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Abstract

Current processor allocation techniques for highly parallel systems use centralized front-end based algorithms which
restrict applied strategies to static allocation, low parallelism, and weak fault tolerance. To lift these restrictions, we are
investigating a distributed approach to processor allocation in multicomputers where currently no centralized data struc-
ture with information about the state of all processors exists. This approach will allow the implementation of more com-
plex allocation schemes and possibly the consideration of dynamic allocation, where parallel applications would be able to
adapt the allocated processor partition to its actual demand at running time, resulting in a more efficient utilization of sys-
tem resources. Noncontiguous versions of a distributed dynamic processor allocation scheme are proposed and studied in
this paper as an alternative for parallel programming models to allow dynamic creation and task deletion. Simulations
compare the performance of the proposed dynamic strategies with static counterparts and also with well-known centralized
algorithms in an environment with growing and shrinking processor demands. To demonstrate dynamic allocation is fea-
sible with current technologies, results of the experiments are presented for a 96 nodes SCI hpcLine Primergy Server
cluster.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Parallel machines with distributed memory, such as massively parallel processing systems (MPP) or cluster
computers are called multicomputers. Their processing nodes consist of a processor and private memory and
are connected by a network in order to exchange messages. Jobs to be run on those systems are parallel pro-
grams consisting of tasks which communicate with each other. We assume that upon arrival, each program
requests a specific number of processing nodes large enough to accommodate all tasks. Such a request is usu-
ally satisfied by allocating a sufficiently large subset of processors to the program. The selection of that subset
in order to maximize some performance measure is a particular instance of a resource management problem
0167-8191/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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and referred to as processor allocation problem. The selection of a job from the input queue (scheduling) is not
considered here. For the rest of the paper, first come first served (FCFS) is implicitly assumed. Improvements
over FCFS such as different variations of backfilling would also be applicable here, but are not in the scope of
this paper. Once a set of processors has been allocated to a program, a second allocation problem must be
addressed: which particular task of the parallel program is assigned to which processor. This is called the map-

ping problem and is usually represented as a graph-matching or graph-embedding problem since both the com-
municating tasks and the processor network can be modeled as graphs. This paper addresses the problem of
selecting an appropriate processor subset to a job, a partition. It is implied that resulting partitions are
disjointed.

1.1. Processor allocation

Processor allocation must meet several partly contradicting goals:

1. High utilization

Processor allocation must maximize resource utilization, i.e., it must avoid any kind of fragmentation so
that all processors can be used.

2. Low overhead

Since all requests are processed at run-time, resource allocation algorithms must be fast and cause only low
overhead.

3. Scalability

Algorithms must support systems of thousands of nodes without creating a bottleneck.
4. Low latency

Low execution times of parallel programs must be supported. In some machines, execution time will be
affected by the allocation scheme with regard to communication bandwidth and latencies within the parti-
tion. Although nothing may be known about communication patterns of parallel programs that occupy
those partitions, it is assumed that arbitrary tasks of the program communicate with each other. Partitions
with low diameters and a large number of internal links generally lead to better communication perfor-
mance, e.g., in a 2D-mesh, a partition in the form of a square would better serve an arbitrary program than
one in the form of a narrow and long strip. This can be reconsidered in machines where node distances do
not significantly affect message latency.

Despite some specific applications where a program is running permanently on a dedicated machine, it is
almost inevitable in large systems with 100 or 1000 of nodes, to allow multiprogramming, i.e., several par-
allel programs sharing the machine in order to achieve high machine utilization. Two ways of sharing exist:
space sharing and time sharing. Space sharing is when each program is exclusively given its own set of
processors.

Although there is theoretical and empirical evidence that time sharing can significantly boost the utilization
of the processors [1], in this context it is not yet widely used. One reason may be that a large amount of mem-
ory per node is needed to accommodate all programs and avoid paging. Since allocation operations must be
executed efficiently at load time, ordinary allocation techniques restrict feasible shapes of partitions to achieve
some regularity, and facilitate management. A partitioning scheme can be called structure preserving if it gen-
erates partitions that are of the same topological graph family as the entire processor graph, specifically, sub-
cube allocation in hypercubes and submesh allocation in meshes. Because task interaction has to cross-node
boundaries, communicating tasks should be placed closely together to maintain low communication delays. In
most cases, contiguous partitions are useful, meaning their processors are constrained to remain physically
adjacent. For example, in a 2D-mesh, each request would be served by exactly one rectangular partition of
sufficient size.

