to deal with job submission, to find a match between
the job and the resources and to schedule the tasks on the nodes. On the resource
side, each node has a sandbox and the resource sniffer that discovers new nodes. Be-
tween the two sides, the Cloud deals with resources and topology management.

In this section we detail each one of these services.

3.3.1. Job submission

Once the user needs a given computing service to be executed, it will use the job
submission engine to provide the system with the detail of the job’s requirements:
Number of machines to be reserved, individual characteristics (power, memory
size, capabilities), topology of the machines, command to be run, entry parameters,
location for the output data. This detailed data will be used by the Match Finder de-
scribed hereafter to find the proper set of machines that will satisfy the requirements
for the requested service.

3.3.2. Match finder

Once each node is able to get its own view of the Cloud, it then knows a list of
available machines of the network that it can use for submitting jobs. The user selects
the computing service to invoke, and sets some additional information such as the
entry parameters for the job, data file locations and the location where the output
data should be exported (NFS, FTP, X display). This information is handled to a
component called the Match Finder, which will be responsible for finding a group
of nodes which has the best capabilities for the execution of the job. The I-Cluster
Framework makes use of the available network resources and topology. This makes
it possible for a given service to require a set of resources with critical network
requirements, for instance machines that share the same subnet or interconnect. It
is then possible to execute a very finely grained supercomputing job on the allocated
resources.

JOb Sme1S§lon M
n
Match Finder Topology Scanner Resource Sniffer

C
C

Point of Control I-Cluster Cloud I-Cluster Node

Fig. 3. I-Cluster architecture.
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Each I-Cluster computing service is mapped to a description of how the service can
be composed (instantiated) onto a cluster. The service composition takes into ac-
count the complexity of the computational job, expressed in computational power
required by the job, number of machines, type and speed of processor required,
minimal memory size, bandwidth and latency per node, as well as the required
interconnect capacity between allocated nodes expressed in terms of network
topology, maximum network latency between nodes and network bisection
bandwidth.

The Match Finder will check the local database for a set of computers that match
the service requirements, and attempt to allocate them to the job. This is done using
a 2-phase commit algorithm, which first attempts the allocation of each required
computer, and commits each of them if all the computers are available for the com-
putation. This very simplistic allocation scheme may be very inefficient for a com-
mon cluster configuration, but in our case we assume that lots of idle machines
will be available at the time of service invocation, hence the chances that two differ-
ent attempts occur at the same time on a single machine are low. A double commit
sequence is used to prevent problems when this occurs. I-Cluster shares the same allo-
cation paradigm as MPI: The machines allocated to a given service are fully allo-
cated for the duration of the service, and the number of machines cannot change
during the execution.

3.3.3. Resource management

The shared information about each machine is characterized by a triplet (¢, id, s),
where 7 is a timestamp (last update time from a logical Lamport clock [11]), id is an
unique identifier (generated by a random function) of the machine, and s is the state
of the machine (online, off-line, at disposal, running, hibernating). The triplet is up-
dated by the machine itself, but may also be modified by other nodes of the Cloud,
for instance if they reach a consensus that the machine is not responding anymore to
a ping and must be therefore considered as off-line.

When a node ‘A’ wants to enter the Cloud, it has to know in advance the id of at
least one peer ‘B’ already connected to the Cloud (this is a pre-requisite of the algo-
rithm). ‘A’ will send a message to ‘B’, that will answer sending the information that it
has about neighbors in the Cloud. Thus ‘A’ will get some references about some other
nodes of the Cloud and start interacting with them on its own.

The handling of the disconnection is made by consensus, following a 3 parts
protocol:

e when a node A detects a timeout in a tentative to connect to one of his peers B, it
adds it to a “suspects list”, along with the timestamp at which the failure was
detected and with its own identification idx.

e If another node C is later unsuccessful in trying to connect to B, looking at the
suspects list it will find out that B has already been suspected of being discon-
nected by A.

o C will then change B’s status to disconnected and B will be removed from the sus-
pects list.
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The global set of triplets and the suspects list are stored in a distributed database, as
in Mosix. Each node of the Cloud has its own partial view of the global database,
which is only a part of the whole set of nodes. The fraction of the total Cloud that
it owns depends directly on its capacities, such as for instance a PDA may store a
few hundreds triplets whereas a standard desktop PC would store a few thousands
ones. The update of the (partial) databases is done through gossiping: at regular
time-steps the gossiping agent of one node will choose a random neighbor in its local
database, connect to it and they will exchange the content of their respective dat-
abases. If the information they exchange conflicts about some nodes, the ¢ timestamp
allows it to identify the most recent one.

