
CRONO: A Configurable and Easy to Maintain Resource Manager Optimized
for Small and Mid-Size GNU/Linux Cluster�

Marco Aurélio Stelmar Netto
Research Center in High Performance Computing

CPAD-PUCRS/HP, Brazil
stelmar@cpad.pucrs.br

César A. F. De Rose
Catholic University of Rio Grande do Sul

Computer Science Department, Brazil
derose@inf.pucrs.br

Abstract

This paper presents the design and implementation of a
new management system called CRONO aimed at small and
mid-size GNU/Linux cluster installations owned by non-
specialized users. CRONO implements only the basic man-
agement services needed to share a cluster among several
users and is optimized for machines with up to 64 nodes,
being therefore easy to install, maintain and use, while still
being highly configurable. We also show how to configure
CRONO for an environment with one and other with three
clusters, as well as some maintenance procedures to give an
idea of the simplicity of both tasks.

1. Introduction

Cluster architectures [5] are becoming a very attractive
alternative when high performance is needed. With a very
good cost/performance relation cluster systems are becom-
ing more popular in universities, research labs and indus-
tries in different sizes and configurations. GNU/Linux is
usually the operating system used in these systems because
it’s free, efficient and very stable.

But despite the cluster’s number of nodes and their
processing power one issue remains a problem for non-
specialized users, the management of the machine. To get
most of their investment it is common to connect the clus-
ter to a local network and share the processing power among
several users. This is accomplished by a tool called resource
manager [14]. Among other tasks it has to deal with is-
sues like access rights, node allocation and reservation, and
queuing of requests.

There are already several resource managers available,
like Portable Batch System (PBS) [2], Computing Center
Software (CCS) [12, 13], Condor [11] and SLURM [15].
These systems support clusters with thousand of nodes and

�Research done in cooperation with HP Brazil.

implement a wide range of services, being therefore reason-
ably complex to install and configure, especially for non-
specialized users.

In this context we decided to implement a new manage-
ment system called CRONO aimed at non-specialized users
with small cluster installations. CRONO implements only
the basic management services and is optimized for instal-
lations up to 64 nodes, being therefore easy to install, main-
tain and use.

CRONO was introduced in a short paper [1] which pre-
sented its main functionalities, a brief description of the sys-
tem architecture and its configuration files and a detailed
description of the installation process. This paper is fo-
cused on how CRONO was implemented and what is done
to simplify the system configuration and maintenance. It
also presents some enhancements and optimizations since
the last paper. The system now supports batch jobs and has
an optimized scheduler and an increased flexibility in the
pre and post processing scripts.

This paper is organized as follows: Section 2 presents
some of the well-known resource managers and their main
characteristics; Section 3 describes the CRONO functional-
ities and its architecture; Section 4 presents CRONO’s con-
figuration files demonstrating how easy is to install and
maintain the system. Our conclusions and ongoing work
are presented in Section 5.

2. Related Work

There are already several resource managers available
[14]. The main purpose of these systems is to provide
high throughput of the user requisitions on the system
they manage. Furthermore, the resource managers address
some problems like scalability, portability, fault tolerance,
scheduling of the user requisitions, load balancing, secu-
rity and many others. This of course has a big impact in
their complexity. Among the resource managers available
are PBS, CCS, Condor and SLURM.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

The Portable Batch System (PBS) [2] is a flexible batch
queuing system originally developed at NASA Ames Re-
search Center at Moffett Field, California from 1993 to
1997. In late 1997, Veridian-MRJ began full PBS develop-
ment, support and distribution. More recently, PBS became
an enabling technology of NASA’s Information Power Grid
(IPG). PBS operates on networked, multi-platform UNIX
environments, and uses the concept of multiple queues,
where the jobs are queued on a server with one or more
queues with different priorities and properties. PBS pro-
vides an API in the C, Tcl and BaSL programming lan-
guages and support for external scheduler, like Maui Sched-
uler [4]. For each node in PBS is possible to define a fixed
or variable number of jobs that can share it, indicating the
processor utilization that jobs can use. PBS has around 150
thousand lines of code spread over more than 430 files.

Computing Center Software (CCS) [12, 13] has been
developed in the Paderborn Center For Parallel Com-
puting (PC2), Germany, since 1992. CCS provides a
hardware-independent scheduling of interactive and batch
jobs through a Resource Description Language (RDL) for
specifying resources, requests, and system components.
Using this facility, the administrator describes the topol-
ogy of the managed machine making possible mapping the
request on the specified topology. Besides it, CCS has a
high degree of reliability (e.g. automatic restart of crashed
daemons) and fault tolerance in the case of network break-
downs. CCS has more than 100 thousand lines of code.

