
DECK-SCI: High-Performance Communication and Multithreading for SCI
Clusters

Fábio A. D. de Oliveira Rafael B.́Avila
Marcos E. Barreto Philippe O. A. Navaux

Federal University of Rio Grande do Sul
Institute of Informatics

Porto Alegre, RS, Brazil
ffabreu,avila,barreto,navauxg@inf.ufrgs.br

César A. F. De Rose
Catholic University of Rio Grande do Sul

High Performance Research Center
Porto Alegre, RS, Brazil
derose@cpad.pucrs.br

Abstract

This paper presents the design and implementation of
DECK-SCI, a multithreaded communication library that
fully exploits the high-performance capabilities of the SCI
technology. We compare DECK-SCI, in terms of perfor-
mance, to a commercially distributed MPI implementation
and to a freely available MPICH distribution, both specifi-
cally designed for SCI clusters.

Keywords: cluster computing, message passing, multi-
threading, high-performance networks, SCI.

1 Introduction

The growing interest in cluster computing in the past
decade has motivated many advances in both hardware and
software related to computer networking, noticeably in the
field of communication technologies. In order to enable
clusters to face existing supercomputers in terms of per-
formance, high-speed communication technologies such as
Myrinet [3] and Gigabit Ethernet [12] have been developed.
To our understanding, Myrinet is currently the most widely
used of such technologies, due to factors like low latency,
high bandwidth, scalability and accessible price. In addi-
tion, the nature of Myrinet stimulates the use of message
passing, which is a well known and accepted programming
paradigm for parallel programming.

One communication technology comparable to Myrinet
in terms of performance, scalability and cost is SCI. Though
established as an IEEE standard since 1992, only recently
has SCI gained attention from the cluster computing com-
munity with the availability of PCI-based interfaces for PCs,
namely the Dolphin [5] and Scali [19] interfaces. The main
difference between Myrinet and SCI lies on the nature of
communication: instead of message passing, SCI provides

hardware-controlled distributed shared memory, thus allow-
ing a node to directly access a portion of memory on another
node.

Several projects are devoting research to the achievement
of programming tools for SCI, both based on shared mem-
ory and message passing. Following the same tendency, we
present in this paper the implementation of DECK for SCI
clusters. DECK is a parallel programming environment de-
veloped at UFRGS which supports multithreading and com-
munication. Currently, DECK has been implemented for
both Ethernet and Myrinet. Our intention in porting DECK
to SCI, besides the primary motivation of turning it into
a solution for the programming of SCI clusters, is to pro-
vide a combined programming model with both fine- and
coarse-grain parallelism, which should be suitable to mini-
mize the NUMA characteristic of SCI clusters, as shall be
commented later.

The rest of this paper is structured as follows: Section 2
presents an overview of DECK, and the details of its imple-
mentation for SCI are shown in Section 3; in Section 4 we
present a performance evaluation of DECK-SCI with both
raw and application-measured results; Section 5 presents
some information on related work, and finally Section 6
brings the authors’ conclusions and final remarks.

2 Overview of DECK

DECK (Distributed Execution and Communication Ker-
nel) [2] is a parallel programming environment whose ob-
jective is to provide resources to allow the development of
irregular applications, through the combination of multi-
threading and communication.

Figure 1 shows the general structure of DECK, which
is organized in two levels: the lower layer, called�DECK,
which corresponds to the platform-dependent part (operat-
ing system and hardware) and is responsible for the support



thread semaph msg mbox shmem

uDECK
naming collective

comm.
sched

services

Figure 1. Internal structure of DECK.

of multithreading, synchronization and basic communica-
tion mechanisms; and the upper layer, referred to as aser-
vice layer, which provides additional services (e.g. naming,
collective communication) and is platform-independent, in
the sense that such services rely only on�DECK primitives.

In the lower layer, DECK defines its four basic ab-
stractions: threads, semaphores, mail boxes and messages.
Threads and semaphores are used for multiprogramming
and synchronization, and follow a conventional Pthread-like
semantics. Mail boxes and messages are intended for inter-
node communication. Messages can beposted in and re-
trieved from mail boxes (equivalent to ordinarysend and
receive); these can be given names in order to be fetched by
remote nodes and thus initiate communication.

