
RVision: An Open and High Configurable Tool for Cluster Monitoring�

Tiago C. Ferreto
Research Center in

High Performance Computing
CPAD-PUCRS/HP
Porto Alegre, Brazil
ferreto@cpad.pucrs.br

César A. F. De Rose
Catholic University of

Rio Grande do Sul
Computer Science Department

Porto Alegre, Brazil
derose@inf.pucrs.br

Luiz De Rose
Advanced Computing

Technology Center
T.J. Watson Research Center
Yorktown Heights, NY, USA

laderose@us.ibm.com

Abstract

In this paper we present the design and implementation
of RVision (Remote Vision), an open architecture, high con-
figurable tool for cluster monitoring. We focus on the de-
scription of it’s modular architecture, emphasizing the new
concepts we are introducing for cluster monitoring, such
as monitoring sessions and the support for dynamic linking
of monitoring libraries. In addition, we measure intrusion
with several benchmarks and applications under different
scenarios. RVision distinguishes itself from other available
tools for cluster monitoring because of its open architec-
ture, high configurability, and low intrusion. It is being used
in production mode, in our research center, and has proven
itself as a powerful alternative for cluster monitoring, es-
pecially in heterogeneous clusters and cluster of clusters.

1. Introduction

Clusters of workstations are nowadays one of the most
used alternative for parallel systems construction mainly be-
cause of its high scalability and excellent cost-performance
ratio. However, the effective use of clusters depends on
efficient resource management and detailed system tun-
ing, which require the observation and optimization of sev-
eral parameters, such as CPU utilization, network utiliza-
tion, I/O activity, application parallelism, multiprogram-
ming level, etc. In order to be able to obtain high through-
put and/or high response time on clusters, system admin-
istrators need tools for monitoring the performance of the
system activities and for diagnosing performance problems.

In this paper we presented RVision, an open architec-
ture high configurable tool for cluster monitoring. RVision
provides flexibility in selecting events to be monitored and

�Work partialy supported by HP Brazil and Fapergs.

allows users to expand the monitoring capabilities with self-
defined procedures for monitoring of specific system hard-
ware or system events. An additional feature of RVision
is its flexibility in allowing the monitoring of distinct clus-
ters, cluster of clusters, and heterogeneous clusters. The
main contributions of RVision, described in this paper, are
the new concepts being introduced for cluster monitoring,
namely monitoring sessions and support for dynamic link-
ing of monitoring libraries.

The remainder of this paper is organized as follows. We
begin in Section 2 with a brief review of system perfor-
mance monitoring and some issues that should be taken in
consideration when designing and implementing a monitor-
ing system. In Section 3 we address related work. In Sec-
tion 4 we describe the main aspects of the RVision’s design
and implementation. In Section 5 we present some perfor-
mance measurements. Finally, we summarize our conclu-
sions and directions for future work in Section 6.

2. Monitoring

System performance monitoring is the act of collecting
system performance parameters such as node’s CPU utiliza-
tion, memory usage, I/O and interrupts rate, and present
them in a form that can be easily understood by the sys-
tem administrator [4]. This service is important for the sta-
ble operation of large clusters because it allows the system
administrator to spot potential problems earlier. Moreover,
other parts of the systems software can also benefit from
the information provided. For example, the information can
be used to modify the task scheduling, in order to improve
load balancing. We review next some important issues that
should be considered in the project and implementation of
such monitoring systems.

Intrusiveness: To obtain the highest possible performance
in a cluster, the parallel application should be able to
get all of the available processing power. However,

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

the monitoring system has some processing and com-
munication costs and it will compete with the running
application. Therefore, to enable high performance ex-
ecution in the presence of monitoring, the monitoring
tool should have low intrusion, producing minimal in-
terference.

Network Traffic: The network is one of the main bottle-
necks in most parallel systems. The following tech-
niques can be used to reduce network intrusiveness
generated by the monitoring system:

� Adjusting the monitoring frequency: with prop-
erly monitoring frequency adjustments the mon-
itored data will be delivered in larger periods of
time.

� Data set selection: the definition of the needed
monitoring information in a case by case basis
decreases the amount of data sent from the re-
sources.