Condor [11] is a project that has been focusing on cus-
tomers with large computing needs and environments with
heterogeneous distributed resources. It has been developed
at the University of Wisconsin-Madison (UW-Madison)
since 1988. Condor explores pools of dynamic resources
composed for machines that become idle at a given time.
Due to the tendency of the large, distributed and dynamic
environments, an important functionality is check point-
ing of the application executions. Condor has this mech-
anism to take a snapshot of the current state of a execut-
ing program which can be used to restart the program from
that state at a later time. This is very useful, for example,
when a node fails, the program running on that node can be
restarted from its most recent checkpoint on another node
and is also useful for giving a scheduler the freedom to re-
consider scheduling decisions through preemptive-resume
scheduling.

Simple Linux Utility for Resource Management
(SLURM) [15] is a highly scalable cluster management
tool that has been developed by Lawrence Livermore
National Laboratory (LLNL) and Linux NetworX, USA.
SLURM is an open source system aimed to manage Linux
clusters of thousands of nodes. Besides the scalability,
SLURM provides some simple fault tolerance and security
mechanisms, partition and job management, framework

for starting, executing and monitoring work. Its default
scheduler implements First In First Out and it provides
an API for adaptation of external schedulers. Although
the SLURM’s authors consider SLURM simple enough to
allow end users to add functionalities, its source code has
more than 50 thousand lines and it uses threads and sockets
(concepts that may not be easy for end users to understand).

3. CRONO

Managing clusters is not an easy process, especially
when it is done by non-specialized users. Installation in-
volves the creation of many configuration files and the def-
inition of several parameters depending on the execution
environment. Any changes on the machine configuration,
utilized tools or the inclusion or removal of end users will
reflect in updates on the configurations files. The frequency
of this system maintenance will depend on the number of
shared machines, utilized tools and end users, but it’s not
seldom that updates become necessary at a daily basis.

The complexity of the management is of course directly
related to the number of functionalities of the used resource
manager. When complex management systems are used,
the number of configuration files and parameters to be set
increase and consequently the effort to install and maintain
the system.

The most important design goals for CRONO were (1)
to provide an open source manager system aimed at non-
specialized users with small cluster(s) installations; (2) to
provide a good level of configurability to manage different
user profiles on an environment a small number of clusters;
and (3) to provide a system with a reduced number of lines
of source code which could be easily modified by a special-
ized user (a programmer) to solve some particular manage-
ment problems. To address these design goals we reduced
the complexity of the management avoiding the implemen-
tation of a resource manager with many services. Therefore
we defined a set of basic functionalities, most of them based
on the available resource managers [14].

To give an idea on how this simplifications affect the
complexity of the system, CRONO has about 9000 lines of
code divided in 30 files. There are 7 simple configuration
files being 3 of them optional. It’s interesting to highlight
that as CRONO has a source code with a few number of lines
(in relation to the available systems), a specialized user can
easily add functionalities to solve some peculiar problem on
the managed environment.

This section presents an overview of the functionalities
provided by CRONO and a detailed description of all mod-
ules present in its architecture.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

3.1. Overview of the Functionalities

The scheduler is essential to achieve high throughput on
a computational environment. It organizes the access of
multiple requests to a given resource ensuring that all re-
quests will be satisfied in the shortest possible time slot.
The first versions of CRONO we provided a simple First
In First Out (FIFO) scheduler. We identified, however, the
need to improve the scheduler to increase resource utiliza-
tion. There was the possibility to use the Maui Scheduler
[7], but because its complexity we preferred to implement a
simple backfilling algorithm, that will be explained in Sec-
tion 3.5.2. Furthermore, CRONO doesn’t provide a qualita-
tive allocation yet, that is, the users don’t have the possi-
bility to choose which nodes of a cluster they want to use
but just the number of nodes. Therefore the users with an
heterogeneous cluster may not make the best use of their
resources using CRONO.

Some common functionalities of a resource manager on
an environment with thousands of nodes like load balanc-
ing, fault tolerance, scalability and monitoring were not im-
plemented because these have little impact on small clus-
ters. Other functionalities, like mechanisms to improve
the job launching were also not considered. For exam-
ple, STORM [8] implements mechanisms to speed up the
launching of the jobs, instead of simply suppose the users
will distribute their applications from the frontend nodes to
the clusters nodes on an environment with a shared file sys-
tem (like the Network File System - NFS).

