
Time Reduction on 3D-HEVC Depth Maps Coding using Static 

Decision Trees Built Through Data Mining 

Mário Saldanha¹, Marcelo Porto¹, César Marcon², Luciano Agostini¹ 
¹Video Technology Research Group (ViTech) – Federal University of Pelotas (UFPel) – PPGC – Pelotas, Brazil 

²Pontificial Catholic Univerisity of Rio Grande do Sul (PUCRS) – Porto Alegre, Brazil 

{mrdfsaldanha, porto, agostini}@inf.ufpel.edu.br, cesar.marcon@pucrs.br 

 

ABSTRACT 

This dissertation presents a fast depth map coding for 3D-High 

Efficiency Video Coding (3D-HEVC) based on static Coding Unit 

(CU) splitting decision trees. The proposed solution is based on our 

previous  works and avoids the costly Rate-Distortion Optimization 

(RDO) process for depth maps coding, which evaluates several 

possibilities of block partitioning and encoding modes for choosing 

the best one. This coding approach uses data mining and machine 

learning to extract the correlation among the encoder context 

attributes and to build the static decision trees. Each decision tree 

defines if a depth map CU must be split into smaller blocks, 

considering the encoding context through the evaluation of the CU 

features and encoder attributes. The results demonstrated that this 

approach can halve the 3D-HEVC encoder processing time with 

negligible coding efficiency loss. Besides, the obtained results 

surpass all related works regarding processing time and coding 

efficiency. The results reported in this dissertation were published 

in three journals and two events, besides generate a patent deposit. 

These products have the master student as the first author. 
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1 Introduction 

This paper summarizes the obtained results in the dissertation 

defended in the Graduate Program in Computer Science on March 

1, 2018. The work was developed by Mário Saldanha, in 23 

months, advised by Marcelo Porto, César Marcon, and Luciano 

Agostini. 

3D video systems have evolved considerably in the last few 

years due to their real-world visual experience that goes beyond 2D 

videos. Focusing on increasing the 3D coding efficiency, the 

experts of Joint Collaborative Team on 3D Video Coding 

Extension Development (JCT-3V) has developed the 3D-High 

Efficiency Video Coding (3D-HEVC) [1] as an extension of High 

Efficiency Video Coding (HEVC) standard used on 2D videos. 

3D-HEVC uses the Multi-View plus Depth (MVD) [2] data 

format, where each texture frame is associated with a depth map. 

The depth maps provide geometric information of the scene and 

allow the generation of virtual views after the decoding process 

through lightweight synthesis views techniques. Since only a subset 

of texture views and associated depth maps are encoded and 

transmitted, a significant bitrate saving is achieved. However, the 

encoder and decoder systems have the computational effort 

increased due to the insertion of the depth maps coding. 

The depth maps coding process provides a flexible quadtree-

based structure, where each frame is divided into Coding Tree 

Units (CTUs), and each CTU can be recursively divided into 

Coding Units (CUs) [3]. The maximum and minimum sizes of a 

CU are 64×64 and 8×8, respectively. Additionally, each CU may 

be divided into one, two or four Prediction Units (PUs) with sizes 

varying from 4×4 to 64×64 [3]. Besides, for each variation of CU 

and PU sizes several prediction modes are evaluated. 

In 3D-HEVC Test Model (3D-HTM) [4] the partitioning 

structure for each CTU is chosen through Rate-Distortion 

Optimization (RDO), which evaluates several combinations of 

block partitioning and prediction modes seeking for the best 

encoding possibility. This process reaches a very high coding 

efficiency at the cost of a significant increase in the encoder 

computational effort. 

Some works in the literature proposed solutions to decrease the 

encoding computational effort (the encoding time was used to 

measure the computational effort) of depth maps coding, such as 

[5]-[7]. Our previous works [8]-[10], which served as basis for this 

dissertation, also focus on reducing the computational effort of 

depth maps coding using a variety of solutions. However, all these 

works considered limited features of the encoding process and do 

not achieved satisfactory tradeoff between encoding time reduction 

and coding efficiency losses. Then, this dissertation presents a 

solution based on data mining and machine learning to extract 

useful attributes of the encoding process and to build static decision 

trees to define if each CU should be split into smaller CUs and 

avoid the complex RDO process. Experimental results demonstrate 

that the encoding time is reduced about 50% maintaining the 

encoding efficiency. Moreover, the proposed solution surpasses 

related works methods regarding both axes. A preliminary version 

of this work, which considers only intra-frame prediction, was 

published in [11]. The complete solution considering intra-frame 

and inter-frame/view predictions was published in [12] and the 
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current paper is based on that publication. Finally, this dissertation 

also generated a patent deposit [13]. 