Web Technology: Since the advent of the Internet, an in-
creasing number of applications are designed to en-
able the utilization of Web technology. Following this
trend, many monitoring systems provide an Internet
layer to enable remote monitoring. This allows a user
to monitor a cluster from any place, just needing an
Internet connection.

3. Related Work

There are several cluster monitoring tools freely avail-
able. The most used are Bwatch [1], PARMON [7], and
SCMS [14]. BWatch (or beoWatch) is a simple Tcl/Tk
program that produces a screen showing load and memory
statistics for each node of the system. It does not use any
daemons in the cluster nodes; instead it acquires the infor-
mation executing remote shell (rsh) commands to all nodes
listed in a configuration file. The information acquisition is
triggered by an explicit user request (i.e., the information is
acquired when the user pushes the refresh button showed in
the BWatch graphical interface) or when this is automati-
cally done by a defined auto refresh delay in the configura-
tion file.

PARMON uses the client-server model. It allows the
monitoring of system resources in three different levels:
entire system, node, and component levels. Monitoring
multiple instances of the same component such as CPU in
a SMP (Symmetric Multiprocessor) node is also possible.
The parmon-server runs on each monitored cluster node and
provides system resource activities and utilization informa-
tion. It was developed in C, using POSIX/Solaris threads.
The parmon-client is a GUI based client, developed in Java,

responsible for the interaction between the parmon-server
and the users, for data-gathering in real-time and presenting
information graphically for visualization.

SCMS (SMILE Cluster Management System) is an
open-source management and monitoring tool for beowulf
clusters. It provides a set of tools and subsystems such as:
real-time monitoring system, alarm system services, per-
formance logging, parallel Unix command, system man-
agement tools, and Web, VRML based, monitoring tool.
Its monitoring architecture can be divided in three mod-
ules: the Control and Monitoring Agent (CMA), the Sys-
tems Management Agent (SMA), and the Resources Man-
agement Interface (RMI). The CMA runs on each node and
collects system statistic continuously from a software layer
called HAL (Hardware Abstraction Layer). This informa-
tion is collected by the SMA module, which acts as a cen-
tralize resource manager and helps to keep track of sys-
tem information for later retrieval. The upper level mod-
ule, which consists of an API called RMI, is responsible to
provide access to the system monitoring services. This API
interface is available in C, TCL/TK, and Java.

These tools represent the current state of the art in the
usual implementation of Linux clusters monitors. However,
they are only able to monitor a pre-defined set of informa-
tion selected from a hard-coded list and this information is
acquired at the same moment in all specified nodes. More-
over, users are not able to easily expand the monitor with
additional acquisition routines for specific system hardware
for system events. The information acquisition routine is
usually initiated by the host and relative to all of the se-
lected information, and it is not possible to have different
acquisition methods for different sets of information.

4. RVision’s Design and Implementation

4.1 Motivation

The main motivation for the development of RVision
was the inflexibility of the freely available cluster monitor-
ing tools. RVision’s open architecture supports generic in-
formation monitoring, which allows the utilization of user
defined acquisition libraries in the monitored resources,
as well as, communication to user developed monitoring
clients that connect to the monitoring kernel over the Inter-
net. In addition, several information acquisition and trans-
port mechanisms are supported. This high level of config-
urability pays off especially in the monitoring of hetero-
geneous clusters and cluster of clusters. Different sets of
information to be monitored may be defined with specific
frequency acquisition. These sets are then associated to the
monitored resources, being even possible to have multiple
sets associated to the same resource.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

4.2. Concepts and Features

During the RVision design some new monitoring con-
cepts have been introduced to enhance the system function-
ality. These concepts are:

Monitoring Sessions The monitoring session is a self con-
tained dedicated monitoring environment specified in
a configuration file. These sessions have all the neces-
sary information to start the monitoring, like a list of
monitored resources, the information to be monitored
in each resource, and the acquisition mechanism for
each data. After a session is defined, monitoring may
be started and stopped. Online reconfiguration is also
possible, with changes taking effect after a restart.

Monitoring Library The monitoring library consist of a
collection of routines responsible for information ac-
quisition. These libraries may be implemented by the
user to add functionality to the monitor and are dy-
namic linked to the architecture at runtime. The main
advantage of this approach is the separation between
the monitoring mechanisms, like information transport
and monitoring frequency, and the information acqui-
sition, the latter being dependable on resource pecu-
liarities.