The use of MPI [9] on parallel environments is very com-
mon. There are many MPI implementations for different
network technologies. Therefore it is important to provide
mechanisms to provide an easy way to allow the users to ex-
ecute their applications on the cluster(s). To configure the
execution environment, CRONO supplies scripts for pre and
post processing of requisitions. When the user time initi-
ates, CRONO will use two scripts: one of them controlled
by the administrator, and the other by the user itself. This
mechanism can be used, for example, to automatically gen-
erate MPI machine files. When the time of an user is over,
two post processing scripts will be used in the same way.
CRONO also provides scripts for compiling and executing
the user applications. These scripts are useful on environ-
ments with, for example, several MPI implementations.

CRONO provides two basic allocation modes, space-
sharing and time-sharing. The first one is used when the
user needs exclusive access to allocated nodes, for exam-
ple when application performance is being measured. The
second one is used in situations where the users are only
testing their programs and, therefore, do not care about per-
formance. Time-sharing is a very interesting alternative in
teaching environments, allowing large groups of students to
use the same cluster partition at the same time.

Another main feature of CRONO is its flexibility to de-
fine access rights. Through configuration files the system
administrator can create user profiles and associates them
to user groups or to individual users. These access rights
are defined by the maximum time and maximum amount of
nodes used in allocations and reservations. There is also the
possibility to define restrictions based on periods of the day,
day of the week and target machine.

3.2. System Architecture

CRONO has been coded for the GNU/Linux operating
system using the C language and rely on system commands
and some optional scripts for compilation and execution of
user applications. CRONO has an architecture composed by
four modules, being the Node Manager module optional:

• The User Interface (UI) is composed by several system
commands responsible for the user access and utiliza-
tion of the cluster resources;

• The Access Manager (AM) is a daemon responsible
for the authentication and the verification of the access
rights;

• The Request Manager (RM) daemon does the schedul-
ing of the user requests, the execution of batch jobs and
the preparation of the execution environment;

• The Node Manager (NM) is the daemon running on
each cluster node and its main function is to control
the user access to the nodes.

The communication between the modules is done
through the TCP sockets, therefore allowing modules to
be in different machines. Moreover, the modules are or-
ganized like a chain, that is, if the User Interface needs
to send a message to the Node Manager, the message will
pass through the Access Manager and the Request Man-
ager. The AM, RM and NM daemons may be executed
asynchronously.

3.3. User Interface

The User Interface is the module responsible for provid-
ing interaction to the system, through the UNIX shell envi-
ronment. It is composed by six system commands to access
the other CRONO modules, two shell scripts to facilitate the
use of programming environments (like MPI) and one sim-
ple program to set up the parameters of these system com-
mands and shell scripts. The system commands and their
respective functions are listed below:

• crqview to display information about the requisi-
tions queue, like user names, starting and finishing

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

time, cluster name, number of nodes available and al-
location modes (space-sharing or time-sharing);

• cralloc to allocate nodes, in the case the user wants
the resources as soon as possible, or to submit batch
jobs;

• crrls to release nodes or to cancel an user request;

• crnodes to obtain a list of nodes which the user has
access;

• crinfo to display information about the clusters
which the user has access like access rights, number
of cluster nodes, special periods of use, maximum val-
ues for allocation and reservation, etc;

• crnmc to execute operations directly on the nodes that
are allocated. The available operations are provided
by the administrator, and the users may obtain which
commands are available also with this command. An
example of user operation could be killp to kill all
processes running on the nodes;

• crrun and crcomp are scripts to help users in com-
piling and running programs, for example, in environ-
ments in which have more than one MPI implementa-
tion. The administrator can define, the path directories,
machine files and other information and the users can
choose the programming environment;

• crsetdef to define and set default parameters for
system commands. If the user omit some parameters
the system will look for default values in these vari-
ables.

The first six commands send data to the next module of
the architecture, the Access Manager. These commands ac-
cess a file, specified by the user or by the administrator,
which has the hostname and the port of the Access Man-
ager. The crsetdef system command just modifies the
content of the configuration file at the user home directory.