3 Design and implementation of DECK-SCI

The main goal of DECK-SCI is to provide an environ-
ment for the development and efficient execution of CPU-
demanding parallel applications over SCI clusters, ensuring
a useful exploitation of the underling architecture. Partic-
ularly, DECK-SCI was designed to guarantee communica-
tion performance near to SCI hardware limits, accomplish-
ing very low latency for short messages and high bandwidth
for large ones.

3.1 Shared segment management

As the SCI network is based on shared memory, the first
decision for the design of DECK-SCI concerns the way
shared memory segments are handled in order to allow the
implementation of message-passing primitives. There are a
number of available APIs that make possible the establish-
ment of SCI shared segments among the nodes of a cluster,
namely the SCI driver [18], SISCI API [8], SMI [6] and
YASMIN [21]. The first two are low-level APIs, whereas
SMI and YASMIN are more complex libraries following
the SPMD model, with a bunch of additional services de-
veloped for shared-memory programming of SCI clusters.

Since DECK-SCI needs total control over its own run-
time environment, there are actually only two valid op-
tions for shared segments management: the SCI driver and
SISCI API. We chose to use SISCI — Software Infrastruc-
ture for SCI —, a specification of standard primitives for

SCI programming, proposed by a group of partners from
both the academia and industry. It presents a set of low-
level primitives and, at the same time, it is more comfort-
able than the SCI driver. In fact, SISCI encapsulates the
driver functions and additionally supports direct access to
the hardware. DECK-SCI makes use of the SISCI imple-
mentation available in the SSP (Scali Software Platform), a
software package distributed with Scali Wulfkits [19], upon
which our cluster is constructed.

Within DECK-SCI, SISCI is used whenever there is the
need to: initialize the SCI network; create a shared segment;
make a previously created segment available to all nodes of
the cluster; establish a connection to an already available
remote segment; map into the logical address space of a
DECK process a local segment, or a remote one to which a
connection has been established; flush the stream buffers of
an SCI network interface.

3.2 SCI global address space

In the SCI network, communication relies on shared-
memory segments that belong to the 64-bits SCI global ad-
dress space. The most significant 16 bits of an SCI address
specify a node, and the remaining 48 bits address the local
memory within that node.

The SCI network interfaces, together with the driver, es-
tablish the global address space in the following manner.
For example, a given node creates a shared segment in its
physical memory and exports it to the SCI network. Other
nodes can now import this segment into their I/O address
space. For this, each SCI adapter has an address transla-
tion table which maintains the mappings between local I/O
addresses and global SCI addresses. Further, processes run-
ning on the nodes can map a created DSM segment into
their logical address spaces.

Once these mappings have been done, the inter-node
communication may be carried out by simple CPU loads
and stores into DSM segments mapped from remote memo-
ries. The SCI adapters transparently translate I/O bus trans-
actions into SCI transactions and vice-versa; in other words,
the communication is performed totally at user level, with-
out the operating system intervention. The driver is only
used for the establishment of DSM segments, not when
communication is taking place.

3.3 The proposed communication protocols

As SCI-MPICH [23, 22] and ScaMPI [11], we have
designed and implemented three different protocols for
DECK-SCI: a minimal overhead and low-latency proto-
col, optimized for exchanging short messages; a general-
purpose protocol; and a protocol that makes use of a zero-
copy communication technique developed in order to in-



MMX
instructions

Parallel Application

DECK-SCI API

SISCI API

SCI driver

SCI hardware

kernel space

user space

user space

Figure 2. Execution of parallel applications
with DECK-SCI.

crease the maximum achievable bandwidth for large mes-
sages.

Despite the specialization and peculiarities of each pro-
tocol, all of them, in order to obtain the best performance,
were implemented taking into account some idiosyncrasies
of the PCI-SCI network interfaces, namely the performance
difference between remote loads and remote stores and the
exploitation of the network interfaces’ stream buffers. Al-
though the support for direct memory access allows one to
conceive simple message-passing communication schemes,
the implementation of efficient communication protocols on
top of SCI requires more than trivial loads and stores into
shared segments.

DECK-SCI protocols avoid using interrupts for sig-
nalling the arrival of a message at a destination node; in-
stead, the message-passing is based on polling, so that the
latency can be kept low. Basically, the three protocols
of DECK-SCI share a couple of characteristics: polling-
based message reception; write-only communication; use
of MMX instructions for remote writes; transfer of blocks
of bytes whose size is multiple of 64, in spite of the mes-
sage length from the user point-of-view, in order to optimize
the use of the stream buffers. Figure 2 illustrates the layers
involved in running parallel applications with DECK-SCI.