The main features provided by RVision are:

� Multiple Monitoring Sessions: when a monitoring
client connects with the monitor’s kernel an individual
monitoring session is created. Several sessions may be
active at the same time (from different clients). These
sessions may have several distinct monitoring config-
urations, called sections. This approach enables paral-
lel monitoring sessions using different configurations
which are described in a Monitoring Session Configu-
ration file (MSC file). An example of the MSC file is
presented below:

BEGINLIBDECL # Monitoring Libraries used
<index> <monlibname>
0 librvision

ENDLIBDECL

BEGINMONSESSION ONLINE # ONLINE or POSTMORTEM
Collection of sections

BEGINSECTION
NODES # Nodes to be monitored

<node-name>
node01
node02
node03

TYPE # Monitoring type
cyclic <period> - period in seconds
client-request <group_id> - group id as an integer
alteration <period> <percentage> - period in
seconds and percentage as a real number

cyclic 4.0
INFO # Information

<monlibname> : <infoname>
librvision : cpuused
librvision : memused

ENDSECTION
ENDMONSESSION

Between the “BEGINMONSESSION” and
“ENDMONSESSION” tokens, several concurrent
monitoring sections can be defined. The information
to be monitored is declared with the corresponding
library name and its identifier (described below in
the MLD file). Both names are used by the monitor
kernel to identify the information when sending it to
the monitoring client.

� Generic Information Monitoring: if a monitoring
client wants to acquire information that is not im-
plemented in RVision’s default monitoring library
(librvision), it may include a new library with the
needed functionality to the system. This new moni-
toring library will be dynamically linked to RVision
by demand. This feature allows the development of
specific libraries for new hardware technologies (e.g.
Myrinet [9] and SCI [11] network boards). The mon-
itoring library needs to define a vector with void
pointers named functions to enable the dynamic
linking with the RVSpy, each function of this library
needs to be declared in this vector. The monitoring li-
brary uses a monitoring library description file (MLD
File) to identify the available monitoring information
to the system and acts as the link between the informa-
tion identifier and the correspondent function pointed
by the functions vector. An example of a basic
monitoring library header is presented below:

/* Monitoring Library Header */
int function_1();
double function_2();
char *function_3();

void *functions[] = { function_1,
function_2,
function_3 };

The presented monitoring library has the following
description file (used type substitutions in the MLD
showed in Table 1):

Monitoring library description file - MLD
<index> <type> <identifier>
where:
<index> is the position of the function pointer
in the functions vector
<type> the type returned (see Table 1)
<identifier> identifier to the function, usually
the information name
0 int info_1 # provided by function_1
1 double info_2 # provided by function_2
2 string info_3 # provided by function_3

� Instant of Information Analysis: RVision supports on-
line and post-mortem monitoring analysis. Online
analysis corresponds to the visualization of the infor-
mation being monitored during the monitoring session.
Post-mortem analysis stores all information monitored
in a file called post-mortem file (PM file), making the
monitoring session less network intrusive, since it does
not send the monitored information to the monitor ker-
nels over the network. On the other hand, the mon-
itoring client has access to the PM file only after the
monitoring stops.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 1. Type Substitutions in the MLD File
Number of Type in

C Type Bytes MLD File
unsigned char 1 uchar

char 1 char
unsigned short 2 ushort

short 2 short
unsigned int 4 uint

int 4 int
unsigned long 4 ulong

long 4 long
float 4 float

double 8 double
char * 255 string

� Monitoring Frequency: the monitoring frequency can
be selected between client request, regular time inter-
val, or percentual change in value. The former is client
initiated, while the latter two are initiated in the re-
source side. In the client request mode, the monitoring
client sends a request to the resources when the infor-
mation is needed. Two messages (the request and the
reply) are sent over the network. In the regular time in-
terval mode, the resource side sends the needed infor-
mation to the monitoring client periodically after the
start of a monitoring session. Since the time control
is done in the resource side, only one message to the
monitoring client is needed. The percentual change in
value mode works like the regular time interval mode,
but it only sends the information when a value changes
by more than a threshold specified in the session file
(e.g., CPU usage changed more than 10%). Since the
threshold control is done also in the resource side, only
one message to the monitoring client is needed.