3.4. Access Manager

The Access Manager is the module responsible for re-
ceiving the user requisitions from the User Interface and
validate them, before forwarding them to the Request Man-
ager. The Access Manager daemon can manage many clus-
ters and may use distinct policies for each of them. Repli-
cation of the Access Manager is supported and may be in-
teresting if fault tolerance is needed.

CRONO allows the system administrator to attribute ac-
cess rights to individual users and groups of users. These
user groups are not the same groups used by GNU/Linux.
For request validation, the Access Manager uses three

files: the groups file, the users file and the access rights
file. The first step to validate an user request is to check
if the user belongs to a group. If this is the case, the
group name is used to get the access rights. For users
that do not belong to any group the user name is used.
The accessrights.users file contains the relation of
the access rights identifications with their respective user
and user groups. If an user or a group is not specified
in this file, the default access right is used by the sys-
tem. With the access right identification, the Access Man-
ager verifies whether the requisition is possible through the
accessrights.defs file. In this file the policies for the
cluster access control are defined. The administrator can de-
fine the maximum time and number of nodes for allocations
and reservations. Furthermore, it’s possible to define spe-
cial periods for using the cluster, hence each access right
can have two definitions, one for normal periods and the
other one for special periods. For example, it’s common to
extend the time and number of nodes limits at weekend and
at night, when there are fewer user requests.

After the Access Manager daemon checks these files,
it forwards the request to the Request Manager, if neces-
sary, or sends a message to the user informing that the user
doesn’t have access to the requested cluster. The connection
to the solicited Request Manager is also checked.

3.5. Request Manager

The Request Manager is composed by two sub-modules:
the execution manager, responsible for executing the batch
jobs and preparing the execution environments, and the
scheduler, responsible for scheduling the requests autho-
rized by the Access Manager. The next subsections describe
each one of the sub-modules in detail.

3.5.1. Execution Manager The Execution Manager is
responsible for executing the batch jobs, the pre- and post-
processing scripts and for advising the users when their time
starts and finishes.

Four scripts are used to allow the execution of some tasks
when the user time starts and finishes:

• The master pre-processing script (MPREPS) is used
by the administrator and defines the operations that are
executed when the user time starts;

• The master post-processing script (MPOSTPS) is used
by the administrator and defines the operations that are
executed when the user time finishes;

• The user pre-processing script (UPREPS) is used by
the user and defines the operations that are executed
when the user time starts;

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

• The user post-processing script (UPOSTPS) is used by
the user and defines the operations are executed when
the user time finishes.

Both the user and administration scripts are defined for
each cluster managed by the system.

CRONO now supports batch jobs. With this mechanism
is possible to submit user jobs automatically when the re-
quested time starts. The resources will be released when
the job or the user time finishes. A simple example of a
batch jobs script is showed below:

Multiply matrix
#!/bin/sh

###
/usr/local/bin/crrun −c $CR_CLUSTER −np 16 mult_matrix
/usr/local/bin/crrun −c $CR_CLUSTER −np 32 mult_matrix
###

Figure 1. Example of a batch job script.

Some important considerations about the UPREPS and
batch job scripts are listed below:

• Both of them are implemented with a script that is ex-
ecuted when the user time starts;

• The user can use a UPREPS and a batch job script to-
gether;

• When the execution of a batch job script finishes the
user time finishes too;

• When the execution of a UPREPS finishes the user
time doesn’t finish. For example, if an user requested 5
minutes and the UPREPS is executed in 1 minute, the
user still has 4 minutes (in interactive mode).

To simplify the usage of the pre- and pos-processing
scripts and the batch job scripts, CRONO provides variables
that may be used to discover for example the cluster name,
user id, user name, requisition identifier and list of user
nodes.

Besides these variables, the administrator can specify a
file to be evaluated before the execution of the pre- and pos-
processing scripts and batch job scripts. This file can con-
tain, for example, some environment variables which are
important for the correct execution of these scripts (like li-
braries and programs path directories).

After the execution of the MPREPS at the starting time
of an allocation request, the Request Manager sends a mes-
sage to the users through the tty terminal when the re-
sources become available. Because users are usually ac-
cessing with more than one terminal, CRONO uses the
utmp file (operating system file to discover users currently
using the system) to discover the terminal with the least idle
time, and sends the message to that terminal. This is done
because there is a greater probability the user is reading that
terminal.

3.5.2. Scheduler A scheduler is essential to achieve high
throughput on a computational environment. It organizes
the access of multiple requests to a given resource ensuring
that all requests will be satisfied in the shortest possible time
slot.

