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LPC: An Error Correction Code for Mitigating
Faults in 3D Memories
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Abstract—The radiation sensitivity of memory cells increases dramatically as CMOS manufacture technology scales down; therefore,
the reliability of memories has become a challenge. 3D technology has gained attention for having several advantages compared to the
2D counterpart, such as high integration density, high performance, low power, and high communication speed. Although several
studies are targeting 3D memories, the effects on reliability using this technology have received little attention. This work introduces
Line Product Code (LPC), a modified product code-based Error Correction Code (ECC) that uses both Hamming and parity in both
rows and columns to implement reliable 3D memories. We implemented two lightweight LPC-based decoding algorithms in interleaved
(LPCa-l) and non-interleaved (LPCa) versions, which allowed us to analyze LPC through a set of simulation cases that considers four
severity levels of error incidence. The experimental results showed the effectiveness of the LPC-based algorithms, reaching correction
rates of up 2.3 times higher compared to other Hamming-based algorithms.

Index Terms—Error correction codes, fault tolerance, radiation effect, 3D memories

1 INTRODUCTION

THE market demand for complex applications boosts
researches on CMOS manufacturing technologies that
carried a significant reduction in the transistor size [1]. In
turn, the transistor scaling down contributes to the increase
of temporary faults in electronic elements, such as memories,
whose content modification may cause a wrong execution of
programs that may not be tolerated in some cases [2]. These
faults have been studied for over 40 years [3], [4], [5], [6] and
are classified as Single-Event Upset (SEU), Multiple-Cell
Upsets (MCU), and Multiple-Bit Upsets (MBU). SEU occurs
in a single cell while an MCU arises in more than one cell;
finally, an MBU happens when an MCU occurs in the same
logical word [7].

There are several techniques for mitigating these faults
in electronic devices, such as improving the process tech-
nology, using hardened memory cell, Triple Modular
Redundancy (TMR) or Error Correction Code (ECC). To
minimize faults, Silicon on Insulator (Sol) technology uses
a thin layer of silicon on top of the insulator during the
chip manufacturing process. In the hardened memory cell
approach, some circuits are replaced by their hardened
versions, which are less susceptible to faults but consum-
ing more area and implying more latency. The TMR tech-
nique uses three identical implementations of the same
logic function, and the outputs are connected to a voter
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that decides mostly the correct result [8]. Lastly, the ECC
basic concept is to have an encoding and decoding algo-
rithm for restoring the correct value of the information
placed in a memory cell or transmission channel [9].

The evolution of manufacturing technology reaches signifi-
cant reductions in Two-Dimensional (2D) memories, increas-
ing the challenges to reach reliable circuits [1]. Recently,
Three-Dimensional (3D) integration technology, which ena-
bles multi-layer stacking, has attracted attention — Section 3
gives some recent works targeting reliability on 3D devices.
The advantages of 3D technology include high integration
density, high performance, low power dissipation, and high
on-chip communication speed [10], [11], [12], [13], [14], [15],
[16], [17]. Section 2 describes another advantage of the 3D inte-
gration technologies - stacking several dies on top of each
other suggests that incident particles must penetrate multiple
layers of material before reaching transistors on the inner
layers. Thus, stacked dies can block some particles before
reaching deeper layers of the 3D chip, changing the Soft Error
Rate (SER) at different 3D chip dies [2]. This stacking effect on
SER is one of the essential points that this paper regards to
evaluate the ECCs capacity.

This work also addresses the problem of chip warming;
especially for 3D memories placed on the top of the active
logic, the bottom layer of the memory is the most exposed
to heat dissipation, making the bottom layer in 3D memory
hotter than the top ones. Heat is another source of transient
errors, and the heat profile in 3D memory provides varying
degrees of reliability for each layer. From a heat perspective,
the upper dies are less susceptible to errors, forming a dif-
ferent SER distribution in 3D memory [13]. Besides, the per-
formance benefits and thermal impact of the stacked 3D
microarchitecture have been studied recently, but the reli-
ability implications and the MBU patterns when using 3D
technology have received little attention.

The novelty of this work is to propose the Line Product
Code (LPC), a new product-type ECC, to increase the
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correction rate and reliability of 3D memories. LPC is a
lighter ECC that does not employ the redundancy over-
head of the straightforward product codes, providing a
decoding algorithm elaborated to achieve a high error cor-
rection rate. Section 4 details the LPC organization and
two lightweight decoding algorithms based on LPC - LPCa
and LPCa-I, which are non-interleaved and interleaved
versions. Besides, we described two other ECC configura-
tions used in the analysis of this work. Section 5 explains
how the organization of LPC is mapped on a physical
memory. Section 6 presents the experimental results with
the test sequence and an MBU generation algorithm, which
is suitable to represent faults on 3D memories. Section 7
demonstrates that the LPCa-based algorithms achieve high
error correction rates and are suitable for use in applica-
tions where reliability is a critical requirement, such as in
space applications. Besides, Section 7 includes the results
and discussions based on code correctability, reliability,
and computational cost.