The direct consequence of such simplifications in the allocation scheme is that a 100% machine utilization is
not achievable due to two types of fragmentation: internal fragmentation, when processors are allocated, but
not used, and external fragmentation, when a sufficient number of free processors are available to satisfy a
request, but they cannot be allocated contiguously.
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Researchers have focused on noncontiguous allocation [2], i.e., the request of an application to be served by
more than one contiguous partition, to reduce both types of fragmentation. In the past, noncontiguous
allocations did not receive much attention because communication latencies were extremely sensitive to the
physical distance in the network. However, depending on network characteristics and the program communi-
cation behavior, using distant free processors to serve a request may be more reasonable than denying the
request [2].

1.2. Dynamic degree of parallelism

Dynamic behavior of parallel programs is another important issue to address. Currently, message passing
interface-1 (MPI [3]), which does not support dynamic task creation, is still the dominant programming envi-
ronment for parallel program development. Therefore, most of the presented allocation schemes have assumed
that processor demand of a program is constant throughout execution time. This is an idealized and over-sim-
plified assumption. Many parallel programming models and their corresponding language constructs allow
dynamic creation and deletion of tasks, resulting in growing and shrinking demands. A wide range of parallel
algorithms exhibit dynamic behavior in data access, workload and communication patterns. Examples can be
found in radiosity calculations [4] and volumetric ray tracing [5] where workload and program flow depends
on the way the light travels through modeled objects. Sparse Cholesky factorization as an alternative to the
Gaussian elimination method [6,7] provides high performance by implementing dynamic behavior.

Although parallel virtual machine (PVM [8]) and SCI-based distributed shared memory systems (Scalable
Coherent Interface [9]) already provide these functionalities, interest in MPI-2 based of systems supporting
dynamic program behavior will increase. Consequently, processor allocation schemes will have to adapt to this
development by providing dynamic partitions.

A partitioning scheme where partitions can ‘breathe’ will result in a better resource utilization. Dynamic

partitions will minimize internal fragmentation, since the size of the partition will closely match the actual
number of needed processors.

To completely avoid internal fragmentation, form-free partitions of arbitrary shapes could be used. How-
ever, even with form-free partitions, there will still be a considerable amount of external fragmentation, since
‘holes’ among the partitions will exist. In general, holes are not entirely detrimental, representing free space to
allow partitions to breathe. If a partition wants to grow and there is no adjacent free space available, the
request for more processors would be denied. A solution to this problem is to consider non-contiguous
dynamic partitions.

If a large number of applications sharing a parallel machine and a high degree of dynamics is considered,
i.e., frequent creations and deletions of tasks, a centralized allocation scheme could become a bottleneck due
to the high number of partition size changes. This holds for the performance of the parallel application, too.
Delays coming with the dynamic allocation may increase drastically at centralized allocation techniques in
heavy load situations. In these scenarios, a distributed allocation scheme could be an alternative. Instead of
sending request messages to a remote allocation agent, a distributed algorithm would search for free proces-
sors in the neighborhood to minimize overhead for allocation and keep the partition diameter low. Moreover,
several searches for free processors by different programs could simultaneously take place, thereby avoiding
the bottleneck problem presented by a centralized solution. The goal of this paper is to present the ideas sup-
porting distributed strategies for the dynamic processor allocation problem and illustrate its usefulness.

