
The Virtual Cluster: a Dynamic Environment for Exploitation of Idle

Network Resources

C. De Rose
PUCRS - Brazil

derose@inf.pucrs.br

F. Blanco
CPAD - PUCRS/HP - Brazil

blanco@cpad.pucrs.br

N. Maillard
CPAD - PUCRS/HP - Brazil

nicolas@cpad.pucrs.br

K. Saikoski
PUCRS - Brazil

saikoski@inf.pucrs.br

R. Novaes
HP Brazil

reynaldo novaes@non.hp.com

O. Richard
ID-IMAG, Grenoble - France
Olivier.Richard@imag.fr

B. Richard
HP Labs, Grenoble - France

bruno richard@hp.com

Abstract

Standard envir onments for exploiting idle time of

workstations are based on some kind of spying process

that detects low CPU usage and informs to a sched-

uler so that work can be disp atche d. This approach

gener ateslocal interfer enc eand, sinc e the same local

envir onment is used, could lead to security problems.

We are investigating the exploitation of idle times in

network resour ces based on a complete mode change in

a candidate node. After the dete ction that some node

is idle, a Mode-Switcher boots a new operating system

that will work over a separate disk partition. After the

boot phase the node is linked to a logical network topol-

ogy and is available to receive jobs. Users can allocate

no des fr om this virtual cluster through a standard front-

end as they would do in a "conventional" cluster. Be-

cause nodes may leave and join this virtual machine we

use a distribute dprocessormanagement to allow user

applic ationsto cope with this dynamic resour ce behav-

ior. In this paper we describ e the architecture of the

virtual cluster and present the results obtained with a

Mode-Switcher and a prototyp eapplic ationunder real

use c onditions.

1. Introduction

One decade ago the idea appeared to harness the
global computing and storage pow er of computers
all around the w orld through the In ternet netw ork.
F rom Cluster Computing, which aimed at adapting

distributed computing to a loose coupled net w orkof
w orkstations or standard PCs,the community mo ved
to Grid Computing [3] to use computing resources from
di�erent, possibly virtual, organizations. F or example
the Condor and the Globus project are intending to
provide a set of tools to match its needs of computing
pow er,regarding a certain application, and the avail-
able Grid resources.

Recently, some Global Computing projects ap-
peared that explicitly intend to use idle cycles of ma-
chines connected to the In ternet. A typical exam-
ple is the SETI@Home project which provides a task
scattered computation, whose elementary task can be
downloaded from a server and will be executed locally
whenever the computer turns unused (e.g., when the
screen-saver turns on).

The key points of these approaches are that the com-
puting nodes are scattered across the Internet: some
may be part of an existing cluster, some may be iso-
lated. Besides, the nodes may suddenly switch o�, for
instance because the local user went back to work or be-
cause a modem turned o�. And least, since the execu-
tion of a distributed computation will involv e distinct
unknown nodes, securit y concerns must be tackled to
prevent a malign code to infest the host nodes and to
prevent ill-in tended nodes providers to spoil the result
of the computation. The scope of this article is the
design of an en vironment, V Cluster1 that could deal
with these three points: usage of idle cycles, handling
of dynamic behavior of the nodes, and safe remote ex-

1Project supported by HP Brazil.

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

ecution.
This paper is organized as follows: the �rst section

presents the key ideas of three classical environments
for distributed Grid computing (Mosix, Condor and
Globus). We then describe our virtual cluster project
and its components: the Mode-Switcher that deals
with the mode change betw een local processing and
cluster mode, the DPM resource manager that allows
the dynamic handling of the nodes, and the applica-
tions that we intend to develop on top of vCluster.
In the last section w epresent some measurements in
order to validate our approach. This w ork isthe lat-
est step in an on-going w orkat the CPAD-PUCRS.
The main contribution is the integration of the Mode
Switcher with DPM in order to provide an e�ective
(virtual) cluster adapted to distributed eÆcient com-
putations.

2. State of the art

In this section we brie
y present the functionalities
o�ered by some of the classical en vironments for ex-
ploitation of idle time in workstation netw orks.