The CRONO scheduler attempts to make good use of
available resources that would be wasted using the First In
First Out algorithm, but without penalizing the users that
are already waiting for resources. If an user expects to be
attended at a specific time, this user will be attended in the
worst case at that time. The scheduler is implemented us-
ing an enhanced First in First Out algorithm. Expected at-
tendance times are minimized by first checking whether a
request fits into a gap of the current state of the scheduler
using a back-filling method. The Figure 2 illustrates this
method, considering an user U4 requests 2 nodes for 20
minutes at 8:05. The scheduler checks that U4 will not in-
terfere at the expected starting time of the user U2. There-
fore, it allows the user U4 to be attended before U2. When
an user releases the resources before the expected finishing
time, all the requests are rescheduled.

1

2

3

4

5

6

7

8

U4

U2
N

od
es

U1

U2
U3

Time8:308:00 8:05

U4

MPre−MPost Proc.

Exclusive

Figure 2. Back-filling method.

The block to be schedule is composed by the sum of the
execution time of the MPREPS and MPOSTPS and the user
time (Figure 3). The master scripts have timeouts to guar-
antee that a script defined by the administrator doesn’t in-
terfere on the expected user starting time.

Timeout of MPREPS Timeout of MPOSTPS

User Time

Timeout of UPREPS

UPOSTPS

MPREPS

UPREPS

MPOSTPS

Figure 3. Block to be scheduled.

Each cluster must have its own Request Manager dae-
mon. When the queue state changes (user time starts or

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

finishes, when a new user has requested nodes, for exam-
ple), it is stored on a file specified by the crono.conf
file (Section 4). This mechanism is useful when it becomes
necessary to restart the daemon with the last queue state.

When the user time finishes all the processes on each
user node are killed. This guarantees that the nodes are al-
ways ready for next utilization.

The scheduler supports space-sharing and time-sharing
requests. Because CRONO doesn’t support heterogeneous
clusters yet, that is, all nodes are treated the same way, there
is no sense to distinguish whether a node can execute more
processes then other. For this reason, CRONO allows the
specification of an unique number of users that can share a
node at the same time, and this number is used by all the
nodes of a cluster. PBS uses the concept of virtual pro-
cessors, in which it’s possible to define for each node the
number of users that can share the same node at same time.
SLURM also has support for exclusive and non-exclusive
requests. However, it’s not possible to define a limit of jobs
that can be executed on a node, therefore, a high number of
users on a shared node may negatively impact the perfor-
mance of the jobs.

Another import feature of the scheduler is that it tries
to satisfy a new time-sharing request overlapping it with
other already allocated time-sharing requests, if the maxi-
mum number of requests per node is not exceeded. This
procedure is done to increase the number of exclusive nodes
that could be allocated by other users (Figure 4). The state
3.1 is the case when the scheduler uses this optimization,
and in state 3.2 this optimization was not used.

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

1
2
3
4
5
6
7
8

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

N
o

d
es

Time

State 1

U2

U1

� � � � �
� � � � �

	 	 	 	
	 	 	 	

� �� �� �

MPre−MPost Proc.

Shared

Exclusive

Shared

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8�

�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � �
� � � �

� � �
� � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

N
o
d
es

Time

N
o
d
es

Time

N
o
d
es

Time

U3

U3

U2

U2

U2

State 3.2

State 3.1

State 2

1
2
3
4
5
6
7
8

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

Figure 4. Scheduler - time-sharing requests
placed together.

To make allocations the users have to provide: the clus-
ter name, number of nodes, time of the allocations, shared
or exclusive access, and a batch job script if this is the case.
Because there are many parameters to allocate cluster nodes
and to execute other CRONO commands, the crsetdef

command was implemented. With this command the user
may define a set of default values to be used when com-
mand parameters are omitted. This is handy when several
commands are issued in a row.

CRONO allows reservation nodes for a given time in the
future. This is very useful when planning interactive ses-
sions. When an user or administrator makes a reservation to
a given time the scheduler checks immediately if the time
slot is free and queuing is not possible. This doesn’t happen
when an allocation is requested, which the worst case is the
request be placed in the last position of the queue.

3.6. Node Manager

Node Manager is the daemon executed on each node of
the managed cluster and it is responsible for modifying the
node operating system files used to control the user access
and the execution of some operations on the node.