Depending on the message length, DECK-SCI transpar-
ently chooses the appropriate protocol for carrying out com-
munication. In fact, programmers do not even need to know
that there are multiple message-passing protocols.

3.4 “Protocol 1”: short messages

The latency for transferring short messages is particu-
larly affected by unavoidable extra overheads like signalling
of message arrival and flow control schemes. These over-
heads are of paramount importance to the correct operation
of a message-passing protocol. For this reason, short mes-
sage transfers are required to receive special attention from
a message-passing library that is willing to ensure low la-
tency.

Hence, we have devised a special mechanism that opti-
mizes the use of SCI network. This short messages oriented

protocol utilizes a single 64-bytes SCI packet to send the
message. The last byte of the packet payload contains an
identifier that allows the receiver to get notified about the
message arrival. In this way, a single remote write is suffi-
cient to transmit the message and notify the receiver. This
proposed scheme was in much inspired by the valid flag al-
gorithm [14].

Another advantage of the “protocol 1” is the fact that
there is no need to explicitly flush the stream buffers, since
it always sends 64 bytes, which is important to keep latency
low. The message occupies the first 62 bytes of the packet;
the 63th byte contains a sequence number, used by DECK-
SCI to message ordering purposes; and the 64th byte is the
message identifier used to notify the receiver, as already
commented. Thus, the “protocol 1” is suitable to messages
whose size ranges from 0 to 62 bytes.

As the message and its corresponding signalling flag are
sent into a single SCI packet, it is guaranteed that the packet
data arrives exactly in the order it was sent and, since the last
byte of the packet is used for notification, when the receiver
get notified the message certainly was completely received.

For the working of “protocol 1” , every mail box cre-
ated during the execution of a parallel application reserves,
within its shared segment, a separate ring buffer to each
DECK process. Each position of a ring buffer maintains
64 bytes, used to store the packet data. Whenever a thread
wants to send a short message — 0 to 62 bytes — to a given
mail box, it must send a 64-bytes packet — based on the
structure commented above — to the current write position
related to the ring buffer reserved to the node which it is
running on. After the message transfer, the sender thread,
by means of a modulo operation, updates its write position
and the identifier and sequence number of the message to
be sent next time the communication primitive is invoked
on the related mail box.

The receiver thread, in turn, polls the last byte of the cur-
rent read position of each ring buffer, until a message has
arrived. When the value stored into the last byte of the cur-
rent read position of a given ring buffer equals to the next
expected message identifier for that ring buffer, the receiver
thread copies the message to the user buffer in local mem-
ory, if the sequence number also matches; at the end, it up-
dates the current read position, as well as the next expected
sequence number and message identifier for the appropriate
ring buffer, by means of the same modulo operation as that
performed by the sender thread. Additionally, the receiver
thread informs the sender about the current read position, by
writing it into a predefined address within a previously es-
tablished shared segment, used for control purposes, owned
by the sender, so that the sender can avoid the ring buffer
overrun when sending messages. This is the way flow con-
trol is done.



3.5 “Protocol 2”: general-purpose mechanism

The “protocol 2” is a more generic message-passing
mechanism which can virtually deal with messages of ar-
bitrary sizes. This protocol manages buffers that can
store messages greater than those handled by “protocol 1” .
Again, every mail box reserves a different buffer to each
DECK-SCI process. The buffers of “protocol 2” , in contrast
to that of “protocol 1” , are not logically divided into pieces
of a given size; rather, the messages are contiguously copied
into them. Related to each buffer, there is a location where
the mail box owner expects a control packet that indicates a
message have been transferred to the corresponding buffer.

Internally in DECK-SCI, the messages handled by “pro-
tocol 2” are composed of a header, that contains the mes-
sage size, followed by the data. To send a message to a
mail box, the sender thread first writes it into the buffer re-
served to the process which the thread is running on. Before
notify the receiver, it is mandatory to flush the SCI adapter’s
stream buffers, otherwise the signalling packet could be re-
ceived while some SCI packets of the message are still in
transit. This situation could take place because SCI does
not ensure packet ordering. In order to overcome this un-
desirable behavior, DECK-SCI flushes the SCI adapter’s
stream buffers, waiting for the completion of all outstanding
SCI transactions, and only after doing so the sender thread
can safely notify the receiver by sending a 64-bytes con-
trol packet to the appropriate location within the shared seg-
ment of the mail box. Finally, the sender updates the current
write position related to the “protocol 2” buffer reserved to
the process which it is running on, as well as the sequence
number and the identifier of the message to be sent next by
means of “protocol 2” .