2 Analysis and Motivation 

Experimental analyzes were performed to evaluate the impact of 

depth map computational effort inside the 3D-HEVC encoder in 

both All-Intra (AI) and Random-Access (RA) encoder 

configurations [14] using the reference software 3D-HTM version 

16.0 [15]. Besides, the experiments considered the Common Test 

Conditions CTC [14] using eight 3D video sequences and four pairs 

of Quantization Parameters (QP-pair). 

Fig. 1 presents the distribution of the 3D-HEVC encoding effort 

considering the average results for CTC sequences and QP-pairs. 

For both AI and RA, the depth maps require higher encoding effort 

than texture views. In AI configuration, the encoder spends an 

average of 83% and 17% of the time to encode depth maps and 

texture, respectively. Considering AI, the depth map coding is 4.8 

times (on average) more time demanding than texture. In RA, the 

depth maps also require higher encoding effort than texture and the 

QP-pair has a higher influence. For QP-pair (40, 45), 80% of the 

encoding time is spent to encode depth maps and 20% to encode 

texture. In this case, the depth map coding is 2.9 times more time 

demanding than texture coding, on average. 

This evaluation demonstrates that the depth maps coding is a 

bottleneck in the 3D-HEVC encoder and solutions for reducing the 

computational effort are needed. 

  

              (a)                (b) 

Fig. 1. 3D-HEVC computational effort distribution in (a) AI 

and (b) RA configurations [12]. 

Fig. 2 presents an evaluation of the distribution of CU sizes for 

depth maps coding considering CTC QP-pairs in AI and RA 

configurations. One can notice that the QP value directly affects the 

CU size distribution for both configurations. It occurs because QP 

defines the compression rate, influencing the image quality. High 

QPs generate more homogenous areas in the coded image that are 

efficiently encoded using larger CUs sizes. However, for lower QPs 

the encoder maintains several image details, requiring lower CU 

sizes to achieve higher coding efficiency. 

In this analysis, RA configuration uses less small CUs 

compared to the AI configuration, because RA allows the inter-

frames and inter-view redundancies exploration using motion and 

disparity estimation. The exploration of these redundancies in P- 

and B-frames allows higher encoding efficiency reusing larger 

blocks from reference frames. 

Fig. 3 illustrates the computational effort to evaluate each CU 

size, considering only depth map encoding time and AI 

configuration. One can observe there is a high computational cost 

associated with the evaluation of smaller CU sizes, such as 8×8. 

Also, one can conclude the smallest encoding effort is spent in 

64×64 CUs for all QP-pair values. 

   

             (a)                 (b) 

Fig. 2. Distributions of CU sizes for 3D-HEVC depth maps in 

(a) AI and (b) RA configurations [12]. 

 

Fig. 3. Encoding time distribution of each CU size for four 

QP-pairs considering AI configuration [12]. 

From the presented results, one can conclude that an early 

decision algorithm limiting the evaluation of smaller CUs for some 

cases of the depth map coding could provide a good encoder 

decision accuracy and high encoding time reduction. Besides, a 

specialized solution for frames that consider only intra-frame 

coding and a specialized solution for frames that use inter-frame 

and inter-view coding can lead with higher accuracy due to the 

different distributions of CU sizes in AI and RA configurations. 

Although the QP values and the encoder configurations have a 

substantial influence on the quadtree definition, the simple removal 

of some quadtree level is not an appropriate solution for reducing 

the encoding effort, since this decision can significantly degrade 

the encoding efficiency (bitrate versus quality). However, a 

solution able to decide when a current CU should not be split into 

smaller CUs considering the QP value, the encoder configurations 

and other encoder attributes, can avoid the high cost of evaluating 

the full RDO process. Then, a most robust solution should be 

0%

20%

40%

60%

80%

100%

(25, 34) (30, 39) (35, 42) (40, 45)

Ti
m

e
 D

is
tr

ib
u

ti
o

n

QP-pair values

Texture
Depth

0%

20%

40%

60%

80%

100%

(25, 34) (30, 39) (35, 42) (40, 45)