To guarantee that only allowed user can access a
node, the Node Manager modifies GNU/Linux config-
uration files to accept or refuse the login of an user.
These files are login.access (or access.conf) and
hosts.equiv. Because some GNU/Linux distribu-
tions support PAM (Pluggable Authentication Modules)
and some not, CRONO has an option to specify if PAM
is available. If the PAM option is turned on, only the
login.access is modified.

The administrator can define a set of operations which
can be executed by the users through the crnmc command.
The user can execute a operation on all allowed nodes or in
a group of nodes. An example of such operation could be
killing processes on the nodes, installing a network kernel
module, or some other operation only allowed to the admin-
istrator.

3.6.1. Taking off the Node Manager The Node Man-
ager has just two simple responsibilities. It was imple-
mented to simplify the access control and the execution of
operations on nodes.

Consider an environment in which a cluster has nodes
with other operating system than GNU/Linux. Instead of
porting the Node Manager and some procedures of the Re-
quest Manager, a simple solution is to run an Access Man-
ager and a Request Manager on a machine with GNU/Linux
(the frontend), turning on the option which specify that the
Request Manager should not communicate with the Node
Manager daemons, and create scripts the replace the Node
Manager functionalities. For example, using the MPREPS
and MPOSTPS, it’s possible to run a remote shell to modify
the access configuration files.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

4. System Configuration and Maintenance

In this section we show how simple it is to configure
CRONO and to execute some maintenance procedures, like
add new nodes, users, groups and user profiles. First we
start with a simple configuration of a cluster, following by
the configuration on an environment with multiple clusters
and finally we show the execution of some maintenance pro-
cedures.

4.1. Configuring CRONO on an Environment with
only one Cluster

A possible module disposition for managing only one
cluster could be an Access Manager and a Request Manager
on the frontend node and a Node Manager in each cluster
node (Figure 5).

UI AM RM
NMn

CLUSTER

FRONTEND

Figure 5. CRONO modules managing a clus-
ter.

It is necessary to set up four files: crono.conf,
accessrights.defs, accessrights.users and
nodes.

• crono.conf: the main configuration file of the clus-
ter. This file is used to specify the hostname where
each daemon is executed, the listen port, the paths of
the log, queue file, the number of users that share a
node at the same time, PAM support and the timeout
of connections between the modules. Besides, it’s pos-
sible to define whether the Request Manager should
ignore the function calls that communicate with the
Node Manager. This is useful when the user wants to
test CRONO without a real cluster or if the Node Man-
ager daemons are not necessary;

• accessrights.defs: the access rights (profiles)
definitions. The administrator can define the maximum
time and number of nodes for allocations and reserva-
tions for special and normal periods;

• accessrights.users: the access rights to user
and user groups;

• nodes: list of the node hostnames of the cluster.

Optionally, the groups file can be used to define the user
groups:

There are other two files that can be configured, the
amconf and commands files. The amconf contains the
default hostname and port for the Access Manager and the
commands contains the commands that the users can exe-
cute on the nodes through the crnmc command (see Sec-
tion 3.3).

4.2. Using CRONO on an Environment with Several
Clusters

CRONO can easily works on an environment with sev-
eral clusters. A typical environment with several clusters
is composed by a frontend node which the users can com-
pile and run their applications and the clusters connected to
this frontend. In this case, it is preferred to use only one
Access Manager daemon, because the users don’t have to
worry about which Access Manager they should send the
requisitions. For each one of the managed cluster it is nec-
essary to have a Request Manager, and for each node of a
cluster is optional the use of a Node Manager (as showed
in Section 3.6.1). An example of an environment like this
is our research lab (CPAD) [6] (Figure 6). Each cluster has
its own peculiarities, having a different number of nodes (4,
16, and 32) and different interconnection networks (combi-
nations of SCI [10], Fast-Ethernet and Myrinet [3]).

NM16

Cluster Amazônia (Fast−Ethernet and Myrinet)

RM

NM16

Cluster Ombrófila (Fast−Ethernet)

RMAM

NM4

Cluster Pantanal (Fast−Ethernet and SCI)

RM

UI

FRONTEND

Figure 6. CRONO modules on an environment
with several clusters.