4.3. Design and Implementation

The RVision architecture is based in the classic master-
slave model [10] utilized by most of the resource monitors
found in the literature. This centralized approach was cho-
sen because it is less complex then a distributed model and
therefore more efficient in small and midsize clusters. It
has been implemented on Linux/GNU using the C language.
The architecture is composed of five modules presented in
Figure 1. The implementation of RVision is Open Source
and uses the GPL License.

4.3.1 RVCore

The RVCore, presented in Figure 2, is the monitoring ker-
nel, which corresponds to the master of the architecture. It

Client
Monitoring

Client
Monitoring

Internet

. . .

RVCore

Monitoring Client Interface

Host

RVSpy

Monitoring
Library

Interface

node 0

RVSpy

Monitoring
Library

Interface

node 1

RVSpy

Monitoring
Library

Interface

node n

...

Cluster

Monitoring
Library

Monitoring
Library

Monitoring
Library

Figure 1. RVision Architecture.

realizes the control of all monitoring sessions and sends the
monitored information to the respective monitoring clients.

The kernel is divided in RVCore Manager, Authentica-
tion Module, Monitoring Session Manager, RVSpy Group
Manager, and Data Receiver Module. It is implemented us-
ing POSIX threads [12] and GNU/Linux sockets. Control
messages between the RVCore and the monitoring clients
are sent using the TCP protocol. Data messages can be sent
with TCP or UDP. The transport mechanism is chosen by
the monitoring client during execution time. All commu-
nication between the RVCore and the RVSpy’s (resource
side) utilizes the UDP protocol. The choice for communica-
tion using the UDP protocol is due to it’s low overhead and
because clusters are usually connected by LAN networks
where package loss is minimal [13].

The RVCore resides in the host machine, waiting for
connections. When a connection is established, the RV-
Core Manager checks the user login and password using the
Authentication Module. It uses the passwd file or shadow
depending on which authentication mechanism the RVision
has been compiled with. After the authentication, if the user
and password are valid, it creates the Monitoring Session
Manager as another thread and passes to it the socket for
client communication as an argument. If the password is
not valid the connection is closed. The Monitoring Ses-
sion Manager waits for monitoring requests (described in
Section 4.3.4, which presents the monitoring client inter-
face). If the request is for configuring the transmission of

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

Monitoring
Session
Manager

RVSpy Group
Manager Module

Data Receiver

Monitoring Client

Monitoring
Session

RVSpy RVSpy RVSpy. . .

RVCore
Manager Module

Authentication

RVCore

Figure 2. RVCore

the monitoring data to the client, it just receives and stores
the values. When the request is for a session configuration,
it parses the file indicate in the argument and accumulates
the configuration. When the request is for a session start, it
creates the RVSpy Group Manager and the Data Receiver
Module. The RVSpy Group Manager access all RVSpy’s
for each node indicated in the MSC File, pass the config-
uration for each node and starts the monitoring. The Data
Receiver Module waits for data and forwards it to the Mon-
itoring Client, acting as a proxy. When the request is for a
session stop, the RVSpy Group Manager send a request to
stop the monitoring for each RVSpy and suspends the Data
Receiver Module. If the request is a client request, it just
forwards the request to the RVSpy’s with the corresponding
client request group. Finally, if the request is for session
close, it frees all memory utilized, closes the connection,
and destroys the monitoring session.

4.3.2 RVSpy

The RVSpy is the slave of the architecture and resides on
each node of the cluster. It is responsible for data acqui-
sition and transmission to the RVCore. It is implemented
using POSIX threads and GNU/Linux sockets (UDP proto-
col) being divided in the RVSpy Manager, Data Collectors
Manager, Dynamic Linker, and a group of Data Collectors.

When a packet arrives to one RVSpy, it creates the Data

Collectors Manager, receives the monitoring configuration
for the node, executes the dynamic linkage, and waits for
the monitoring starting signal. When this signal arrives,
it creates the Data Collectors, which are implemented as
POSIX threads. Each Data Collector is responsible for a
different monitoring frequency, and can monitor more than
one event. They are implemented as a loop that catches the
information and sends to the RVCore, when it is configured
for online analysis, or stores it on a file, for post-mortem
analysis. When the percentual change in value mode is
used, it computes the threshold and sends the information
only if the diference is higher than the threshold specified
by the user. After that, the Data Collector can realize one of
two operations: sleep for some defined time (regular time
interval and percentual change in value modes) or wait for
a signal to send more information (client request mode). If
the Data Collectors Manager receives a stop monitoring re-
quest, it cleans up the used memory, and stops the Data Col-
lectors.