Mosix [1] is one of the oldest projects aiming at
handling thejob execution and the load balancing on
a cluster. This environment pro vides a preemptive
process migration mechanism at the operating system
level, in order to generate a SMP- like vision of the
computational resources. When a certain amount of
the resource has been used (e.g., at memory exhaus-
tion), it is up to the Mosix system to migrate some or
all of the processes constituting the job to some other
nodes of the cluster, thus achieving load balancing.
The nodes of the Mosix architecture exc hange some
kno wledgeabout the other resources through gossip-
ing, i.e. each node regularly sends information about
himself to a randomly chosen subset of its neighbors.
Thus, there is no centralization of the resource's state
such as in Condor. Mosix was not intended to be used
for the exploitation of workstation idle time but some of
its mechanisms for information discovery and process
migration where used as a reference for the develop-
ment of other systems in this �eld.

Condor [6], developed at the Wisconsin University,
has been developed to use idle cycles of independent
w orkstations. The centralized manager of a Condor
pool of machines handles a list of thenodes to deter-
mine if they are available or not. When idle nodes are
detected, a matching system between the available re-
sources and the user's needs is done to allocate the jobs.
This is transparent to the user. Condor uses a remote
system call mechanism and a checkpoint technique to
migrate and (re)start the jobs on the available nodes,

similar to Mosix. Some restrictions exist, such as the
impossibility to launc h multi-process jobs, the lack of
secure protocols or sandboxing systems for remote ex-
ecution.

The Globus toolkit [3] provides a Grid environment
with components dedicated to information disco very,
communication protocols (among secured ones), re-
source allocation and management, and data man-
agement. Globus has been used on a variet y of ex-
isting Grids and several applications are being devel-
oped on top of it (e.g, climate simulation and tomog-
raphy). The Globus3 toolkit [5] intends to provide
w eb based services to access the softw are components.
The component in charge of the resource discovery and
handling uses the Metacomputing Directory Services
(MDS) which organizes the information in a tree struc-
ture and acts as a serv er when client jobs request re-
sources. The information about the resources is han-
dled on eac h node by local agents and centralized by
the MDS service. This one may, in turn, be imple-
mented in a distributed way ([4]) but to our knowledge
no result has been published with a distributed service
yet.

3. The virtual cluster approach

3.1 Motivation and idea

Based on our experience in the �eld of cluster ar-
chitectures, (developing middleware and implementing
parallel applications), we wan ted to explore some con-
cepts of grid computing. Our �rst experiments where
in the area of cluster of clusters, evaluating ho wour
middleware had to be expanded so that a single par-
allel application could use resources allocated in more
than one cluster. Going further in this direction w e
tried to think of a simple w ay to explore the idle po-
ten tial of the workstations in our lab and surroundings.

The idea was not to throw aw ay everything we did
in the last �ve years but to use this kno wledgeas a
foundation for the development of a system that would
incorporate some elements of grid computing. The user
should be able to allocate these idle workstations in the
same way it allocates and uses the available nodesin
the "conven tional" clusters.So we incorporated in our
cluster management softw arean additional cluster, a
virtual one. The vCluster aggregates the idle work-
stations from our lab so that a user may allocate nodes
and run applications using the same scripts available
for the other clusters. T o detect which nodes are join-
ing and leaving the vCluster we used a mode switcher
module dev elopedfor another HP project, the iClus-
ter [8]. This Mode-Switcher detects idle resources and

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

boots a new operating system which runs on a di�erent
disk partition. If the local user needs the workstation
again the node switches back to the original operating
system without an y data loss (see section 4.1). With
this concept w eguarantee no in terference in the per-
formance of the workstation when it is in use and that,
when in cluster mode, no local data may be accessed.

3.2 The vCluster architecture

The three possible states of a vCluster node are
the following (see �gure 1):

Node in standard mode: represented in �gure 1 by
the white circles. These are nodes that are not idle
and therefore are not part of the vCluster.

Free node in cluster mode: represented in �gure 1
by the light gra y circles. Because these nodes
where idle, the Mode-Switcher booted the cluster
operating system and connected them into a log-
ical topology (tree based). This logical topology
will be used to �nd free nodes when a request for
the vCluster arriv es. No distributed processing
is running in these nodes because they where not
allocated yet.

Allocated node in cluster mode: represented in
�gure 1 by the dark gray circles. These are nodes
in cluster mode that are already allocated and
executing a distributed application. The thicker
connection lines represent the links to the other
allocated nodes running the same application.

Figure 1. Possible states of a node and the
vCluster logical topology.