In order to get a message from a mail box, the receiver
thread polls all addresses where control packets are ex-
pected to be sent to. When a control packet arrives, the
receiver thread reads from the proper buffer the message
header, pointed by the current read position related to that
buffer. After reading the size of the message, its data is
copied to the user buffer present in local memory. Then, the
receiver updates the current read position and the next ex-
pected sequence number and message identifier associated
with the recently used buffer. Similarly to “protocol 1” , the
receiver thread informs the sender about its current read po-
sition, for flow control purposes.

Note that this flow control scheme, employed in both
protocols, does not require that the sender waits for the in-
formation concerning the receiver read position, because
communication is done through a remote write operation
into a shared segment previously created and exported by
the sender, named control segment. Each DECK-SCI pro-
cess, during initialization, creates its own control segment
and maps into its logical address space the control segments

of all processes.

3.6 “Protocol 3”: zero-copy communication

Although “protocol 2” may be used for exchanging mes-
sages of virtually any size, it limits seriously the maxi-
mum achievable bandwidth. The disadvantage of “proto-
col 2” is the fact that it only initiates moving the message
from shared to local memory after the message has been
completely transmitted. Specially for large messages, this
constraint results in poor utilization of SCI bandwidth and
cannot be tolerated, since DECK-SCI is targeted at high-
performance communication.

The most efficient communication libraries for SCI clus-
ters developed so far, SCI-MPICH and ScaMPI, have two
different protocols equivalent to DECK-SCI protocols 1 and
2. Further, both MPI implementations adopt the same solu-
tion to the relative poor performance of their eager proto-
col — corresponding to the “protocol 2” of DECK-SCI. In
order to increase the bandwidth, SCI-MPICH and ScaMPI
implement a third protocol, making use of a rendez-vous
mechanism, the main idea of which is to interleave the mes-
sage transmission and the copy of the message to the user
buffer in local memory. In this way, through a handshaking
scheme, the receiver is allowed to copy the message from
shared to local memory while the message is still being sent.

Indeed, the mentioned rendez-vous protocol is effective
in increasing the maximum achievable bandwidth. Never-
theless, it still relies on the message copy from shared to
local memory, due to the semantics of the MPI receive prim-
itives which impose that an user-allocated buffer be passed
as argument to them.

In DECK API, the message abstraction exists explicitly,
being represented by a message object. As the programmer
is required to utilize specific DECK primitives to manipu-
late messages — creation, packing, unpacking, etc. — and
the message buffer is under control of DECK-SCI, it was
possible to devise a zero-copy protocol to really increase the
maximum bandwidth beyond the values obtained by MPI
implementations and near to SCI limits. Of course, even
though the message buffer is internally managed by DECK-
SCI, the programmer can get its address and use it normally.

Following this idea, DECK-SCI “protocol 3” imple-
ments a zero-copy communication scheme, in the sense that
there is no extra copy besides the message transmission.
The message is directly sent to the user buffer, which resides
on SCI shared memory. When the programmer creates a
message, depending on the size passed as argument DECK-
SCI will allocate the buffer on local or shared memory. The
threshold to the transition from protocol 2 to 3 is config-
urable by changing the value of DECK MSG BUF LIMIT.
Usually, however, this parameter can remain untouched and
the user does even not need to know about the multiple com-



DATA_MESSAGE

REQUEST_ADDRESS

BUFFER_ADDRESS

END_OF_PROTOCOL

Sender Receiver

Figure 3. DECK-SCI zero-copy protocol.

munication protocols of DECK-SCI.
As depicted in figure 3, “protocol 3” requires the ex-

change of some control messages before the actual data
transfer. Firstly, the sender thread sends a control message
requesting the address of the user buffer from the receiver.
By doing polling, the receiver thread gets the request mes-
sage and then informs the sender about the address which
the message is supposed to be sent to. After, the sender
effectively sends the data message to the appropriate ad-
dress and flush the SCI adapter’s stream buffers, waiting for
the completion of all outstanding SCI transactions. Finally,
the sender signals the end of zero-copy communication by
transmitting the last control message. Under the reception
of such control message, the receiver can safely return from
the communication primitive, as it is guaranteed that the
data message was completely transmitted. Again, notice
that the signalling message was sent after the flush of stream
buffers, which is necessary to cope with reordering of SCI
packets, as already stated.