2 SOFT ERROR RATE ANALYSIS ON 3D MEMORIES

Due to the physical structure of 3D technologies, the upper
layers protect the lower ones from high energy particles.
Zhang and Li [2] analyze SERs for 3D-ICs based on the
effect of alpha particles emitted from the decay of radioac-
tive impurities in the interconnect metallization and pack-
age material. The authors state that the flux of alpha
particles generated from the Integrated Circuit (IC) plastic
packaging material is almost ten times greater than that of
the metallization layers, and the metallization layers block
more than 30 percent of these particles before reaching an
active layer; besides, only 0.4 percent of the particles can
reach the active layer of a second die from the top. Thus, the
lower layers of a 3D memory have lower error rates than
the higher ones, which is an advantageous feature of 3D
technologies [12], [13], [17], [18].

Additionally, high temperature is another source of tran-
sient errors, and the stacked architecture causes a heating
problem since the lower layers of memory are less exposed
to the heat dissipation, making them warmer more than the
upper layers; thus, the heat profile in 3D memory provides
different degrees of reliability for each layer. From a heat
perspective, this makes the lower dies more susceptible to
errors, forming an unequal distribution of SER through the
3D layers [13], [18].

Han, Chung, and Yang [13] used both the effect of
radiation and heat to produce a model of equations to
estimate SER among the layer levels of a 3D-IC. Fig. 1
depicts four test cases created by the authors using these
equations: (a) SER of the uppermost layer is 10x higher
than the other layers. This case is based on the analysis
introduced in [2], which only considers the effect of
alpha particles strike on the top layer, (b) SER is 5x
higher than the others since the flux of alpha particles is
reduced, (c) SER of the first and second layers are
respectively 10x and 5x higher than the other layers,
and (d) SER of the uppermost and lowermost layers are
10x higher than the others. This case regards the strike
of alpha particles and the heat dissipation from an active
layer bellow the stacked memories.
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Fig. 1. SER distribution cases across stacked dies in 3D-memory (based
on [13]).

3 STATE-OF-THE-ART

There are some works that investigate reliability issues
on 3D devices. For instance, Bagatin et al. [14] investi-
gated the sensitivity of 3D NAND flash memories to
wide-energy spectrum neutrons. The effects of neutron
exposure were studied in terms of threshold voltage
shifts and raw bit error rates; they extrapolated the neu-
tron failure rates obtained in the accelerated tests to field
conditions at sea level and aircraft altitudes. Kim and
Yang [18] proposed a reliability structure for reducing
faults on the bits, which considers asymmetric SERs per
layer in a 3D die-stacked memory using a deep neural
network. Their experimental results demonstrate that the
proposed method improves fault tolerance regardless of
the model type.

The works [1] and [15] also focus on 3D NAND flash
memories. Bagatin et al. [1] investigated the effects of
heavy-ion irradiation on 3D memory cells; threshold volt-
age distributions are studies before and after exposure, as a
function of the irradiation angle. The same authors investi-
gated in [15] the effects of total ionizing dose on 3D memo-
ries irradiated with gamma rays.

Finally, we describe three works that analyze ECCs tar-
geting 3D memories. Han, Chung, and Yang [13] proposed
a novel ECC organization scheme for 3D memories to
secure reliable operations under SER profiles. The proposed
scheme does not require additional redundant arrays.
Instead, it employs unused spare columns of relatively reli-
able layer memories to store additional check-bits of less
reliable layer memories. Chang, Huang, and Li [17] pro-
posed an area and reliability-efficient ECC scheme for 3D
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Ham(n, k) n

Fig. 2. Representation of a generic Hamming code Ham(n, k); n is the
total number of bits, k£ is the number of data bits, and r is the
redundancy.
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Fig. 8. C1C, product code with kik, data bits and (ny — ki)ks x (n2 —
k2)k1 check bits in rows and columns.

RAMs, taking advantage of the shielding effect. Han and
Yang [12] introduced a 3D memory scheme to ensure reli-
able operations by enhancing the ECC capacity of upper
layer memories. Experimental results show that the pro-
posed method can tolerate more than three times the bit
error rate than the conventional method. These three papers
introduce new ECC configurations in 3D components, but
there is no standard in how to present the results. Our work
focuses on the presentation through three metrics: ECC cor-
rectability, hardware cost analysis, and system reliability.
Besides, this work introduces a methodology to generate
synthetic upsets considering radiation and heat effects on
3D devices.