1.3. Previous research work

Several approaches to dealing with the processor allocation problem can be found in the literature [10–
13,2,14–18]. In spite of the fact that these contributions applied different policies in resource management,
all schemes share one common characteristic: control of allocated resources is implemented by a global data
structure localized mostly in a host machine. Implementation is relatively easy, and may be the most common
approach. There are, however, problems associated with such a centralized management which may become
relevant for large systems: (i) lack of scalability, (ii) incompatibility with adaptive processor allocation schemes
(dynamic allocation) [19], and (iii) weak fault tolerance.
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The scalability problem is caused by utilization of centralized structures in management. By increasing the
number of processors to be managed, the global data structure grows, increasing processing time and reducing
performance to a level that may not be acceptable for a procedure during execution time. In a centralized
model, a dynamic behavior as described above would result in frequent updates to global data leading to an
overhead in communication between the host and parallel machine. The host eventually becomes a bottleneck
of I/O and computation. With regard to the fault tolerance problem, since all allocation operations have to go
through the host, a host failure may stop all processing in the system.

Many of the previous policies also cause a considerable amount of machine fragmentation, a direct conse-
quence of simplifications made by allocation schemes concerning partition shapes (rectangles) and contiguity
restrictions. These simplifications reduce processing time of an allocation operation but increase both types of
fragmentation, compromising overall machine utilization. Several alternatives must be considered when iden-
tifying a processor allocation scheme:

• static vs. dynamic;
• rectangular vs. form-free;
• contiguous vs. noncontiguous; and
• centralized vs. distributed.

In [20–22], we have already presented a distributed model for processor allocation with initial results for a
structure preserving and a form-free distributed allocation scheme. We also analyzed the impact of noncon-
tiguous allocation in a distributed scheme. In [23], we analyzed the feasibility of the dynamic allocation model
in large PC clusters. We proposed and studied Leak, an enhanced noncontiguous version of one of our algo-
rithms, as an alternative model for parallel programming that allows dynamic creation and task deletion. This
paper summarizes our work with distributed allocation in multicomputers and presents our latest experimen-
tal results on three different cluster architectures.

The remainder of the paper is organized as follows: Section 2 introduces distributed allocation and presents
a distributed allocation algorithm which, using simulation, is compared to other schemes in Section 3 with
regard to contention, fragmentation and overhead. Measurements from a real cluster system are presented.
Section 4 summarizes the obtained results.

2. Distributed processor allocation

Fig. 1 presents a global view of the distributed allocation model and the distributed processor managers

(PMs) involved in the allocation operation. Main differences to centralized management are (i) the absence
of a central data structure with information about the state of all processors, and (ii) the execution of alloca-
tion operations directly in the machine nodes in a distributed way, and not in a data structure localized in the
host. The host machine is now only responsible for queuing incoming requests and forwarding them to the
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Fig. 1. Distributed allocation in a mesh-connected multicomputer.
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processor mesh. Communication between host and machine exists through a boundary node. This node is
called an entry point and due to the distributed environment several entry points may be used to improve
scalability.

Each machine node has a local PM that is responsible for the processor allocation. The PMs cooperate to
solve the allocation problem in a distributed way [24]. Communication among the PMs and the implemented
distributed allocation scheme depends heavily upon the architecture of the target machine. To simplify the
search for free resources, PMs form a logical topology to efficiently map the interconnection network of
the target machine. Section 2.3 describes in detail how PMs cooperate in our target system.

2.1. Processor allocation operations

To match the distributed characteristics of this new allocation model the basic allocation operations are
adapted and new dynamic allocation operations are implemented in the distributed processor manager, result-
ing in allocation operations being divided into two groups:

1. Static operations
Initial allocation Allocate the processors needed by a parallel application to initiate execution.
Final release Release all processors after execution.

2. Dynamic operations
Partial allocation Allocate extra processors needed during execution to expand a processor partition
already in use.
Partial release Release some processors to shrink a processor partition already in use.

Initial allocation is the most costly operation in the distributed environment. It originates in the host computer
and initiates a search wave in the machine for the desired partition. Since all the nodes are possible candidates, the
search scope may be large. The first-fit strategy is used in the search and different initial nodes are used each time
as mesh entry-points to increase the probability of finding free nodes in early stages of the search wave.