During DECK-SCI initialization, each process creates
and exports a shared segment for storing messages to be
received through “protocol 3” . The message buffers are al-
located on this segment instead of local memory depending
on the message size.

It should be noted that the mail box abstraction remains
valid, even when the zero-copy protocol is used. From the
user point-of-view, messages are just posted to and retrieved
from mail boxes.

4 Performance evaluation

All results presented in this section were obtained in a
cluster composed of 4 SMP nodes. The SMP nodes are Dual
Pentium-III 500 MHz, each with 256 MB of RAM and Intel
BX-chipset. The SCI interconnect is done with PCI-SCI (32
bits, 33 MHz PCI bus) adapters, model D312 (distributed
with Scali Wulfkits), equipped with SCI link controller LC2
and PSB revision D. The nodes run Linux with kernel 2.2.14
and Scali Software Platform version 2.0.2.

The results concerning latency and bandwidth were mea-
sured by means of a traditional ping-pong algorithm. For

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

La
te

nc
y 

(u
s)

Message size (bytes)

SCI remote write
protocol 1

Figure 4. Latency of “protocol 1”.

0

10

20

30

40

50

60

70

80

90

64 256 1k 4k 16k 64k 256k 1M 4M

B
an

dw
id

th
 (

M
by

te
s/

s)

Message size (bytes)

SCI remote write
protocol 2
protocol 3

Figure 5. Bandwidth of protocols 2 and 3.

each message size, we have made 1000 repetitions.

4.1 Evaluation of DECK-SCI communication
protocols

In the following, we evaluate the efficiency of the three
DECK-SCI communication protocols, comparing their per-
formance to that of raw communication over SCI. These
results allow us to verify the impact of the proposed mech-
anisms — flow control, message ordering, message sig-
nalling —, pointing out the overhead inherent to the pro-
tocols.

Figure 4 shows the latency of “protocol 1” . Observe that
DECK-SCI is able to keep the latency below 5 �s for mes-
sages ranging from 0 to 62 bytes. In contrast, the latency
obtained by raw communication over SCI is not constant
and it is higher than that of “protocol 1” , except for 1, 8 and
16 bytes. Although, at a first glance, it seems strange the
better performance of “protocol 1” , even when compared to
raw communication, we expected these results, since “pro-
tocol 1” always sends 64 bytes, in spite of the actual mes-
sage length, in order to optimize the use of stream buffers.
Remember that stream buffers can optimize the communi-
cation for an amount of data multiple of 64.

These results reveal that DECK-SCI really accomplishes
very low latency for short messages, namely 4.66 �s. The



0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

La
te

nc
y 

(u
s)

Message size (bytes)

protocol 1
ScaMPI

SCI−MPICH

Figure 6. Latency for short messages.

optmized use of the stream buffers compensates the extra
overhead caused by flow control.

Figure 5 shows the achievable bandwidth for protocols
2 and 3, as well as the bandwidth of raw communication
over SCI. As can be seen, thanks to the zero-copy mech-
anism, “protocol 3” reaches a maximum bandwidth close
to the that of raw remote write, exhibiting 84.12 Mbytes/s,
which represents 95.9% of the maximum bandwidth that
can be reached in this architecture — 87.72 Mbytes/s.

“Protocol 2” is unable to increase the bandwidth beyond
62.81 Mbytes/s, due to the extra copy of message, as al-
ready explained. Notice that for messages up to 1024 bytes,
the performance of “protocol 2” is a little bit better than
that of “protocol 3” . From this point on, however, the ex-
tra copy avoidance compensates the handshaking between
sender and receiver.

4.2 DECK-SCI, SCI-MPICH and ScaMPI

We have compared, in terms of latency and bandwidth,
DECK-SCI with the existing implementations of MPI for
SCI clusters. Figures 6 and 7 present the latency for the
three communication libraries.