4 HAMMING AND MoODIFIED LINE PRODUCT
CobDE (LPC) FOUNDATIONS

R. Hamming [19] proposed a linear block code for error cor-
rection, whose generic structure is shown in Fig. 2.

The Hamming code is denoted as Ham(n, k), where n, k
and r are the numbers of bits of the codeword, data and
redundancy, respectively. Equations (1), (2) and (3) describe
the relations among n,  and & [19].

n=r+k (1)
r= log,(n+1) (2)
kE=2"—r—1. 3)

Extended Hamming is a Hamming code having one
more parity bit that increases the code capacity to detect
double errors and correct a single error, i.e., an SEC-DED
code [20]. The parity bit can be either 0 or 1, depending on
the parity type (i.e., even or odd). This work uses even par-
ity so that the total of 1s in the codeword, including the
added parity bit, is even [21]. Also, we employ Ham(8, 4)
(n= 8, k=4, and r=4), as the basic Hamming format to pro-
duce the other codes used in this work.

Fig. 3 displays that given the two linear codes C(n;, ki)
and Cs(ny, ky), then the modified product code is the combi-
nation of both codes (nins, kiks) without checks on check
bits, which is denoted by C,C5. The data is written in a
matrix k;ke. Each one of the ky rows is encoded using code
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CR;| CR,
CR4 | CRs
CR7 | CRg
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CG | CG
CCy|CCyy
PC, | PCs

Fig. 4. LPC structure encompassing five regions of bits: data (D), row-
check (CR), column-check (CC), row-parity (PR), and column-parity (PC).

CRo| CR; | CR,| PRy Do | D;| D, | D
Dy | Ds | Dg CR3| CR4| CRs| PRy

Ds | Do | D10 IO CRe| CR, | CRs| PR, Ds | Do |D10 Di;
D15|D13| Dis CRa|CR1gCRy1[ PRy Di1;| Di13| Dy4| Disg
TAAA CC,|CCL| CG,| CC,
CC.[CC[CCa[ CG, CCa| CC[CCiCC
CCy|CCa|CC1CCis a) CCy| CCa|CC1YCCis b)
PGP, IPG PG PG| PG, PG| PC,

Fig. 5. Examples of LPC correction capability. (a) All data bits are cor-
rected by computing the syndromes and applying Hamming on the last
three rows; then, recalculate the syndromes of all columns and apply
Hamming in all columns to correct the remaining four errors. (b) Discard
all row check and parity bits and apply Hamming on the columns; next,
recompute the check and parity bits of the rows.

(4, forming n; columns. Each one of the k; columns is
encoded using code Cs, performing a matrix with nin, —
(Tll — kl) X (’I’LQ — kz) bits.

The linearity of the modified product code is the same as
that of the product code, which allows coding to begin with
C followed by C, or vice versa [22], [23], [24]. The Minimum
Distance (M D) between two codes of the same length informs
the number of positions in which the codes differ. Since C
and C, have MDs defined as d; and dy, respectively, Equation
(4) shows how to compute the MD of the modified product
code C;C,. Using MD as a metric, we can define mathemati-
cally the minimum of errors that can be corrected (ECap) or
detected (EDap) in any position of the code with a 100 percent
confidence [22]. Equations (5) and (6) compute the maximum
number of errors in any position that this code can, at least, cor-
rect ECap or detect EDap [22], respectively. Note that the
modified product code can correct more than ECap, depend-
ing on the placement of the errors.

MD=dy +dy—1 (4)
MD -1

ECap = —5 5)

EDap = MD — 1. 6)

LPC is a modified product code-based ECC, which uses
Extended Hamming code. Fig. 4 exemplifies LPC in a (48,
16) code format, wherein a 16-bit word (represented by bits
Dy-Ds5) is encoded into 48 bits distributed as follows: (i) 16
data bits - D, (ii) 12 row-check bits - CR, (ii) 4 row-parity
bits - PR, (iii) 12 column-check bits - CC, and (iv) 4 column-
parity bits - PC.

The bits organization of LPC makes d; = dy = 4; conse-
quently, applying Equations (4), (5) and (6), LPC has MD =
7 and at least ECap = 3 or EDap = 6. Nevertheless, depend-
ing on the position of the errors, applying elaborated decod-
ing algorithms, LPC can correct until seven bitflips into the
data field and until 20 bitflips regarding data and control
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Fig. 6. Main flow of the LPC-based algorithms.

bits (see examples and comments on Fig. 5), only using
Hamming and some logical rules.