In contrast to centralized list-based algorithms (released processors may have to be concatenated to a free
partition or will concatenate multiple free partitions in one), the release operation in distributed allocation is
trivial. Starting in one of the partition nodes, a wave is used to change the state of the involved nodes from
allocated to free. No data structure has to be updated and the operation is done completely inside the machine,
initiating from within the partition to be released.

Dynamic operations allow a running parallel application to allocate additional processors and dynamically
adapt the partition size in use to a new processor demand (‘breathe’). To begin, the application sends a partial
allocation request to the PM of one of its nodes. In partial allocation a search wave for free processors will
originate in this node looking for possible candidates to be allocated around this partition. In a partial release,
the wave searches for the nodes to be liberated. As a result of the smaller search scope, both operations gen-
erate fewer messages than static operations.

To eliminate problems like not finding free adjacent nodes in a partial allocation (a partition has no sur-
rounding space in which to grow) or having released nodes that are inside a partition and will not be of much
use because they will not be adjacent to any other partition, we only use dynamic operations in conjunction
with noncontiguous allocation.

2.2. Noncontiguous allocation

In most of the distributed processor allocation algorithms presented in [22], external fragmentation was
high (up to 30%), leading to compromised machine utilization. The main reason for this behavior is that these
algorithms use contiguous allocation to reduce resulting partition diameters, with intent to reduce communi-
cation costs inside the partition. Current communication technologies like wormhole routing [25] enable us to
consider noncontiguous allocation schemes, since the number of hops between nodes is not the dominant fac-
tor determining message latency [2]. Use of small partitions of free processors scattered throughout the
machine to form larger noncontiguous partitions significantly decreases external fragmentation. However,
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in ring connected machines like SCI clusters [9], or in machines with hierarchical networks, noncontiguous
allocation introduces potential problems of message contention because messages occupy more links, yielding
potential communication interference with other jobs. If contiguity is an issue, we try to serve a request with
contiguous allocation, and to look for noncontiguous additions only on demand. This way the noncontiguous
scheme should be seen as an addition, and not as an alternative to contiguous allocation. In some of our target
machines contiguity is not an issue anymore because they use some kind of switched network where the dis-
tance between any two nodes is 1.

2.3. Distributed Leak algorithm

Ideas presented in this paper are validated by implementation of a distributed allocation algorithm called
Leak (Section 3.2). It was developed for contiguous allocation in 2D torus interconnected systems. Section 3.2
also provides a detailed description of this machine.

The Leak algorithm is based on the principle of leaking water. From an origin point, an amount of water
leaks and flows to directions where no resistance is encountered. An important element to keep in mind is that
leaking water exhibits cohesion, which limits the diameter of the resulting puddle. For a distributed processor
allocation, the number of processors to be allocated corresponds to the amount of leaking water. Processors
already allocated in the mesh are the resistance areas and the final area formed by the allocated processors is
the resulting puddle.
Fig. 2. Phase 1 of an initial allocation: search for initial node.

Fig. 3. Phase 2 of an initial allocation: recursive distributed allocation.



C.A.F. De Rose et al. / Parallel Computing 33 (2007) 145–158 151
In Leak, an initial allocation is composed of two phases. In the first phase (Fig. 2) machine nodes are
searched from a origin point using a sequential search wave (in the used mesh topology the nodes are searched
with a ‘snake’ pattern until all rows are traversed and all four corners are eligible origin points). Since this
operation originates outside of the machine, we refer to the origin points as entry points. Depending on the
location of the entry point the orientation of the search pattern is adapted (left-right, top-bottom). In the sec-
ond phase (Fig. 3) all direct neighbors of the origin point are tested in parallel to determine if any are free.
Each free neighbor then becomes part of the load and the second phase continues recursively and in parallel
until no more load is available. All nodes found free are tried as origin points until a free partition of suitable
size is found or no more nodes are available to try, and the allocation is denied.

Fig. 4 exemplifies the execution of a 4-processor request. Gray areas represent already allocated partitions
and striped nodes are involved in the ongoing allocation operation. After a feasible origin point is found with
a search wave (Fig. 4a), possible flowing directions are determined and remaining load is redistributed
(Fig. 4b, c). Numbers and arrows indicate how the load is being propagated from the request across the allo-
cated nodes. This procedure is repeated recursively until all processors are allocated.