Ti
m

e
 D

is
tr

ib
u

ti
o

n

QP-pair values

Texture
Depth

0%

10%

20%

30%

40%

50%

60%

70%

(25, 34) (30, 39) (35, 42) (40, 45)

C
U

 S
iz

e
 D

is
tr

ib
u

ti
o

n

QP-pair values

8×8
16×16
32×32
64×64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(25, 34) (30, 39) (35, 42) (40, 45)

C
U

 S
iz

e
 D

is
tr

ib
u

ti
o

n

QP-pair values

8×8
16×16
32×32
64×64

0% 20% 40% 60% 80% 100%

(25, 34)

(30, 39)

(35, 42)

(40, 45)

Encoding time distribution

Q
P

-p
ai

r 
va

lu
e

s

8×8 16×16 32×32 64×64

34



Time Reduction on 3D-HEVC Depth Maps Coding using Static 

Decision Trees Built Through Data Mining 
Anais Estendidos do WebMedia’2019, Rio de Janeiro, Brasil WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

provided to reduce the computational effort with minor impact on 

the coding efficiency. 

3 Proposed Solution 

This dissertation explores the use of data mining and machine 

learning to identify attributes with high correlation with the CU 

split decision to build static decision trees. The decision trees 

determine when a CU should be split into smaller sizes. The split 

choice occurs when the decision trees classifies the encoding CU 

as requiring further evaluations; otherwise, the computation of that 

CU is finalized. The use of data mining and machine learning 

allows discovering correlations between the encoding context and 

its attributes. If these correlations are strong enough, it is possible 

to define static decisions trees to reduce the encoding 

computational effort with negligible coding efficiency loss. 

This work proposes one tree for each splitting decision of CU 

sizes 16×16, 32×32, and 64×64 instead of the full RDO process. 

Since I-frames uses different encoding tools than P- and B-frames, 

three trees are employed for I-frames and three trees are defined for 

P- and B-frames. 

A large amount of data from the depth video sequences and 

internal encoding variables were collected to find features that 

could lead to effective decisions of CU splitting. The attributes 

evaluated to define the static decision trees for I-frames are 

presented in Table I. For building the static decision trees of P- and 

B-frames the same attributes of Table I were considered and new 

attributes were evaluated, which are demonstrated in Table II. The 

all-intra configuration was considered to define the I-frames 

decision trees and the random-access configuration was used to 

define the decision trees for P- and B-frames. 

Table I. Attributes evaluated in I-frames [12]. 

Attribute Description 

Average Average value of original samples of the current CU 

VAR Variance of the CU original samples 

VAR_size 

Maximum VAR of smaller blocks inside the current CU 

(4×4 up to the current CU size, exclusive). VAR_size is 

used as VAR_32, VAR_16, VAR_8, and VAR_4 - the 

maxima variances of the 32×32, 16×16, 8×8, and 4×4 sub-

blocks inside the current CU, respectively 

Grad 
Gradient of the 4 corners of the original CU (i.e., the 

maximum absolute difference among the 4 samples in the 

corners) 

Grad_size 
Maximum Grad of smaller blocks inside of the current CU. 

It can assume sizes similar to Var_size 

MaxDiff Maximum difference among samples of the current CU 

RD-cost RD-cost when encoding the current CU 

QP The current QP-depth value 

For the data mining process, Kendo video sequence was coded 

in both AI and RA configuration, considering all CTC QP values. 

For each coded CU, were stored all information in Table I and 

Table II, and the information indicating if the CU has been split into 

smaller sizes or not. More details about the used attributes and their 

evaluations can be found in [12].  

Since there are a limited number of 3D video sequences with 

their depth maps available to make 3D video coding experiments, 

Kendo video sequence was randomly selected from the CTC 

dataset, and it was used to extract the data necessary to the offline 

training process. However, all video sequences defined in the CTCs 

were evaluated to validate the proposed solution and to demonstrate 

that the trained solution can achieve a high performance in different 

encoding scenarios. 

Table II. New attributes evaluated in P- and B-frames [12]. 