In figure 6, the latency for short messages is shown. It
can be seen that the protocol for short messages of DECK-
SCI is clearly more efficient than the equivalent protocols
of the MPI implementations. While the minimal latency ob-
tained by DECK-SCI is 4.66 �s, ScaMPI and SCI-MPICH
got, respectively, 6.63 and 7.26 �s. Moreover, DECK-SCI
is the only library to keep the latency constant for messages
ranging from 0 to 62 bytes. These results confirm that the
devised mechanisms for “protocol 1” make a really efficient
use of the low latency capabilities of the SCI technology.

Figure 7 shows the tendency of the latency curves for
protocols 2 and 3 of DECK-SCI and for the implementa-
tions of MPI, considering messages up tp 2048 bytes. Both
DECK-SCI protocols exhibit lower latency than that of the
eager protocol of SCI-MPICH and ScaMPI, as can be seen.

Finally, figure 8 points out the bandwidth for the three

0

5

10

15

20

25

30

35

40

45

50

8 16 32 64 128 256 512 1k 2k

La
te

nc
y 

(u
s)

Message size (bytes)

protocol 2
protocol 3

ScaMPI
SCI−MPICH

Figure 7. Latency obtained by DECK-SCI, SCI-
MPICH and ScaMPI.

0

10

20

30

40

50

60

70

80

90

8 32 128 512 2k 8k 32k 128k 512k 2M 8M

B
an

dw
id

th
 (

M
by

te
s/

s)

Message size (bytes)

protocol 2
protocol 3

ScaMPI
SCI-MPICH

Figure 8. Bandwidth obtained by DECK-SCI,
SCI-MPICH and ScaMPI.

communication libraries. One can notice that the maxi-
mum achievable bandwidth by the implementations of MPI
is lower than that reached by DECK-SCI. With zero-copy,
DECK-SCI got 84.12 Mbytes/s, whereas ScaMPI and SCI-
MPICH obtained, respectively, 78.35 and 73.80 Mbytes/s
with the rendez-vous protocol. “Protocol 2” is also more
efficient than the equivalent eager protocol of the MPIs,
which is adopted for messages up to 32 kbytes.

In short, we can say that all protocols designed and im-
plemented in DECK-SCI have presented better performance
than the equivalent short, eager and rendez-vous used by
ScaMPI and SCI-MPICH, according to the ping-pong mea-
sures we have done.

4.3 Results obtained with applications

Besides the raw performance evaluation of DECK-SCI,
we have run and measured the performance of three com-
mon applications in the HPC community: Mandelbrot frac-
tal generation [13], Laplace’s Equation [16] and POV-
Ray [15]. The Mandelbrot and Laplace applications have
been implemented by our group; POV-Ray has been ported



from the MPI implementation available in Scali’s SSP. All
of them have been implemented at the High Performance
Research Center (CPAD), PUCRS/HP. In all cases, DECK-
SCI was configured to use the zero-copy protocol for mes-
sages greater than 8 kbytes.

The first application calculates the full Mandelbrot set
and draws a two-dimensional picture of it. It iterates the
Mandelbrot function for every pixel on the picture, and sets
the color of the pixel according to the iteration where the
orbit “escapes” , with a maximum iteration value of 17500.
Our parallel version uses a master/slave model where the
master is responsible for distributing parts of the picture
to be calculated and for displaying the already calculated
parts. The picture is partitioned in horizontal slices and
slaves keep requesting new slices to calculate until all slices
are ready. Slaves communicate only with the master in a
1:n pattern.

The Laplace’s Equation application calculates the tem-
perature in a slab of a hypothetical homogeneous material
completely insulated on the edges. Initially, the slab is thor-
oughly at one uniform temperature and a heat source is ap-
plied to one of the borders. Laplace’s Equation is used to
solve this problem, being applied by means of the Gauss-
Seidel iterative method, with maximum error of 10 -3. The
surface of the slab is divided in square sections, where each
intersection is a point in a grid. The finer the grid, the more
accurate the approximation, and the larger the problem. Our
parallel version of the application partitions the image in
rectangular regions, assigning each region to a node.