The essential feature of the algorithm is its form-free allocation strategy, i.e., partitions are no longer
restricted to rectangles, but may have assume any arbitrary shape, allowing the processor management more
flexibility to find a partition of suitable size, and resulting in less fragmentation. Due to the recursive nature of
the algorithm and its distributed execution, it is also important to note that different flowing directions allocate
processors in parallel, resulting in a reduced allocation time. The parallel potential of an allocation operation
increases with the size of the requested partition. Fig. 5 exemplifies this behavior in the execution of a 5-pro-
cessor request by a noncontiguous version of the Leak algorithm. Under a contiguous scheme, the entry point
from Fig. 5a and its rightmost neighbor would be released after verifying that no more flow directions were
available, and the search wave would continue for a suitable origin point. But in a noncontiguous scheme the
initially requested load would be decreased by each partially successful allocation (Fig. 5b, c).

Partial allocation (in dynamic versions of the algorithm) is similar to an initial allocation (with two phases).
Two main differences exist: (i) the origin point in phase 1 is not a machine entry point but a node inside the
allocated partition, and (ii) the sequential search wave will have a spiral pattern since free nodes near the ori-
gin point are preferred. Which node of the partition will be used as an origin point depends upon the appli-
cation since each node of an allocated partition may request a partial allocation (in a master slave application
it is usually done by the node where the master process resides).
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3. Performance analysis

The following experiments were conducted to investigate the potentiality and feasibility of the proposed
dynamic allocation in multicomputers:

1. Fragmentation experiments;
2. Message-passing contention experiments;
3. Intermittent service requests experiments; and
4. Allocation overhead experiments.

Our discrete event simulator [20] is a multicomputer simulator supporting experimentation with distributed
allocation strategies on architectures with mesh-connected network topologies. The simulator evaluates the
effects of system fragmentation and generated allocation messages. It was used to study fragmentation gener-
ated by dynamic distributed allocation in machines with up to 1024 nodes (item 1 of the above list). Exper-
iments 2, 3 and 4, were executed in a real system, a mesh-connected Scalable Coherent Interface cluster
(SCI [9]).

3.1. Simulated fragmentation experiments

This set of experiments, studying the effects of fragmentation on system utilization and job response time,
are modeled after the simulation experiments conducted in previous allocation strategy research [2,11]. In
these experiments, jobs arrive, are scheduled with FCFS, delay for an amount of time taken from an exponen-
tial distribution, and then depart. Allocation messages are also modeled, to evaluate the message overhead in
the distributed allocation.

In these experiments we simulated a dynamic and a static version of the distributed noncontiguous form-
free Leak algorithm [23,22], and the contiguous structure preserving frame sliding (FS) [10]. The distributed
Leak algorithm was described in Section 2.3. FS examines the first candidate ‘frame’ from the lowest leftmost
available processor and slides the candidate frame horizontally or vertically by the stride of width or height of
the requested submesh, respectively, until an available frame is found or all candidate frames are checked.
Because FS only handles rectangular requests, the job size in this case was transformed to the best possible
rectangle with regard to internal fragmentation and partition diameter.

The independent variable in these experiments was the system load, defined as the ratio of the mean service
time to mean interarrival time of jobs. Higher system loads reflect greater demands when jobs arrive faster
than they can be processed. Jobs delay for an exponentially distributed service time with a mean of 1.0 time
units. For example, under a system load of 1.0, jobs arrive as fast as they are serviced, on average, and under a
system load of 2.0, jobs arrive twice as fast as they can be serviced.