In order to bound the information stored on a node, a filter mechanism has to be
used at the time when it receives the information of one of his peers. The filter eli-
minates nodes from the database based on the information it has on their “interest’:
power, availability, network proximity. Nodes less interesting are not memorized.
Using this scheme, one could construct a highly clustered graph of nodes, yet the
mean-length path could be high. In order to lower it, a small fraction (typically
5%) of the least interesting nodes are kept in the database, thus favorizing the crea-
tion of a “Small-World” graph [12].

3.3.4. Topology scanner

Our system needs to be able to efficiently solve fine-grained problems. As we will
allocate idle machines from the network to such distributed computations, we have
to ensure that an allocated set of machines is as homogeneous as possible—in terms
of CPU speed for instance—and that network latency is minimal. These conditions
are basic requirements for efficient fine-grained computation. Concerning the net-
work latency, it is not obvious how a given set of machines should be allocated so
that the inter-node latency is as small as possible. This requires some knowledge
of the network characteristics, and more precisely of its topology. However, full
knowledge of the topology of an intranet is something which is not convenient to
gather nor to maintain. For this reason we have been limiting the problem to the fact
that a set of machines allocated to a single job should always be located on a single
subnet. This ensures that inter-node latency on such an allocated set of machines will
always be limited to a single cross-switch latency. Experience [13] has shown that this
condition raised very acceptable results in practice, as we have been able to reach
TOPS500 performance levels using standard machines interconnected through
Ethernet 100.

3.3.5. The I-Cluster sandbox

The term sandbox is used in this paper to characterize a safe and isolated area for
the execution of untrusted code on a machine, allowing access to certain system fea-
tures (network access, for example), while protecting the target machine and the data
stored on it against security attacks from malicious or erroneous codes loaded by the
sandbox [10,14,15]. Hawblitzel et al. [16] suggested classification of protection mech-
anisms in classes:
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e The first class includes mechanisms based on physical virtual memory, which
enables isolation of execution codes using hardware. Our aim was to offer an
architecture based on a standard PC network, so hardware modifications were
not feasible for I-Cluster.

o The second class of solutions is for capacity systems, used in microkernel operating
systems such as Amoeba [17] and Chorus [18]. These systems, based on examina-
tion of data types on execution, require instrumentation of source codes which
leaves the necessary traces for the mechanism controlling the interest lists. The
Java Runtime Environment described by Arnold et al. [19] has a sandbox that is
automatically activated when applets belonging to this class are executed. Internet
C++ [20] is another example enabling execution of POSIX code associated with a
virtual machine giving access to a network interface (Berkeley sockets model) and
a graphical interface (OpenGL). A capacity systems class sandbox could have
enabled us to natively run Windows applications, and therefore actively share
the resources of each machine by running I-Cluster applications in the background
with software protection from erroneous code. However, this class of mechanisms
requires recompilation of existing applications, so it has been dropped.

e The last class contains SFI, Software-based Fault Isolation mechanisms. I-Cluster
sandbox is in this class, and shares the resources of each machine on a time basis.
At a given moment, a machine will therefore be fully available to its user, or fully
allocated to I-Cluster tasks. We could have used less strict resource sharing, such
as that carried out by the VMWare® virtual machine, which enables transit
between two operating systems such as Windows and Linux using a software emu-
lation layer. The complexity of such an environment makes it very difficult to sta-
bilize, so we preferred working with simple mechanisms.