M
o
n
i
t
o
r
i
n
g

L
i
b
r
a
r
y

Data
Collector

Data
Collector

. . .
Data

Collector

Manager
Data Collectors

Information
Collector Session

RVSpy
Manager

Dynamic
Linker

RVCore

RVSpy

Figure 3. RVSpy

4.3.3 Monitoring Libraries

The Monitoring Library is responsible for the data acquisi-
tion in the cluster nodes. It is dynamic linked to the RVSpy
at runtime so that several libraries may be available being
only loaded if the functions they contain are referenced in
a monitoring session. This open end enables the monitor-
ing of additional information with no modifications in the
RVision code.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

The Monitoring Library consists of an usual Linux/GNU
shared library using some definitions to enable dynamic
linking and a description file to provide information about
the compiled library to the RVCore. The RVision moni-
toring tool provides a basic monitoring library called li-
brvision. It acquires system information from the
/proc directory [5]. This library enables the monitoring of
usual system information such as: CPU utilization, memory
utilization, swap space and network utilization.

4.3.4 Monitoring Client Interface

The Monitoring Client Interface defines the functionalities
provided by the RVCore describing function parameters and
return values. These functions are sent to the RVCore using
sockets. The functions provided by the monitoring client
interface are presented in Table 2.

Table 2. Monitoring Client Interface Functions

Commands Parameters
RECVCONFIG protocol, port

SESSIONCONFIG MSC file
STARTMON –
STOPMON –

CLIENTREQ group id
CLOSESESSION –

The RECVCONFIG command defines the protocol (TCP
or UDP) and port utilized by the client for receiving the
monitoring data. This information is sent to the RVCore
as two integers, the first one indicates the protocol, while
the second identifies the port. The SESSIONCONFIG com-
mand specifies the monitoring libraries used for monitoring,
the type of monitoring (online or post-mortem), the moni-
toring frequency, and the nodes and information monitored.
This information is defined in the MSC file, described in
Section 4.2. The client sends the name of the MSC file as
a string. The STARTMON and STOPMON commands start
and stop the monitoring, and the CLIENTREQ command
grabs the client request information defined in the MSC file.
This command takes one parameter to indicate the client re-
quest group to be captured (i.e., different groups of infor-
mation can be defined and captured using explicit client re-
quest). When the RVCore receives this value, it just sends to
the monitoring client the information defined in this group.
The CLOSESESSION command closes the monitoring ses-
sion.

4.3.5 Monitoring Client

The monitoring client is responsible for data presentation
and user interaction. It uses GNU/Linux sockets for com-

munication with the RVCore. Users are able to implement
their own monitoring clients building on RVCore func-
tions accessed through the monitoring client interface (Sec-
tion 4.3.4). The structure of a basic monitoring client is pre-
sented in Figure 4 and consists basically of two threads: one
for management and the other one for data reception. Figure
5 displays a screenshot of the Monitoring Client developed
for the CPAD main cluster (http://www.cpad.pucrs.br).

RVCore

Monitoring
Client

Monitoring
Manager Receptor

Data

Figure 4. Basic Monitoring Client Architecture

Figure 5. CPAD Monitoring Client

5. Performance Measurement

The main concern when a tool is used to monitor some
resource is how much the readings are being affected by
this tool. Being a parallel application itself, the monitoring
tool, when active, is consuming cluster resources like node
CPU and network bandwidth. This is called intrusion and

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

should be minimized to guarantee that the monitored data
is accurate and that the behavior of the other application
running in the cluster are not considerably affected.

We measured RVision’s intrusion defining a monitoring
session with 12 values for all cluster nodes and request-
ing this data using online monitoring with a regular time
interval. Different applications are executed in the cluster
with and without monitoring and we compared the execu-
tion times. We varied the time interval from 5 seconds to
500 milliseconds to simulate a worst-case scenario. Data
was acquired from the /proc file with the librvision
monitoring library and the session configuration file used is
presented below.