Figure 2 shows a high-level representation of the
vCluster architecture. After a node changes to the
cluster mode and boots the cluster operating system,
it runsthe Distributed Processor Management (dpm)

daemon [2]. dpm connects the node to the logical
cluster topology and implements a dynamic processor
management ensuring that a distributed application
may request additional nodes or partially release the
nodesit is using. We implemented an additional ser-
vice for vCluster so that dpm can cope with nodes
that abruptly leave or join the vCluster (see 4.2).

Distributed
Processor

Management

Add/Remove Nodes

Mode Switch

Node 1

Distributed
Processor

Management

Add/Remove Nodes

Mode Switch

Distributed Application

Node n

Figure 2. vCluster architecture and it’s lay-
ers.

On top of dpm a distributed application may run
as in a conven tional cluster. It has to be aw are of t w o
situations:

1. nodes may abruptly leave the vCluster (change
bac k to standard mode);

2. nodes may join the vCluster and could be used
to improve performance.

We treat both situations with a very simple ap-
proach. We prepared a basic application framework
to run in the vCluster. It is based in a client/serv er
model where clients ask for work and the server is re-
sponsible to manage the w ork that is already done.
Regarding the situation 1, the server processes has to
implement some fault-tolerance so that it can detect if
a client is not responding anymore. To avoid the prob-
lem of the server node going do wnw eput the server
in a special �xed node. This node nev erchanges to
standard mode and acts like a host machine for the
vCluster. T ogether with the server we execute also a
clien t process, so that, even in the minimal case (with
one node), the distributed application makes progress.
Regarding the situation 2, w eimplemented a service
in our application framework to test periodically for
new nodes in the vCluster and automatically dis-
patc h new clients.

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

4 The vCluster lay ers

4.1 Mode-Switcher

The Mode-Switcher [8], developed by HP Brazil, is
the module responsible for alternating betw een the user
operating system (standard mode), and the cluster op-
erating system (cluster mode).

The main Mode-Switcher's role is to keep track of
the usage of the machines where it is installed and iden-
tify which periods these machines are idle and could
be exploited as cluster nodes. Based on this knowledge
the Mode-Switcher initiates the transition to the clus-
ter mode without user interv en tion.Its design has the
follo wing characteristics:

EÆcient mode switching: switc hing betw een
modes is implemented in a very eÆcient w ay
resulting in switc hing times in less than one
minute.

Localuse has priorit y: no context save or manage-
ment operations in cluster mode should delay the
switc hingto the standard mode when a user de-
cides to use the machine.

Zero local interference: the Mode-Switcher instal-
lation does not have any impact on the target sys-
tem performance when in standard mode.

No special hardware requirements: No special
hardware is required. The Mode-Switcher is
implemented completely in softw are. No spe-
ci�c hardware is needed other than a netw ork
connection.

A state diagram of the Mode-Switcher is presented
in �gure 3.

During normal operation, a local user might not use
his/her workstation all the time, leaving some idle time
that could be exploited. The Mode-Switcher trac ks this
time and tries to �nd a usage pattern for this worksta-
tion. When the detected idle time matches the pat-
tern, the Mode-Switcher performs the context switch-
ing. Both context saving and restoring operations are
done using system calls. So, since these context switch-
ing tasks are provided by the operating system API,
they must be theoretically trustw orthy and we assume
that they occur without an y data loss. The switch-
ing from the user mode to cluster mode is presented in
the �gure 3 as the transition labeled as \Idle time de-
tected". After the context switching the machine will
boot the cluster operating system and then it can be
used as a cluster resource.

Active

Idle

Cluster
Mode

Idle time
detected

Local
user

detected

End of
profiled idle

time

User
Mode

User activity
detected

No user
activity

User
request

Figure 3. State diagram of the Mode-Switcher

Two even ts will force the machine to return to stan-
dard mode: the detection of a local user presence or
the end of the pro�led idle time. In the �rst case, any
mouse movement or keyboard hit is used to detect the
presence of the local user. The second case will not re-
quire any user interven tion because the Mode-Switcher
will switch back to the user mode based on its knowl-
edge about the w orkstationusage. In both cases the
standard mode will be restored to the state it has be-
fore switching.

In the standard mode the Mode-Switcher will
present itself as a small icon in the users task bar to
indicate it is running. As said before, it does not in-
terfere with the normal operation of the machine and
the user does not lose the control over the machine be-
cause the cluster mode activation may be postponed,
immediately activated or conditioned by speci�c events
(after a de�ned idle period).