3.3.6. Resource Sniffer

In order to instrument hardware capabilities of each node we have built a soft-
ware sensor that instruments a given machine. This sensor digs into the machine’s
BIOS and extract very precise information about the processor(s) number, family,
type and speed, the level 2 and level 3 memory cache size, mass storage, and precise
connectivity in terms of network technology available (Ethernet, Myrinet, Wireless,
Modem) and IP parameters. This information is made available through the Cloud,
so that precise characteristics of machines on the network are available, and allo-
cated sets of machines can be as homogeneous as possible.

4. Experimental results
In order to validate the key ideas of the I-Cluster project, two approaches have

been followed: experimentation with a prototype and simulation. This section

3 http://www.vmware.com/products/virtualplatform.html
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describes some experiments done with a prototype we developed [21] on which the
main services from the |-Cluster specification have been implemented and tested. Sec-
tion 5 will analyze our simulation results.

4.1. Prototype architecture and testbed

The experimental implementation of the I-Cluster Cloud is a key point for its val-
idation. We implemented a prototype with a simplified version of the infrastructure.
Because one of the key issues of the I-Cluster is the dynamic behavior of the re-
sources—joining and leaving the Cloud—we chose a bottom-up approach, imple-
menting the lower layers of the stack. Therefore the prototype architecture is built
around the Sandbox layer, including several resource management services. Fig. 4
shows a high-level structure of the prototype architecture and its relation to the ori-
ginal |-Cluster stack.

To conduct some performance and availability tests (presented in Section 4.4) we
installed the prototype in 25 workstations from PUCRS’s computer science college’s
laboratory. One node is fixed in the prototype serving as root of the Cloud and does
not calculate, so only 24 nodes are used in the following experiments.

Since students may freely use these PCs, the availability of the nodes in the Cloud
never can be guaranteed, which turns it ideal for our tests. Each node is an HP E-PC
with an Intel Pentium-4 1.6 GHz processor and 128 MB of RAM memory. The oper-
ating system used in the lab is Windows 2000 and when a machine joins the Cloud it
changes to Mandrake GNU/Linux.

Because the testbed is limited to a small number of nodes, we did not implement
the whole |-Cluster resource management algorithms (Section 3). We did the follow-
ing simplifications for the prototype:

Sandbox. A module developed by HP Brazil called Mode Switch is responsible for
the sandbox mechanism, alternating between the user operating system (user-
mode) and the cluster operating system (cluster-mode).

Prototype Architecture Correspondent I-Cluster
Layers

Distributed Application

Resource Manager
Distributed Distributed

Processor Processor Topology Scanner

Management Management R
Resource Sniffer

cee
Mode Switch Mode Switch Sandbox
Node 1 Node n

Fig. 4. Prototype architecture and its layers.
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Resource Manager. We implemented a simplified version of the gossiping algo-
rithm to allocate the available resources called Distributed Processor Manage-
ment (dpm) [22].

Topology Scanner. This functionality was included in dpm as an additional service
responsible to connect resources that join the Cloud in a logical topology. When a
request operation is issued this logical topology is traversed by the resource
manager to find free resources.

Resource Sniffer. This functionality was also included in dpm as an additi-
onal service responsible to track the configuration and availability of the
resources.

The following sections describe the implemented prototype layers in detail.
4.2. Implementation of the sandbox

The Mode Switch module, developed by HP Brazil, is the module responsible for
the sandbox mechanism, alternating between the user operating system (user-mode),
and the cluster operating system (cluster-mode) as the I-Cluster Cloud specifies [23].

The main Mode Switch role is to keep track of the usage of the machines where it
is installed and identify in which periods these machines are idle and could be
exploited in the Cloud. Based on this knowledge the Mode Switch initiates the tran-
sition to the cluster-mode without user intervention. Its design has the following
characteristics:

Efficient mode switching. Switching between modes is implemented in an efficient
way resulting in switching times lower than 1 min.

Local use has higher priority. Immediate switch when the user comes back (no con-
text is saved to reduce switching times).

Zero local interference. The Mode Switch installation does not have any impact on
the target system performance when in user-mode.

No special hardware requirements. The Mode Switch is implemented completely in
software. No specific hardware is needed other than a network connection.