Job request size is randomly generated from one of two different distributions, uniform and exponential. In
the uniform distribution, the size of each job is uniformly distributed over the range U[a,b], with a = 1 and b

having four times the side length of the entire mesh. In the exponential distribution, job size is exponentially
distributed with a mean of twice the side length of the entire mesh. In this case, there are many small jobs and
fewer large ones. To simulate the dynamic behavior of parallel applications, four load profiles are randomly
generated for each job: constant (a), increasing (b), decreasing (c) and pyramid (d). In the constant profile,
processor demand is static, not varying during execution. In the increasing and decreasing profiles the proces-
sor demand varies from 1 to job size and from job size to 1, respectively, during execution. The pyramid profile
simulates divide-and-conquer algorithms, with the processor demand increasing from 1 to job size in the first
half of the execution time and decreasing to 1 in the second half. In our simulations, 30% of the jobs have a
dynamic load profile (each of the three variants are equally represented in this percentage).

Each job size distribution experiment measures:

Finish time (Ft): the time required for completion of all the jobs.
Job response time (Jrt): the time from when a job arrives in the waiting queue until the time it is completed.
System utilization (Su): the percentage of processors that are utilized over time.



Table 1
Fragmentation experiments for a heavy system load (10.0)

Algorithms Distribution Ft Jrt Su (%) Mpa

Dynamic leak Uniform 185 57.73 96.85 750.3
Exponential 157 32.75 97 507

Static leak Uniform 266 99.07 60.49 5949
Exponential 180 43.82 63.72 2184

Frame sliding Uniform 357 152.85 47.82 1083
Exponential 243 72.53 50.45 849
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Messages per allocation (Mpa): the total number of generated messages to allocate incoming requests from
the processor management divided by the number of generated requests.

All simulations model a 32 · 32 mesh and run until 1000 jobs have been completed. Results reported for
fragmentation experiments represent the statistical mean after 10 simulation runs with identical parameters,
a 95% confidence level, and mean results with less than 5% error.

Table 1 shows how efficiently the three algorithms handle a system saturated by job requests with job sizes
taken from each distribution. Simulation results for a heavy system load of 10.0 are presented. At this load,
the system waiting queue is filled very early in the simulation (full load), allowing each allocation strategy to
reach its upper limits of performance.

As expected, we can see the dynamic strategy achieved the highest system utilization since it is the only
strategy that can cope with dynamic processor requests. Static strategies must allocate fixed partitions with
the highest number of needed processors, increasing internal fragmentation. The dynamic strategy also profits
from allocating form-free noncontiguous partitions. Bigger partitions are difficult to find in contiguous
schemes resulting in long search waves and several attempts, each increasing the number of messages and
response time. In a noncontiguous scheme, allocations are cumulative resulting in shorter search waves and
reduction of messages and time. The difficulties of structure-preserving contiguous allocation can be verified
with the FS strategy and its resulting poor system utilization.

Fig. 6 shows the average job response times for uniform job size distributions at varying system loads. Since
the response time reflects the ability of each strategy to find free nodes in the machine to satisfy an incoming
request, the form-free Leak algorithms achieve, as expected, the lowest times. For the same reason, the advan-
tage of the noncontiguous Leak version is also significant, especially at high system loads. Note that the
response times do not increase to infinity when the system load appraoches saturation as one would expect.
This is due to the fact that we have only a finite job stream, i.e., the response times are bound by the overall
finish time of the simulation.
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Fig. 7 plots system utilization and job size distribution at varying system loads for the same algorithms. All
three strategies reached peak utilization at system loads of approximately 3.0. The noncontiguous Leak
reached up to 97% utilization, whereas the contiguous Leak reached only 65%, due to fixed partitions. The
structure preserving FS was only able to reach 51% because of high internal and external fragmentation.
Results reflect how each of the algorithms cope with both types of fragmentation. FS suffers from internal
and external fragmentation and the form-free Leak algorithms eliminate internal fragmentation for jobs with
static load profiles. The results clearly illustrate that the only strategy that can efficiently handle jobs with
dynamic load profiles is the dynamic Leak variant. It eliminates all types of internal fragmentation and,
because it is noncontiguous, also significantly reduces external fragmentation.