Monitoring Session Configuration File
BEGINLIBDECL
0 librvision
ENDLIBDECL

BEGINMONSESSION ONLINE
BEGINSECTION
NODES
cpad01 cpad02 cpad03 cpad04
cpad05 cpad06 cpad07 cpad08
cpad09 cpad10 cpad11 cpad12
cpad13 cpad14 cpad15 cpad16

TYPE
cyclic <variable period of time, 0.5 - 5.0>

cyclic 0.5
INFO
librvision : usercpu_perc
librvision : nicecpu_perc
librvision : systemcpu_perc
librvision : idlecpu_perc
librvision : cpuused_perc
librvision : usedmem_perc
librvision : freemem_perc
librvision : sharedmem_perc
librvision : buffersmem_perc
librvision : cachedmem_perc
librvision : usedswap_perc
librvision : freeswap_perc

ENDSECTION
ENDMONSESSION

To evaluate RVision under different workloads four MPI
applications with different characteristics were used for per-
formance measurements: Povray [2], IS and EP from the
NAS parallel benchmarks [3], and Linpack [8]. Povray is
a ray tracer based in the master-slave model. The size of
the test image was 800x600 pixels. IS sorts a vector of inte-
gers using data parallel computations with synchronization
points. In our test we used IS with class C. EP is a random
number generator based in the master-slave model. In our
test we used EP with class B. Finally, Linpack is one the
most used benchmarks to evaluate cluster performance im-
plementing an LU factorization on a matrix using parallel
data computation with synchronization points. In our test
we used the values 5000, 32, 4 and 8, for the variables N,
NB, P and Q respectively. IS is network bound while EP
is CPU bound. Linpack and Povray have a good balance
between calculation and communication.

The tests were conducted on the CPAD main cluster,
which has 16 dual-processor (Pentium III-550MHz) nodes,

each node with 256 MBytes of main memory. It utilizes
two types of interconnection networks, Myrinet and Fast-
Ethernet both switched. Since, RVision uses sockets, the
measurements were made with the applications running on
Myrinet and on Fast-Ethernet to see how this affected intru-
sion, while we ran RVision only on Fast-Ethernet.

Table 3 presents the intrusion results for all test cases.
In each case the test application was executed 10 times for
each time interval with monitoring turned on. With the time
interval of 1 second intrusion was around 10% for all appli-
cations. This is a very good result considering the large con-
figuration file used and that in some cases application and
monitor use the same network for communication (Fast-
Ethernet). We observe also that intrusion is higher on Lin-
pack and IS applications. This is expected because these ap-
plications have higher network usage. To have some worst-
case results we reduced the time interval to 0.5 seconds.
Even in this case intrusion results where lower than 10%
except for Linpack and IS.

0

5

10

15

20

25

30

35

0.511.522.533.544.55

In
tr

us
io

n
(%

)

Time Interval (seconds)

IS Intrusion

Fast-Ethernet
Myrinet

0

1

2

3

4

5

6

7

0.511.522.533.544.55

In
tr

us
io

n
(%

)

Time Interval (seconds)

EP Intrusion

Fast-Ethernet
Myrinet

Figure 6. IS and EP Intrusivity

Figure 6 presents intrusion results for IS and EP appli-
cations in relation to the time interval. These applications
have been specially analyzed because of their characteris-
tics as network bound (IS) and CPU bound (EP). From the
results we concluded that in our experiment network inter-
ference was much greater than processor interference, with
IS generating 3 times more intrusion than EP.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 3. Applications Intrusion Measurements
Povray IS EP Linpack

Time Fast- Fast- Fast- Fast-
Interval (sec) Myrinet Ethernet Myrinet Ethernet Myrinet Ethernet Myrinet Ethernet