At implementation level, the Mode Switch relies on a fixed-size partition (1 Gbyte)
allocated on the node’s native disk. Among other things are included in this partition
traditional middleware and libraries for parallel computing (MPI, Blas, etc.), and
tools to transfer the jobs and their data. These tools are part of the Linux distribu-
tion for cluster called Clic [24].

The I-Cluster partition is created in a highly transparent way when the I-Cluster
environment is deployed. We designed a tool that enables the creation of a contigu-
ous and permanent file in the user file management system (Microsoft Windows). We
then automatically copy the raw image of the I-Cluster partition to this file. We then
have an |-Cluster partition included in the user’s native partition. This avoids all low-
level operations by the user (such as partitioning or formatting the hard disk) and
makes the installation automatic.
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This partition is created in the user’s native partition, such as no repartitioning of
the disk is necessary at the installation of the Mode Switch. In order to make this
mode-switch partition bootable, the MBR of the disk is also modified to install a cus-
tomized boot-manager. This boot-manager is used to determine in which state the
node is and to boot in the right configuration (user- or cluster-mode).

The determination of the state of the node is made by the Mode Switch agent, that
runs on each node, detects idle time and analyzes if this matches a predefined pattern
(e.g. it is longer than a specified delay, or occurs after 23h00). If yes, the agent up-
dates the state in which the node should be, and triggers the hibernation of the node:
a physical dump of the current node’s state is made on disk. Then it causes the reboot
of the node and the customized boot-manager will read the state and select the right
mode to boot.

A state diagram of the Mode Switch is presented in Fig. 5.

Both context saving and restoring operations are done using system calls. So,
since these context switching tasks are provided by the operating system API, they
must be theoretically trustworthy and we assume that they occur without any data
loss. The switching from user-mode to cluster-mode is presented in Fig. 5 as the tran-
sition labeled as “Idle time detected”. After the context switching, the machine will
boot the cluster operating system and then the node may enter the I-Cluster Cloud.
Two events will force the node to return to user-mode: the detection of a local user
presence or the end of the profiled idle time. In the first case, any mouse motion or
keyboard hit is used to detect the presence of the local user. The second case will not
require any user intervention because the Mode Switch will switch back to the user-
mode, based on its knowledge about the workstation usage. In both cases the user-
mode will be restored to the state it had before switching.

In the user-mode the Mode Switch presents itself as a small icon in the user’s task
bar to indicate it is running. As said before, it does not interfere with the normal
operation of the machine and the user does not lose the control over the machine
because the cluster-mode is only activated after a defined idle period.

User-Mode Cluster-Mode

Idle time detected

No user activity User request

Cluster-
Mode

Local user detected

User activity detected

End of profiled idle time

Fig. 5. State diagram of the Mode Switch.
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Table 1

Switching times in a HP E-PC node

Mode-switching Time (s)
User-mode to cluster-mode (Windows to Linux) 49.04
Cluster-mode to user-mode (Linux to Windows) 34.88

In Table 1 we present the switching times achieved by the Mode Switch in our test
node (mean time of five measurements for each case). The node is a HP E-PC with
an Intel Pentium 4 1.6 GHz processor and 128 MB of RAM memory. The operat-
ing system used in user-mode was Windows 2000. In cluster-mode the node runs
Mandrake Linux with 2.4.3 kernel. These measures show that if a student tries to
use a workstation that is in cluster-mode it has to wait only 35 s for the machine
to become available.

4.3. Implementation of the resource management layers

Because of the small number of nodes available in our testbed we integrated the
three I-Cluster resource manager layers in a prototype layer called Distributed Pro-
cessor Management (dpm). In the following sections we will describe the core func-
tionalities of dpm and the included services to implement the Topology Scanner and
the Resource Sniffer.

4.3.1. Distributed processor manager (dpm)

dpm is a distributed processor manager that allows dynamic addition and removal
of the nodes being managed [21]. It is totally distributed, this means that there is not
any central module or manager that is responsible for the inclusion or exclusion of
nodes. A daemon is running on each node of the cluster to control local information
about the node. Once the nodes have booted in cluster-mode, they run the dpm dae-
mon to organize themselves within the Cloud.