It is important to note that a dynamic algorithm may not always obtain the highest throughput and lowest
job response time compared to static strategies. With high load, the optimistic approach of the dynamic allo-
cation (no reservations are made for possible future increases in the number of processors) may result in par-
titions that are allocated but do not have space in which to grow. The processing time of these partitions must
be extended, increasing response time and reducing machine throughput.

Results measured in these experiments are consistent with those reported by Zhu [11] for the contiguous FS
strategy (mean system utilization around 50%) and by Lo [2] for the FS and noncontiguous strategies (mean
system utilization by a noncontiguous scheme over 75%). The distributed Leak strategy reached a system uti-
lization over 90% because it uses form-free allocation in combination with noncontiguity to reduce internal
fragmentation.

These fragmentation experiments indicate that, for variable workloads, dynamic allocation is far superior
to static in terms of its ability to utilize processors. However, these results ignore increased communication
contention that may be introduced as a result of noncontiguous allocation (our dynamic algorithm relay
on noncontiguous allocation especially for additional requests). Therefore, in order to validate dynamic allo-
cation as a viable strategy, experiments in a real system must be performed to evaluate message contention.

3.2. Distributed allocation on a real system

The following three experiments were conducted on the Siemens hpcLine Primergy High Scalable Compute
Server at the Paderborn Center for Parallel Computing (PC2) with a prototype of the PM described in Section
2 as a first step to evaluate the feasibility of the dynamic allocation on real parallel machines:

Message-passing contention experiments Network contention plays an important role in the proposed alloca-
tion since allocation messages could be stealing bandwidth from ongoing applications. If a so-called second-
ary network is not available – usually a Fast-Ethernet network for program loading, management and
monitoring purposes – allocation messages generated by processor managers will share the same network with
the parallel applications that are executing in the machine. Depending on the available network bandwidth,
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usually one of the main bottlenecks in cluster computing, this interference may lead to delays in an applica-
tions’ execution time. In this experiment, contention effects are analyzed based on worst case scenarios.
Intermittent service requests experiments In the proposed distributed allocation, nodes which participate in
ongoing computations in the machine will also have intermittent service requests to their local processor
manager. Each request generates allocation messages that are sent to machine nodes to look for free pro-
cessors. These messages will awaken the local PM in each node so that it will compete for processor time
with other local tasks. This experiment investigates the impact this might have on overall machine perfor-
mance. Evidence in the literature suggests that asynchronous interruptions in nodes can seriously deterio-
rate parallel machine performance [26].
Allocation overhead Because of the distributed nature of the proposed allocation, latency requests are higher
than in centralized strategies. This experiment measures the latency of distributed allocation operations for
each target machine under different system workloads.

The hpcLine Primergy Server is a distributed memory multicomputer with 96 nodes (two Intel Pentium II
with 450 MHz and 512 MB DRAM) connected by a two-dimensional SCI torus [9]. Each machine is con-
nected to the network through two SCI rings, one horizontal and one vertical. The routing is configured as
XY with messages traversing first in the horizontal ring (X) of the origin node until they reach the vertical ring
(Y) of the destination node. The SCI rings are unidirectional and each one has a total bandwidth of 500 MB/s.
This bandwidth is shared by all nodes in the same ring. The SCI cards in each node are PCI-SCI (32 bits,
33 MHz PCI bus) adapters, model D312 (distributed with Scali Wulfkits), equipped with SCI link controller
LC2 and PSB revision D. Programs were written in a special MPI version for the SCI hardware (ScaMPI [27])
and run on the Solaris operating system (Fig. 8a).

Fig. 8b presents the logical allocation structure chosen for this machine. Because SCI channels provide high
bandwidth, allocation operations are executed in the SCI network. Allocation operations attempt to allocate
form-free contiguous partitions to reduce message interference in neighbor nodes, allowing noncontiguous
allocation if necessary. The PM implements the Leak algorithm described in Section 2.3 and was coded with
the C language. Low-level SCI routines are used for communication purposes. One PM has approximately
1500 lines of source code and the executable has only 45 kB. The host machine is responsible for forwarding
requests to the cluster and evaluating results. All four corners of the machine alternate as entry points to initial
allocation search waves.