Attribute Description 

RD_MSM RD-cost of Merge/Skip mode 

RD_DIS RD-cost obtained in DIS mode 

Ratio 
RD-cost obtained in intra-frame prediction divided by 

the RD_DIS 

RatioInter 
RD-cost of inter 2N×2N evaluation divided by 

RD_MSM 

RelRatio 
The normalized difference between the RD-cost of 

inter 2N×2N and RD_MSM 

Neigh_depth 
The average quadtree depth of the top, left, top-left, 

top-right, and co-located CTUs of both reference lists 

SKIP_flag Notify if the CU has been encoded using the Skip mode 

DIS_flag Notify if the CU has been encoded using the DIS mode 

MAD_size 
The maximum Mean Absolute Deviation of the smaller 

blocks inside of the current CU (4×4 up to current CU 

size, exclusive) 

The Waikato Environment for Knowledge Analysis (WEKA) 

[16], version 3.8, was used to train the decision trees using the J48 

algorithm. Seeking for a better solution for data balancing the input 

files were organized in two sets of data with equal sizes containing 

inputs that result in splitting and not splitting of CUs. Besides, to 

avoid the overfitting problem, the Reduced Error Pruning (REP) 

was performed in each tree, allowing a better generalization. 

Fig. 4 illustrates the static decision tree generated for 64×64 

CUs of I-frames, where the leaves “N” and “S” correspond to the 

not split and split decisions, respectively. The remaining decision 

trees for 32×32 and 16×16 CUs and for P- and B-frames have 

similar structure. 

 

Fig. 4. Decision tree for splitting decision in 64×64 CUs [12]. 

4 Experimental Results 

The proposed static decision trees were implemented into the 3D-

HEVC Test Model (3D-HTM) (version 16.0) and evaluated 

following the CTC for 3D experiments using RA encoder 

configuration. Table III presents the results of this solution 

regarding Bjontegaard Delta-rate (BD-rate) [17] considering the 

synthesized views quality, the computational effort reduction 
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(regarding processing time) for the whole 3D-HEVC encoder 

(texture and depth maps). The average result of test sequences does 

not consider the training sequence Kendo, but the results for this 

sequence also are presented in Table III. These results 

demonstrated that this solution is not overfitted in the training data 

and can achieve good results in different scenarios. 

The proposed solution achieved an average computational effort 

reduction of 52.7% (from 47.7% to 59.4%) with an average BD-

rate degradation of 0.18% (from 0.01% to 0.55%). Besides, the 

proposed solution was compared with the works [5] and [6], which 

also focused in the computational effort reduction for 3D-HEVC 

depth maps encoding. The method proposed by [5] achieves a 

computational effort reduction of 52.0% with an average BD-rate 

increase of 1.02%. In [6], a computational effort reduction of 41.5% 

was obtained with an impact in BD-rate of 2.06%. Therefore, the 

solution proposed in this work reached the highest computational 

effort reduction and the lowest encoding efficiency degradation 

when compared with the related works. 

5 Conclusions 

This dissertation presented a fast 3D-HEVC depth maps coding 

solution, which uses data mining and machine learning to extract 

correlations among the encoder context attributes to build static 

decision trees and define the partitioning of CUs instead of the 

complete and complex RDO process. After encoding a given CU 

size, a decision tree decides if the CU must be split into smaller 

sizes. Two types of trees were trained using J48 algorithm, being 

one for I-frames and other for P- and -B-frames since the encoder 

behavior is significantly different for these types of frames, 

requiring specialized trees. The static decision trees were 

implemented in the 3D-HTM and evaluated under the CTC. 

Experimental results demonstrated that the proposed solution can 

halve the 3D-HEVC encoder processing time, with a negligible 

impact on BD-rate, reaching the best results in both axes when 

compared with the related works. Considering the relevance of the 

reached results, this dissertation generated three articles published 

in journals, two works published in international events and one 

patent deposit, as presented in this text. 
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Effort reduction 
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Computational 

Effort reduction 
BD-rate 

Computational 

Effort reduction 
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Kendo - - 1.65% 48.5% 1.20% 33.9% 

Newspaper_CC 0.05% 48.1% 1.40% 52.3% 3.43% 43.0% 

GT_Fly 0.07% 52.2% 0.33% 50.3% 0.87% 45.1% 

Poznan_Hall2 0.39% 59.4% 2.01% 58.6% 3.31% 43.3% 

Poznan_Street 0.10% 57.0% 0.05% 56.5% 1.22% 45.4% 
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Kendo 0.03% 47.1% - - - - 
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