Users can allocate their jobs, and use an API provided by dpm to communicate
with the system. So, user’s applications can allocate more nodes at execution time
and spawn their jobs among nodes that became free after the initial allocation.

To minimize network interference, dpm uses a hierarchical logical topology when
communicating with the nodes. In the |-Cluster simplified prototype, the Cloud is
structured as a tree. Thus the three possible states of a I-Cluster node are the follow-
ing (see Fig. 6):

Node in user-mode. Represented in Fig. 6 by the white circles. These are nodes that
are not idle and therefore are not part of the Cloud.

Free node in cluster-mode. Represented in Fig. 6 by the light gray circles. Because
these nodes where idle, the Mode Switch booted the cluster operating system and
connected them into a logical topology (tree based). This logical topology will be
used to find free nodes when a request for the Cloud arrives. No distributed pro-
cessing is running in these nodes because they where not allocated yet.
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O QO Local use
@) © Cluster mode—free
e @ Cluster mode-allocated

Fig. 6. Possible states of a node and the I-Cluster Cloud and the logical topology that connects them (tree).

O

Allocated node in cluster-mode. Represented in Fig. 6 by the dark gray circles.
These are nodes in cluster-mode that are already allocated and executing a distrib-
uted application. The thicker connection lines represent the links to the other allo-
cated nodes running the same application.

4.3.2. Topology scanner

After a node changes to the cluster-mode and boots the cluster operating system,
it runs the Distributed Processor Management (dpm) daemon. dpm connects the
node to the Cloud logical topology and implements a dynamic processor manage-
ment ensuring that a distributed application may request additional nodes or par-
tially release the nodes it is using.

Because dpm was originally not able to cope with resources joining and leaving
the Cloud we implemented the Topology Scanner in the form of an additional ser-
vice. In the prototype, the logical topology is a tree so that the Topology Scanner
service has two main responsibilities:

e connect nodes that join the Cloud to the tree;
o disconnect nodes that leave the Cloud from the tree reorganizing the logical
topology.

When dpm needs to connect a node to the Cloud it looks in the same network to find
at least one peer already in cluster-mode to connect to him. If no node in the same
network is in the Cloud it will be connected to the root of the tree.

4.3.3. Resource Sniffer

The Resource Sniffer is also implemented as a service of dpm. Each time a node
joins the Cloud dpm sends information to a repository about its hardware configura-
tion and arrival time. When it leaves the Cloud the departure time is registered. It is
important to have detailed information about the hardware configuration of the
nodes in the cloud (processor, memory, disks, etc.). This will be used later to match
available nodes to an application request (Match Finder).

The repository was updated in the prototype with the standard E-Mail service.
One message is send when a node enters the Cloud and another when it leaves.
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The message header contains the node identification and a time reference and the
message body the information about hardware configuration extracted from a spe-
cial Linux system folder called /proc/.

This allows us to analyze the behavior of each individual resource and also about
the available computing power of the whole Cloud in different time periods. Some
statistical results are presented in Section 4.4.2.

4.4. Experimental results with the prototype

In this section we show some experimental results obtained with the I-Cluster pro-
totype. We analyzed two aspects of the prototype: the performance executing a dis-
tributed application and the mean availability of the nodes.

4.4.1. Performance results

In order to validate the performance of the prototype we implemented a test
application. Since communication costs may be very high among idle workstations
spread in a university campus or different floors of a company building, the applica-
tion should be coarse grained to allow gaining performance in such an environment.
It is also important that partial results may be easily rescheduled to other nodes in
the case that some machine abruptly leave the I-Cluster. Based on these characteris-
tics we have chosen a distributed Ray-Tracer application for the first prototype.

POV-Ray (Persistence Of Vision Raytracer®) is a three-dimensional rendering en-
gine. The program derives information from a file containing the description of a
scene (objects, textures, lights and point of view) simulating the way the light inter-
acts with the objects in the scene to obtain a three-dimensional realistic image (pro-
cedure known as ray tracing). Each pixel of the resulting image may be calculated
from the scene description without knowledge of neighbor points. MPIPovray
3.01 is a parallel implementation of the above application that divides the image
to be calculated in horizontal slices, mapping each slice to one slave process. A mas-
ter process is dedicated to the image partitioning, slices distribution and screen draw-
ing. Slave processes do not wait for the calculation of the whole slice and send ready
screen lines to the master to allow real time drawing of the already calculated points.