5.0 0.90% 0.90% 1.99% 2.17% 0.19% 0.51% 0.87% 2.17%
4.5 1.07% 1.14% 2.08% 2.68% 0.41% 0.57% 0.92% 2.68%
4.0 1.08% 1.35% 2.37% 2.80% 0.81% 1.14% 1.10% 3.45%
3.5 1.27% 1.58% 2.98% 3.33% 0.85% 1.58% 1.28% 3.79%
3.0 1.73% 1.99% 3.89% 3.79% 1.00% 1.52% 1.45% 4.05%
2.5 1.85% 2.17% 4.73% 4.42% 1.29% 1.73% 1.92% 4.42%
2.0 2.47% 2.69% 5.34% 7.64% 1.94% 2.02% 2.64% 6.41%
1.5 2.73% 3.33% 7.81% 8.18% 2.10% 2.56% 3.37% 9.25%
1.0 3.52% 4.22% 11.34% 15.10% 3.45% 4.20% 5.36% 13.74%
0.5 7.64% 8.18% 25.43% 32.93% 6.30% 6.61% 12.06% 29.35%

6. Conclusion and Future Work

Due to its favorable cost-performance ratio, cluster com-
puting is becoming more utilized in several application ar-
eas. This higher utilization increases the need and impor-
tance of cluster monitoring for system tuning and applica-
tion development. In this paper we presented RVision, an
open architecture high configurable tool for cluster moni-
toring, which provides flexibility in selection of events to be
monitored and allow users to expand the monitoring capa-
bilities with self-defined procedures for the monitoring of
specific system hardware or system events. An additional
feature of RVision is its flexibility in allowing the moni-
toring of distinct clusters, cluster of clusters, and heteroge-
neous clusters. In our experiments using RVision the mea-
sured intrusion was around 10% with the default monitoring
library (/proc) for different kinds of applications.

RVision has being used at our research center (CPAD)
in production mode for the last six months. New develop-
ment is underway, some of them are: including a mecha-
nism for dynamic configuration during the monitoring ses-
sion, defining a more generic representation of the returned
values by the monitoring library functions, enabling an ex-
tended set of data types, such as “structs”, suporting to PAM
(Plugable Authentication Module) in the options for sys-
tem authentication, and changing the format of all config-
uration and output files to the XML standard [6]. There
are also monitoring clients and monitoring libraries under
development, such as a monitoring client applet (for Web-
pages), a monitoring library using SNMP library and a mon-
itoring library for Myrinet technology. More information
about RVision and the package for download are available
in http://www.cpad.pucrs.br/rvision/index.html.

References

[1] bwatch 1.0.3. http://www.sci.usq.edu.au/staff/jacek/bWatch,
2001.

[2] POV-Ray - the persistence of vision raytracer.
http://www.povray.org, 2001.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel benchmarks
2.0 report NAS-95-020. Technical report, NASA Ames Re-
search Center, December 1995.

[4] M. Baker. Cluster computing white paper, 2000.
[5] T. Bowden, B. Bauer, and J. Nerin. The /proc filesystem.

Linux Kernel Documentation, 2000.
[6] T. Bray, J. Paoli, and C. Sperberg-McQuee.

Extensible markup language (XML) 1.0.
http://www.w3.org/TR/1998/REC-xml-19980210.html.
W3C Recommendation - 10-Feb-1998.

[7] R. Buyya. PARMON: a portable and scalable monitoring
system for clusters. SP&E, 30(7):723–739, 2000.

[8] J. J. Dongarra. Performance of various computers using
standard linear equations software in a fortran environment.
In W. J. Karplus, editor, Multiprocessors and Array Proces-
sors. Proceedings of the Third Conference, San Diego, CA,
USA, 1987. SCS.

[9] C. L. S. et al. Myrinet - a gigabit-per-second local-area net-
work. IEEE Micro, vol. 15(1), 1995.

[10] K. Hwang and X. Zhiwei. Scalable Parallel Computing:
technology, architecture, programming. Boston: Wcb-Mc
Graw-Hill, 1998.

[11] IEEE standart 1596-1992, New York. IEEE: IEEE Standart
for Scalable Coherent Interface (SCI), 1993.

[12] B. Lewis and D. Berg. Multithreaded Programming with
Pthreads. Sun Microsystems Press, 1998.

[13] A. Tanembaum. Computer Networks. Prentice-Hall, 3th
edition, 1996.

[14] P. Uthayopas, J. Maneesilp, and P. Ingongnam. SCMS: An
integrated cluster management tool for beowulf cluster sys-
tem. In PDPTA 2000, Las Vegas, Nevada, USA, 2000.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:16 UTC from IEEE Xplore. Restrictions apply.