POV-Ray (Persistence Of Vision Raytracer) is a three-
dimensional rendering engine. The program derives infor-
mation from a file containing the description of a scene
(objects, textures, lights and point of view) simulating the
way the light interacts with the objects in the scene to ob-
tain a three-dimensional realistic image (procedure known
as ray tracing). Each pixel of the resulting image may be
calculated from the scene description without knowledge of
neighbor points. MPIPovray 3.01 is a parallel implemen-
tation of the above application that divides the image to be
calculated in horizontal slices, mapping each slice to one
slave process. A master process is dedicated to the image
partitioning, slices distribution and screen drawing. Slave
process don’ t wait for the calculation of the whole image
slice and send ready screen lines to the master to allow real
time drawing of the already calculated points.

Figure 9 shows the execution times obtained with both
DECK-SCI and ScaMPI for the described applications. All
the results correspond to using the 8 processors available in
our cluster; DECK-SCI makes use of two threads for calcu-
lations, and with MPI we have run two processes on each
node1. In any case, the first node always holds an addi-

1For this reason, we could not include MPICH-SCI in the comparison,
since the version installed in our cluster does not support SMP.

0

10

20

30

ti
m

e 
(s

)

MPI
DECK

Mandelbrot Laplace (x10) POV-Ray

Figure 9. Results obtained for the three appli-
cations.

tional thread/process to act as a manager for the application
(e.g. to deliver and collect calculated sections in the Man-
delbrot algorithm).

The graphs present very good results for DECK-SCI, be-
ing able to achieve practically the same execution times as
MPI for Mandelbrot (8.9s DECK, 8.67s MPI) and POV-Ray
(31.22s DECK, 32.13s MPI), and a significant 27% reduc-
tion for Laplace’s Equation (145s DECK, 198s MPI). We
believe this gain is due to the size of messages in Laplace
(larger than 8K), entering the region of the zero-copy pro-
tocol. Anyway, in general, we consider that DECK-SCI is
able to achieve at least the same performance of currently
available MPI implementations for SCI.

5 Related work

In order to enable application programmers to exploit
the benefit of SCI’s shared address space model without
detailed hardware knowledge, several standardized APIs
like MPI and PVM are also available for SCI systems.
We have shown two implementations of MPI, namely
ScaMPI and MPICH-SCI, and there are two others for
PVM: SCIPVM [24] and PVM-SCI [7]. Another effort tar-
geted at message passing for SCI is CML [9], a low-level
API designed to efficiently support implementations of MPI
and PVM for SCI.

Parallel languages like Split-C have also been ported to
SCI systems. Split-C [4] is a parallel extension of the C
programming language that provides bulk transfer opera-
tions as well as a global address-space abstraction, the later
being mapped directly over SCI’s shared address space.

Threads are in widespread used as a model for concur-
rent programming and are able to efficiently exploit the
multiple processors of a SMP node. Because threads com-
municate over shared memory, the multithreaded model
should be efficiently implemented over a SCI system and
would be a very interesting alternative for porting sequen-



tial programs to SCI cluster machines. SISCI-Pthreads [20]
follows this direction emulating a Pthread-compliant SMP
machine over the SCI system. Sthreads [17] also provides
threads across the nodes of a SCI cluster but the placement
mechanism is not transparent.

6 Concluding remarks

In this paper we have presented the design and imple-
mentation of DECK for SCI clusters; from the performance
evaluation presented in Section 4, it can be considered that
DECK may represent an interesting alternative for the pro-
gramming of SCI clusters. The comparison with existing
implementations of MPI for SCI has revealed that DECK-
SCI is able to achieve significantly better latency and band-
width, in terms of raw performance, than the mentioned im-
plementations. In a different situation, with the implemen-
tation of three scientific applications, DECK-SCI presented
performance at least equivalent to that of MPI, reaching up
to 27% difference in the case of Laplace. From these results
we consider that our main goal has been achieved, namely
to provide an efficient implementation of DECK for SCI.

One can notice a concrete effort to supply a broad range
of programming tools for the SCI platform, but to our un-
derstanding there is still a gap concerning an API with sup-
port for a hybrid programming model. Being a SCI system
a NUMA machine, with different access times for local and
remote memory, we believe that a API with a combined sup-
port for message passing and multithreading gives the pro-
grammer the needed functionality to exploit all the potential
of a SCI based cluster, under different application demands.
Some APIs like ScaMPI and MPICH-SCI are thread-safe,
but not thread-aware. That means that processes may use
threads locally but the application interface is not aware of
such functionality. In DECK-SCI we have tried to achieve
a programming environment where multithreading can be
fully integrated with communication both at the system and
the application level.