We have changed the distributed implementation of the MPIPovray so that the
dynamic I-Cluster nodes have the initiative to request work, as in a client/server rela-
tion. The clients (running on the I-Cluster nodes) connect to a server to request a sec-
tion of the image, render the received section and then send the rendered lines back
to the server. Thus, each node renders a section of the image and the complete image
is drawn only on the server.

The use of the client-server architecture was chosen because all the initiative must
start from the client side. As such, if a node is not in the cluster-mode, it is simply
ignored. Also, the server does not store any information about the active clients. This
is particularly important because the nodes of the I-Cluster may change to user-mode

4 http://www.povray.org
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at any time, and this characteristic allows the clients to abort their execution at any
point of the code, without the need to do any extra work after the user activity
detection.

Therefore, the server must guarantee that the entire image will be rendered inde-
pendently if a section was delegated to a node that changed back to user-mode dur-
ing the execution or no. This is done by re-sending the section that was lost when all
other sections were received. So, when a client has to change back to the user-mode,
it does not have to report this to the server, resulting in a more efficient switching
operation.

The performance evaluation of the distributed version of POV-Ray was done ren-
dering an image with 640 x 480 pixels (chess2.pov) in the testbed described in Section
4.1. The image has been partitioned in slices of 15 lines. This means that when a cli-
ent requests a work to the server, it will receive a slice with 15 lines to render. The
client will request a new section only after its previous 15 lines have been rendered.

The time that the application needs to render the image decreases as new clients
are included in the calculation (Fig. 7). The time that the sequential version needs to
render the image is 23 min and 52 s. Using the distributed version the best Speed-Up
obtained was with 16 clients (a factor of 12.49) being the same image rendered in
1 min and 54 s. This was the performance cut-off point for this application with this
load.

Thus the POV-Ray example shows that our prototype implementation of the
I-Cluster environment can yield significant parallel gains for master/slave based
applications.

4.4.2. Resource availability

With the Resource Sniffer (Section 4.3.3) we got the information about the avail-
ability of each of the 24 nodes. This gives an idea about the wasted processing power
even in such a small test environment.

1600
1400 b
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1000 b

800 1

Time (secs

400

A 0nngo.

12

o

Number of clients

Fig. 7. Performance of the distributed pov-ray application over the I-Cluster prototype.
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Node number

Fig. 8. Mean number of available nodes vs. time.

We got a three dimensional graph of a typical day of the week (see Fig. 8), whose z
axis gives the probability that a node be idle and available for computation.

The prototype architecture is in production mode for more than one year in our
lab. We use several applications that run for several hours along the day, losing and
receiving extra nodes during execution.

5. Simulation results

The Cloud defines a set of distributed algorithms that offer a good resistance to
changing conditions such as network partitions or disconnections; tolerance to ma-
chine volatility, as users may reclaim their machines at any time; self-configuration
and automatic maintenance; and horizontal scalability up to a large number of
machines (10,000 was our goal). The experimental platform of previous section
allowed some practical validations. This section validates the scalability of I-Cluster’s
management algorithms.

The algorithms are derived from Mosix’s load distribution. Mosix offers a very
good convergence concerning information distribution time, as shown in Section
2.4, which let us hope that the Cloud could scale nicely. In order to validate this part
of the project, we have used simulation: a simple simulation has shown (Section 2.4)
how our gossiping algorithm allows the diffusion of the information in the Cloud. We
used here a generic simulator, that has also been developed to validate more complex
behaviors of the Cloud. First, this simulator is rapidly presented; the next one ex-
plains the kind of scenario that has been used to simulate the Cloud; at least, Section
5.3 presents the obtained simulations.
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5.1. A generic simulator

In order to validate the way the nodes exchange their knowledge about their
neighborhoods, we developed a simulator in Java, called GEssI.