4.2 Distributed Processor Management

DPM is a distributed processor manager that allows
dynamic addition and removal of nodes to be managed.
It is totally distributed, this means that there is not any
cen tral module or manager that is responsible for the
inclusion or exclusion of nodes.

Users can allocate their jobs, and use the API pro-
vided by DPM to communicate with the system. So,
user's applications can allocate more nodes at execu-

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

tion time and spawn their jobs among nodes that be-
came free after the initial allocation.

There is a daemon running on eac h node of the
cluster to control local information about the node.
T o minimize netw ork in terference, DPM uses a hierar-
chical logical topology when communicating with the
nodes. T oDPM, the nodes are logically organized in
a tree hierarchy and the messages exchanged betw een
each node respects this hierarchy.

4.2.1 Logical hierarch y

dpm mounts its logical hierarchy when it starts. There
are three ways to do this: static, dynamic with broad-
cast or dynamic with unicasts. Each of these has di�er-
en t netw ork bandwidthrequirements. In the vClus-
ter architecture we set dpm to work with the dynamic
unicast mechanism because of the dynamic character-
istics of the en vironment. The information stored by
each daemon corresponds only to its local state (free
or allocated) and its neighbors (the nodes it has to
communicate with). Therefore, it stores info about its
father and a list of its children.

A con�guration �le indicates how the nodes are or-
ganized in groups, and a searc h on the net w orkwill
only consider the nodes that are already running the
dpm daemon. The netw ork search is made using uni-
casts. A message is sent for eac hdpm daemon and the
node is considered online, if it replies, or o�ine, if a
timeout occurs.

The format of the con�guration �le used is described
below:

###

#Format of this file :

#STARTUP_HOST <HOSTNAME>

#GROUPS

#<GROUP NAME> <NODE 1> <NODE 2> ... <NODE N1>

#<GROUP NAME> <NODE 1> <NODE 2> ... <NODE N2>

#<GROUP NAME> <NODE 1> <NODE 2> ... <NODE N3>

#HIERARCHY

#<GROUP NAME> <NAME OF CHILD GROUP>

#<GROUP NAME> <NAME OF CHILD GROUP>

#

#Example:

STARTUP_HOST marfim

GROUPS

switch1 ipe pinus jacaranda

switch2 jequitiba carvalho

switch3 araucaria mogno mangueira quaruba

HIERARCHY

switch1 switch2

switch2 switch3

4.2.2 Node inclusion

Due to the fact that dpm does not use any central
module, the daemons must have a w ayto �nd which

nodes are online or o�ine when they start, to properly
con�gure the logical hierarchy.

Considering the following con�guration �le:

STARTUP_HOST marfim

GROUPS

group_1 A B C

group_2 D E

group_3 F G H I

HIERARCHY

group_1 group_2 group_3

If the nodes are turned on in the following order: F,
I, H, A, B, D, the con�guration process would occur as
in �gure 4.

The nodes, when turned on, search for already online
nodes and decide which nodes will be their father and
which will be their children. In �gure 4, when t=4 and
node A is entering in the hierarc hy, it decides that it
will have no father and node F will be its child. So,
node A will send a message to node F to change its
father to node A.

Node A does not enter as child of F because it is in
group group 1, and group 1 is the father of group 2,
as w ecan see in the con�guration �le above. Thus,
node A decides that it will be the father of the node F
because all nodes that were online when node A tried
to en ter are on group group2.

4.2.3 Node exclusion

When a node is switched to standard mode, it
has to leave the hierarc hy in a consistent state.
This is done by calling the in ternal function
reconfigureNeighborhood (). This function analyzes
the local information and decides which changes have
to be done.

F or example, if node F wants to get out of the hier-
archy shown above, it will send messages to nodes A, H
and I (�gure 5). Nodes H and I will receive messages to
change their father, and node A will receive messages
to add nodes H and I as its children and remove child
F.

4.2.4 dpm API

DPM provides an API to allow the system administra-
tor to write their own queue managers programs and
to allo w users applications to grow and shrink dynam-
ically .

The dpm API is subdivided in three categories: Ad-
ministration, Application and Common.

Administration functions

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

F

I

F

IH F

IH

A A

BF

H I

F

B

A

F

H I D

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Figure 4. Node inclusion in dpm.

F

H I

A

t=0

H

A

I

t=1

Figure 5. Node exclusion in dpm.