In order to better quantify the effects of contention, a simple worst-case contention generating program that
is able to send multiple messages over the same physical ring was developed. Our program allocates nodes in
the topmost mesh row (12 nodes) and in the rightmost column (7 nodes, excluding the common node). All
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Table 2
Allocation time in the Primergy multicomputer

Algorithm Mean allocation time (s) Generated messages per allocation

Dynamic noncontiguous leak 0.03 23
Static noncontiguous leak 0.162 128
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nodes are paired from the horizontal node 10 (not involved) outward and exchange messages with each other
allowing up to nine pairs of communicating nodes while continuing to share the same horizontal ring from the
machines XY routing. Fig. 9 presents obtained communication latency between horizontal nodes 9 and 11 for
message sizes up to 64 kB and an increasing number of involved communicating pairs.

Virtually no contention is noticeable for messages smaller than 4 kB. For larger messages, contention
begins to slow down message-passing performance, but only for more than 6 pairs of communicating nodes.
These results are better than the ones measured in [2] for the Intel Paragon with a similar contention program
due to the better bandwidth of the Primergy mesh. This empirical data are encouraging, indicating that small
messages generated by the distributed dynamic allocation (100 bytes mean size) will not affect performance of
ongoing computations. It also indicates that noncontiguous allocation that may separate communicating pairs
in a noncontiguous partition, is feasible on this machine.

In regard to intermittent requests on machine nodes, we were unable to measure any significant perfor-
mance degradation (less than 5%) on real applications running simultaneously with the distributed manage-
ment compared with the same applications running in a dedicated system. Small allocation messages (mean
size is 100 bytes) and low complexity of local processor managers are the main reasons for these results.

To measure allocation overhead, we simulated incoming requests (the same load generation module of the
simulator from Section 3.1 was used). Only 64 nodes connected as an 8 · 8 torus were used for this experiment.
Incoming parallel jobs were not actually loaded on the machine and allocated partitions were only reserved
during job duration. In our performance test for a medium system load (5.0), we obtained allocation times
of around 0.03 s for dynamic allocation and 0.162 s for static allocation (Table 2). Due to the small search
scope of the partial allocation operation in the dynamic version of the algorithm we observed that the number
of generated messages per allocation is much smaller than in the static version, leading to a reduction in the
average allocation time.

4. Conclusions

This paper proposes a dynamic distributed processor allocation for multicomputers with support for grow-
ing and shrinking processor demands. In our distributed allocation model, the central entity responsible for
processor status control is eliminated and allocation operations are executed in parallel in the processor net-
work itself. Using this approach, no centralized status of the processors in the entire machine exists, and each
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node participates in the allocation of partitions through its PM, communicating and cooperating with other
nodes. Nodes may be allocated or released during the execution of parallel programs and requests may orig-
inate in any machine nodes.

The basic allocation operations were redefined to match characteristics of this new dynamic environment
and implemented in a distributed processor manager. We presented simulation results and measurements
using a PMs prototype implemented for a 96 nodes mesh-connected SCI (Scalable Coherent Interface) cluster.

Our study shows that the dynamic distributed approach is feasible for large cluster machines with current
communication technologies, permits greater parallelization of allocation operations, eliminates bottlenecks
of the centralized approach, and achieves a much higher processor utilization. In our simulations, system uti-
lization for the noncontiguous version of one of our dynamic algorithms reached as high as 97%.

We conclude that distributed dynamic allocation provides a new approach that will assist highly parallel
systems to achieve better price/performance ratios in high demand, multi-user environments. New models that
support this paradigm, like the MPI-2 process model that allows the creation and cooperative termination of
processes after an MPI application has begun, will be able to exploit the potential of the distributed dynamic
allocation.

The general structure of the proposed algorithms with its distributed scheme of allocating resources can
also serve as a blueprint for other allocation or reservation problems in distributed systems, i.e., bandwidth
reservation in large networks. We feel that with new services based on the Internet, new types of alloca-
tion/reservation problems for different resources will arise that need dynamic distributed algorithms similar
to the algorithms proposed in this paper.
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