References

[1] Proc. of HPCN’98, volume 1401 of Lecture Notes in Com-
puter Science, Amsterdam, 1998.

[2] M. E. Barreto. DECK: Um ambiente para programação par-
alela em agregados de multiprocessadores. Master’s thesis,
PPGC da UFRGS, Porto Alegre, 2000.

[3] N. Boden et al. Myrinet: A gigabit-per-second local-area
network. IEEE Micro, 15(1):29–36, Feb. 1995.

[4] D. Culler et al. Parallel programming with Split-C. In
Proc. of SuperComputing’93, Portland, Oregon, Nov. 1993.

[5] Dolphin interconnect solutions web. Available at
http://www.dolphinics.no, Apr. 2000.

[6] M. Dormanns, W. Sprangers, H. Ertl, and T. Bemmerl. A
programming interface for NUMA shared-memory clusters.

In Proc. of HPCN’97, volume 1225 of Lecture Notes in
Computer Science, pages 698–707, Vienna, Austria, Apr.
1997. Springer.

[7] M. Fischer and J. Simon. Embedding SCI into PVM. In
Proc. of the 4th European PVM/MPI Users Group Meeting,
volume 1332 of Lecture Notes in Computer Science, pages
177–184, Cracow, 1997.

[8] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser, B. D.
Johnsen, H. Kohmann, R. Nordstrøm, and P. Werner. Low-
level SCI software requirements, analysis and predesign.
Technical report, ESPRIT Project 23174 — Software Infras-
tructure for SCI (SISCI), May 1998.

[9] B. G. Herland, M. Eberl, and H. Hellwagner. A common
messaging layer for MPI and PVM over SCI. In Proc. of
HPCN’98 [1], pages 576–587.

[10] G. Horn and W. Karl, editors. Conference Proceedings of
SCI-Europe ‘99, Toulouse, France, Sept. 1999.

[11] L. P. Huse, K. Omang, H. Bugge, H. Ry, A. T. Haugs-
dal, and E. Rustad. ScaMPI—design and implementa-
tion. In H. Hellwagner and A. Reinefeld, editors, SCI:
Scalable Coherent Interface: Architecture and Software for
High-Performance Compute Clusters, volume 1734 of Lec-
ture Notes in Computer Science, pages 249–261. Springer,
Berlin, 1999.

[12] IEEE. Gigabit ethernet. IEEE P802.3z, 1997.
[13] B. B. Mandelbrot. The Fractal Geometry of Nature.

W. E. Freeman and Company, New York, 1982.
[14] K. Omang. Synchronization support in I/O adapter based

SCI. In Proc. of CANPC’97, volume 1199 of Lecture Notes
in Computer Science, pages 158–172, San Antonio, Texas,
1997.

[15] Persistence of vision(tm) ray tracer. Available at
http://www.povray.org.

[16] W. H. Press et al. Numerical Recipes in C: The Art of Scien-
tific Computing. Cambridge University, Melbourne, second
edition, 1994.

[17] E. Rehling. Multithreading for SCI-clusters: Yasmin and
the Sthreads library. In Horn and Karl [10].

[18] S. J. Ryan. The design and implementation of a portable
driver for shared memory cluster adapters. Research report
255, Department of Informatics, University of Oslo, Dec.
1997.

[19] Scali homepage—scalable Linux systems—affordable su-
percomputing. Available at http://www.scali.com, Apr.
2000.

[20] M. Schulz. SISCI-Pthreads: SMP-like programming on an
SCI cluster. In Proc. of HPCN’98 [1], pages 566–575.

[21] H. Taşkın. Synchronisationsoperationen für gemeinsamen
speicher in SCI-clustern. Diplomarbeit, Universität GH
Paderborn, Paderborn, 1998.

[22] J. Worringen. SCI-MPICH: The second generation. In
Proc. of SCI Europe 2000, pages 10–20, Munich, Germany,
2000. Held as a conference stream of Euro-Par’2000.

[23] J. Worringen and T. Bemmerl. MPICH for SCI-connected
clusters. In Horn and Karl [10], pages 3–11.

[24] I. Zoraja, H. Hellwagner, and V. Sunderam. SCIPVM: Paral-
lel distributed computing on SCI workstation clusters. Con-
currency: Practice and Experience, 11(13):121–138, Mar.
1999.

View publication statsView publication stats

https://www.researchgate.net/publication/221202253