The administration functions can only be used by
the system administrator. They are responsible for job
allocation, job removal and logical hierarchy recon�g-
uration. The dpm API functions in this category are:

dpm alloc job This function starts the allocation of
nodes to a job that was not previously known by
the system.

dpm remove job This function is used by the system
to completely remove a job partition.

dpm job nodes This function is used to retrieve the
list of nodes of a speci�c job.

dpm add child This function is used to add a node
as a child of an already running dpm daemon.

dpm remove child This function is used to remove
a node that is the child of an already running dpm
daemon.

dpm change father This function is used to change
the father of an already running dpm daemon.

dpm recon�gure This function is used to force a
daemon to redo the con�guration of the logical
hierarc hy used by it.

dpm exit hierarch y This function is used to cause a
daemon to be invisible to the actual logical hier-
archy. It will tell to its neighbors to remove any
references to it.

Application functions

The application functions are to be used by the
user's application to communicate with the dpm sys-
tem. These functions allow the users to add more nodes
to its allocated partition, release allocated nodes or re-
triev e a list of current allocated nodes. The dpm API
functions of this category are:

dpm alloc node This function is used to allocate ad-
ditional nodes to the current application's parti-
tion.

dpm release nodes This function is used to release
nodes from the current application's partition.

dpm release all nodes This function is used to re-
move all nodes from the current application's par-
tition.

dpm my nodes This function retriev es the list of
nodes from the current application's partition.

Common functions

The Common functions can be used either by the
user's application or by the administrator. The dpm
API functions of this category are:

dpm init This function should be called before any
other function of the dpm API. It is responsible
for con tactingthe dpm daemon and establishing
a connection betw eenthe user program and the
daemon.

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

dpm �nalize This function should be called after
dpm use.

dpm perror This function prin ts a status message
about the latest executed function.

dpm run program This function runs a program on
a remote host.

dpm insert This function is used to insert the nodes
in a dpm iplist t variable.

dpm node This functionis used to access the nodes
contained in a dpm iplist t variable.

4.3 Distributed application

T ovalidate the vCluster architecture w e imple-
mented a protot ypeapplication based on an initial
version of our application framework. Since commu-
nication costs may be very high among idle w orksta-
tions spread in a university campus or di�erent
oors of
a company building, the application should be coarse
grained to allow gaining performance in such an envi-
ronment. It's also important that partial results may
be easily rescheduled to other nodes in the case that
some machine abruptly leaves thevCluster. Based
on these characteristics w ehave chosen a distributed
Ray-Tracer application for the �rst prototype.

POV-Ray (Persistence Of Vision Raytracer [7]) is
a three-dimensional rendering engine. The program
deriv es information from a �le containing the descrip-
tion of a scene (objects, textures, lights and point of
view) simulating the w ay theligh t in teracts with the
objects in the scene to obtain a three-dimensional re-
alistic image (procedure known as ray tracing). Each
pixel of the resulting image may be calculated from
the scene description without knowledge of neighbor
points. MPIPovra y 3.01is a parallel implementation
of the above application that divides theimage to be
calculated in horizontal slices, mapping each slice to
one slave process. A master process is dedicated to the
image partitioning, slices distribution and screen draw-
ing. Slave processes do not wait for the calculation of
the whole slice and send ready screen lines to the mas-
ter to allo w real time drawing of the already calculated
points.

We have changed the distributed implementation
of the MPIPovra y so that the dynamic vCluster

nodes have the initiativ eto request w ork, like in a
clien t/serv errelation. The clien ts (running on the
vCluster nodes) connect to a server to request a sec-
tion of the image, render the received section and then
send the rendered lines back to the server. Thus, each

node renders a section of the image and the complete
image is drawn only on the server.

The use of the clien t-serv erarchitecture was cho-
sen because all the initiative must start from the client
side. As such, if a node is not in the cluster mode, it is
simply ignored. Also, the server does not store any in-
formation about the active clien ts.This is particularly
important because the nodes of the virtual cluster may
change to user mode at any time, and this character-
istic allo ws the clients to abort their execution at any
point of the code, without the need to do any extra
w ork after the user activity detection.

Therefore, the server must guarantee that the entire
image will be rendered independently if a section was
delegated to a node that changed bac kto user mode
during the execution or no. This is done by re-sending
the section that w as lost when all other sections were
received. So, when a client has to change back to the
user mode, it does not have to report this to the server,
resulting in a more eÆcient switching operation.