The user defines his Events as being specializations of the generic and virtual
Event class, such as for instance the EventEnter or EventLeave classes. Each
one must provide an exec (Node n) method that calls n’s right method to treat the
Event.

A generic class Node is also proposed to the user, that implements some common
characteristics of a node, and most of all provides the exec () methods that answer
to the possible Events: when being notified by the Scheduler of a certain kind of
Event (e.g. the reception of a message), the adapted exec () method will be called
by the Node. The user has to derive a specific class (e.g. Nodelcluster) from Node, in
which he or she will override or define the exec () methods that correspond to the
Events that he defined. Some usual services are pre-defined, such as sending or
receiving a message for instance. A Node is also defined to have some Neighbors,
which are a fixed-size collection of references on other Nodes. The collection may be
updated, for instance one Node may fusion its neighbors with those of another Node
through the appropriate method.

All the possible Nodes are grouped into the Universe class, that provides a
lookup service. A special package, the Scheduler, allows to design scenarios that
are used to simulate the logical behavior of the nodes: it builds an “Agenda”, which
is a time-ordered list of lists of couples (Node, Event). The Scheduler then pro-
vides an exec () method that runs across the Agenda and notifies each Node of the
Event that it has to deal with. Thus, GessI’s main simply initializes an Universe and
a Scheduler, and runs the Universe’s exec () method.

GEssI provides a user interface in order to easily specify scenarios (i.e. which time-
step ordered events are notified to which nodes). We defined a grammar that is able
to define events notified to nodes at different time-steps with a simple single line com-
mand. Wildcards and interval definitions are allowed to specify time-steps or nodes.
This syntax is very much like the one used by the Unix cron instruction and has the
advantage of being very simple to schedule periodic events to a high number of
nodes. Since some algorithms may need special parameters, these ones have to be
defined in a different file and loaded before the scenario. This way, GeSSi may
use the same scenario file with different algorithms, making it easier their
comparison.

5.2. Scenarios for the simulation

In order to fully validate the I-Cluster gossiping algorithm, we need to define the
characteristics of the Cloud that we aim at simulating.

We will simply consider the following population of nodes: the servers will be con-
sidered as reliable nodes, that will never fail and never stop. They model for instance
the servers of big firms or universities. The workstations will have an entry/exit rate
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of medium importance: basically they will be available for computing at night, and
used by their owner during days, except during a one-hour pause at noon. At last,
the PC will represent the domestic, personal computers. They will be available only
during daytime and have a much higher rate of failure.

This preliminary study will be based on the use of three time-zones, roughly cor-
responding to computers distributed among Europe and America, northern (USA)
and southern (Brazil, Argentina and Mexico). Thus, some nodes will enter during
nighttime in Europe while others, in America, are still used because it is daytime.
The proportion of each type of node is also difficult to model. For this simple model
we have used the data compiled by the http://www.journaldunet.com web-site. Sum-
ming-up all the available information we will consider the repartition of nodes given
in Table 2.

Taking into account the number of servers and workstations sold and comparing
it to the number of PCs sold in these same areas, we will consider that we have a ratio
p = 0.28% of the number of PCs that are servers or workstations. At last, we will
consider that each server hosts in average some 200 workstations.

Summing it up, given a number #n of nodes that we want to simulate with GEssi, we
will have the proportion of nodes of each type and geographic zone following the
proportions given in Table 3.

5.3. Results of the simulations: scalability of I-Cluster

At the start of the simulation, the scheduler will then instantiate n nodes, follow-
ing the required proportions for each category. The simulation will start at time

Table 2
Number of PCs in our population
Total Europe USA S. America
PC (millions) 193.5 96.5 85 12
Table 3
Proportion of nodes in the simulation
Total Europe USA S. America
PC ! 05" 044" 0.06—"
1+p I+p I+p I+p
WS . . . .
0.995np 0.50 995np 0.440 995np 0.060 995np
(1+p) (1+p) (1+p) (1+p)
Server np np np np
—_— 05———— 044 ——— 0.06 ———
201(1 + p) 201(1 + p) 201(1 + p) 201(1 + p)

n is the total number of nodes and p = 0.28.
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Fig. 9. Mean number of known, on-line, neighbors vs. time. 20,000 nodes have been simulated during 7
days (starting on Sunday). Each node has a buffer for a maximum of 30 neighbors. We superposed five
simulations.