The difference between configuring one cluster and sev-
eral ones is that for each managed cluster should have a
configuration directory with its own files. Some configura-
tion files of the clusters can have the same content, therefore
the administrator can use symbolic links to facilitate the ac-
tualization of the system, for example, to include a new user
group.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

4.3. Maintenance Procedures

Some maintenance procedures may be needed very of-
ten. Therefore, they should be very easy to execute. Listed
below are some of these procedures with an explanation on
how they are execute in CRONO:

• Add an execution environment: to add a new execu-
tion environment, like MPI, it is necessary to modify
the crrun and crcomp scripts. In these scripts is
possible to set up directories, environment variables,
path of machine files and so on;

• Add an user: CRONO uses the user names of the oper-
ating system, therefore it is not necessary to create user
names specially for CRONO. However, it is interesting
to give an access right to the user or include the user in
a group;

• Create a group: the groups are created by editing the
groups file. It is not necessary to restart the Access
Manager daemon;

• Create an user profile: the profiles (access rights) are
created by editing the accessrights.defs file. It
is not necessary to restart the Access Manager daemon;

• Add a node on a cluster: this can be done by editing the
nodes file and restarting the Request Manager dae-
mon responsible for that node.

5. Conclusion and Future Work

In this paper we have presented the design and im-
plementation of the CRONO resource manager for clus-
ter architectures. Since its beginning, CRONO has been
aimed at small cluster installations (up to 64 nodes) and
should be easy to install, use and maintain. To achieve this
goal CRONO implements only the basic management ser-
vices keeping a simple allocation interface while still being
highly configurable.

We are using CRONO in production mode in our lab for
the past year managing three small clusters with different
configurations and the system is already very stable. Our
environment has about 30 users and most of them are stu-
dents. The students are allowed to make requests to use 4
nodes during 15 minutes at day and 8 nodes during 30 min-
utes at night and at weekends on the amazonia cluster. We
also have special users with long jobs. They are allowed to
make requests to the ombrofila cluster for during 2 weeks at
any time. Other installations in partner research groups are
also using the system and their feedback is being useful to
update the system constantly with patches and new features.
Future work includes some graphical interfaces for users
and administrator, the possibility to include a cluster node

without restart the Request Manager daemon and support
for 64 bit platforms (IPF). CRONO is open source (GNU
license) and can be downloaded at www.sourceforge.net.

CRONO should not be seen as an replacement for the
more powerful systems like CCS and PBS but as an alter-
native to them when smaller systems need to be shared and
specialized human resources are not available to maintain
the system up and running.

References

[1] M. A. Stelmar Netto and C. De Rose. CRONO: A Config-
urable Management System for Linux Clusters . The Third
LCI International Conference on Linux Clusters: The HPC
Revolution 2002, October 2002.

[2] A. Bayucan. Portable Batch System Administration Guide.
Veridian System, August 2000.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[4] Brett Bode, David M. Halstead, Ricky Kendall, Zhou Lei
and David Jackson. The Portable Batch Scheduler and the
Maui Scheduler on Linux Clusters. Usenix Conference,
2000.

[5] R. Buyya. High Performance Cluster Computing. Prentice-
Hall, 1999.

[6] CPAD. Research Center in High Performance Computing.
http://www.cpad.pucrs.br, 2001.

[7] David B. Jackson, Quinn Snell and Mark J. Clement. Core
Algorithms of the Maui Scheduler. 7th International Work-
shop, JSSPP 2001, 2001.

[8] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott
Pakin and Salvador Coll. STORM: Lightning-Fast Resource
Management. In Proceedings of the IEEE/ACM Conference
on Supercomputing SC’02, 2002.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, sep 1996.

[10] IEEE standart 1596-1992, New York. IEEE: IEEE Standart
for Scalable Coherent Interface (SCI), 1993.

[11] M. L. J. Basney and T. Tannenbaum. High throughput com-
puting with Condor . HPCU News, June 1997.

[12] A. Keller and A. Reinefeld. CCS Resource Management
in Networked HPC Systems . IEEE Comp. Society Press,
pages 44–56, 1998.

[13] A. Keller and A. Reinefeld. Anatomy of a Resource Man-
agement System for HPC Clusters. Annual Review of Scal-
able Computing, 3, 2001.

[14] M. Baker and G. Fox and H. Yau. Cluster Computing Re-
view. Northeast Parallel Architectures Center, Syracuse Uni-
versity, USA, 16 November,1995.

[15] M. Jette and M. Grondona. SLURM: Simple Linux Utility
for Resource Management. The Fourth LCI International
Conference on Linux Clusters: The HPC Revolution 2003,
2003.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 19:55:39 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