5. Performance evaluation

5.1 Mode-Switcher

In table 1 w epresent the switc hing timesachiev ed
by the Mode-Switcher in our test node (mean time of
5 measurements for eac h case).The node is a PC with
an Intel P entium 4 1.6 GHz processor and 128MB of
RAM memory. The operating system used in the clus-
ter mode was Linux. In standard mode the node runs
Windows 2000 (or whatever other more recent version).
These measures show that if a student tries to use a
w orkstation in cluster mode it has to wait only around
35 seconds.

Mode-Switching Time(s)

Linux to Windows 34.88
Windows to Linux 49.04

Table 1. Switching times in a HP E-PC node.

5.2 Distributed Ray-tracer application

The performance evaluation of the distributed ver-
sion of POV-Ray was done rendering an image with
640x480 pixels (chess2.pov). The image has been par-
titioned in slices of 15 lines. This means that when a
clien t requests a w orkto the server, it will receiv ea
slice with 15 lines to render. The client will request a
new section only after itsprevious 15 lines ha ve been

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

rendered. Each client node used was a PC with an In-
tel Pentium 4 1.6 GHz processor and 128MB of RAM
memory. The operating system used in the cluster
mode was Linux. These computers are part of the labo-
ratory used by the undergraduate students of PUCRS.

The time that the application needs to render the
image decreases as new clients are included in the cal-
culation. The time that the sequential version needs
to render the image is 23 minutes and 52 seconds. Us-
ing the distributed version, running with 16 clients, the
same image is rendered in 1 minute and 54 seconds (i.e.
the eÆciency is 78:5%).

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Number of clients

Figure 6. Performance of the distributed pov-
ray application over the vCluster.

In order to have a more accurate idea of how faster
the distributed version is, the execution times are
shown in �gure 6. It's easy to see that the speedup
is increasing with the addition of new nodes. Also, the
performance speedup is still gro wing with 16 clients.
This means that the maximum speedup acquired in our
test, 12.49, is not the maximum possible. With more
clien ts, the speedup would be greater. This is expected
because of the coarse granularit y of the problem.

Thus the POV-Ray example shows that our prelimi-
nary implementation of the VCluster environment can
yield signi�cant parallel gains for master/slave based
applications.

6. Conclusions

In this paper we have presented the vCluster en-
vironment. It proposes a virtual architecture to exploit
idle workstation pow er based on a Mode-Switcher mod-
ule. A Distributed Processor Management layer is used
to handle the dynamic behavior of the nodes in the
virtual cluster by using a distributed tree structure in
which the nodes are listed. We have also presented the
results of an experiment with a distributedv ersion of
a Ray-T racing application in this environment.

Our preliminary experiments rely on a client/serv er
programming model to test our environment with
coarse-grained parallel applications. Research re-
mains to be done in order to add some dynamical
execution capabilities to the vCluster that could
deal with �ne-grained computations, possibly with
data-dependencies that w ould preven t from using a
clien t/serv er approach. In turn, this would imply some
considerations on the scheduling strategies that could
use some information on the nodes, collected by the
dpm layer.

We believe that the virtual cluster is an interest-
ing alternative to traditional clusters for coarse-grained
parallel applications. It has to be investigatedif this
virtual architecture is scalable and if it could also be
in teresting for other kinds of applications.

References

[1] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX

Distributed Operating System. Springer, Berlin, 1993.
[2] C. De Rose and H.-U. Heiss. Dynamic processor alloca-

tion in large mesh-connected multicomputers. EURO-
PAR 2001, 2001, Manchester, Inglaterra. Published in
Lecture Notes in Computer Science (LNCS), 2001.

[3] I. Foster. The anatomy of the Grid: Enabling scalable
virtual organizations. LectureNotes in Computer Sci-

ence, 2150:1{??, 2001.
[4] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrst-

edt, and A. Roy. A distributed resource management
architecture that supports advance reservations and co-
allocation. In Proceedings of International Workshop on

Quality of Service, 1999.
[5] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid

services for distributed systems applications. IEEE

Computer, 35(6):37{46, June 2002.
[6] M. Livny, J. Basney, R. Rajesh, and T. Tannenbaum.

Mechanisms for high throughput computing. Sp eedup

Journal, 11(1), June 1997.
[7] P ersistence of vision(tm) ray tracer, 2001. Available at

http://www.povray.org.
[8] B. Richard and P. Augerat. I-cluster: Intense comput-

ing with un tapped resources. MPCS'02, Ischia, Italy,
April 2002.

Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD�02)
0-7695-1772-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:04:50 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