00h00 GMT on sunday. Fig. 9 shows the behavior of the nodes managed by the
I-Cluster algorithm, as revealed by the mean number of neighbors known by a node
that are on-line.

In this experiment up to 20,000 nodes were simulated during 7 days, starting on a
Sunday, the chosen time-step being of 20 min. Each node has a buffer of up to 30
neighbors with whom it may exchange messages following the I-Cluster algorithm.
The simulation took 10 min on a Pentium-4 CPU of frequency 1.70 GHz and with
400 Mb of RAM, using Sun’s J2SDK and J2RE 1.4.1. We superposed five simula-
tions to show that these results may be considered as statistically significant: very
few differences are observed between each run.

As can be seen, a daily phenomenon appears, following the daily rhythm of the
node’s availability: at the start of the day (in Europe) all nodes have neighbors that
are staying “on” (albeit some slight variations may be seen because of the noon
pause). By the middle of the day, some of these neighbors that were workstations
of the American zone disappear, because of the starting day there. Yet, the I-Cluster
algorithm reacts remarkably well since within a few time-steps (and messages ex-
changes) all the nodes soon come back to filling their buffers with stable neighbors,
until the next daily change. Finally, the influence of the end of the week-end may be
noticed as a bigger failure in the mean number of known stable neighbors, on start of
the second day (Monday) of the simulation. This failure, too, is quickly compensated
by the algorithm.

6. Conclusions

We have presented the I-Cluster project, which aims at federating computing
resources during their idle time in order to dispose of dynamic high-throughput
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virtual clusters. We detailed some of the original contributions of the I-Cluster
Cloud:

¢ a sandbox mechanism granted by an operational system switch, which turns the
I-Cluster mode compatible with usual Operating Systems, as well as provides secu-
rity for the normal user of the |-Cluster nodes;

e a management algorithm based on gossiping that provides an efficient and scal-
able way to disseminate the information about the nodes in the Cloud;

e a module that allows to profile the characteristics of the nodes.

Thus the Cloud is able to manage and use thousands of nodes, for instance distrib-
uted on an intranet as studied in [25], in order to run arbitrary jobs on the virtual
clusters, without any interference with the normal users of the nodes.

We validated the I-Cluster original specification with a prototype based on 25 non-
dedicated machines, equipped with the Mode Switch module to implement the sand-
box mechanism, on which we tested a distributed ray-tracing application. We used
an e-mail based tool to monitor the available nodes of this realistic implementation.
As to the validation of the management algorithms, we presented different simula-
tions that show the good scalability of the Peer-to-Peer Cloud.

The results, theoretical and experimental, obtained in the I-Cluster project are the
following:

¢ an implemented sandbox mechanism that has a good switching time (more or less
1 min);

e a platform for idle cycles use that presented a good throughput on tasks-farm
applications;

e a study of the availability of resources in an academic environment that revealed a
good potential,

e an algorithm to manage the nodes with simulated high scalability.

An outcome of this work is also a generic simulator that may be used for the study of
other algorithms for the management of distributed resources.

Current studies on the I-Cluster project include a checkpointing mechanism in the
ID-IMAG laboratories, in order to avoid the loss of an interrupted task when a user
comes back and his nodes are leaving the Cloud. The preempted I-Cluster jobs could
thus be migrated to other available nodes of the Cloud. Another approach is the use
of a network-booted middleware to enter the Cloud, instead of the disk-based Mode
Switch. Augerat’s ICATIS project® explores this possibility, which allows do avoid the
local storage of a Linux partition on the nodes. As far as management algorithms are
concerned, the CPAD — PUCRS/HP keeps on studying the evaluation and simula-
tion of various solutions that could be incorporated to the dpm resource manager.

5 http://www.icatis.com/
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