Let ¢ be a bit position index, then Equations (7) to (9) and
10 to 12 compute, using XOR (4) operations, the recalcu-
lated check bits of rows (rCR) and columns (rCC), respec-
tively. Additionally, Equations (13) and (14) compute the
recalculated parity bits of rows (rPR,) and columns (rPC),
respectively.

TCR3y = Dyq @ Digr1 @ Dygys

TCR3441 = Dig @ Dygro ® Diygis

TCR3412 = Dagr1 @ Digro ® Diygis

rCCy = Dy ® Dyys ® Dyyio

rCC,y = Dy @& Dy ® Dyyy

TOCquS = Dq+4 S3) Dq+8 S Dq+12

TPRy = Dyg ® Dagy1 ® Dagyo © Digy3D

CRs, @ CRsgi1 ® CRigs

rPCy = Dy ® Dyra ® Dyys © Dy 12D

CC, & CC,ypry @ CC, 1

V0<qg<3 (7
V0o<g<3 (8
v0<g<3 O
V0<g< (10
V0<g<3 (11
V0<¢g<3 (12

V0<qg<3

V0<g<3. (14)

LPC allows verifying and correcting data errors using the
syndromes of each row and column, which are computed
by Equations (15) to (18).

sCR, =(CRy, ® rCRy,) OR

(CR3,1+1 ©® TCR3q+1) OR V0<g<3 (15)
(CR3q+2 @ TCR3q+2).
sPR, = PR, ® rPR, V0<g<3 (16)
sCC, :(C’C’q &) rC’C’q) OR
(CCu7 ®rCChir)  OR VO0<g<3 an
(CCyi14 ®1CCyi14)
sPC, = PC, ® rPC, V0<qg<3. (18)

4.1 LPC-Based Decoding Algorithm

The decoding algorithm can explore full code potentialities
or implement a more lightweight version to reduce synthesis
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TABLE 1
Error Type Regarding Syndromes of Rows and Columns
[sCR,, sPRy| or[sCC,, sPC,] Error type
[0, 0] No error
[0, 1] Error in the parity bit
[1, 0] Double error

[1], 1]

Single error

costs. This work introduces LPCa and LPCa-I, two LPC-
based decoding algorithms in non-interleaved and inter-
leaved versions, respectively. Both LPC-based algorithms
have the same correction method that explores double and
single error knowledge to perform a heuristic technique that
reaches high error correction rates, without increasing a lot
the implementation cost of the decoding algorithm. LPCa
and LPCa-I differ only on the codeword organization into
the target memory.

Fig. 6 displays that the LPC-based algorithms start recal-
culating the check and parity bits to compute the syndromes
of all columns and rows. Next, the algorithms calculate SEr,
DEr, SEc, and DEc, which are the single and double errors,
both in rows and columns, respectively.

Table 1 shows the types of errors associated with each
pair of syndromes (check and parity bits) for any row or col-
umn. Double errors are detected when the check bit syn-
drome is true, but the parity syndrome does not point out
an error.

Based on Table 1, Equations (19) and (20) compute SEr,
and SFEc,, and Equations (21) and (22) compute DEr, and
DEc,, both for each g-row and g-column, respectively.

SEr, = ([sCRy, sPR,| = [1,1]) 71 : 0
SEc, = ([sCCq,sPCy] =[1,1]) 71 : 0
DEry = ([sCRy, sPR;| =[1,0]) 71 : 0
DEc, = ([sCC,,sPC,] = [1,0]) 71 : 0

V0<qg<3(19)
V0<q<3 (0)
V0<qg<3Ql)
V0<q<3.2)

SEr and SEc, and DEr and DEc contain the sum of sin-
gle and double errors, both on rows and columns, being
computed by Equations (23), (24), (25) and (26), respec-
tively.

3

SEr =" SEr, V0<g<3 (23)
q=0
3

SEc =Y SEc, V0<g<3 (24)
q=0
3

DEr =Y DEr, V0<g<3 (25)
q=0
3

DEc=_ DEg, V0<qg<3, (26)

q=0

Fig. 7 displays the composition of SEr, SEc, DEr, and
DEc from the syndromes and the recalculated check bits
and parity of the rows and columns graphically.

Next, LPCa selects the correction procedure according
to DEr and DEc. If DEr =0 and DEc = 0, LPCa decodes
the codeword applying Hamming to rows or columns
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Fig. 7. Graphical representation of SEr, SEc¢, DEr, and DEc
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Fig. 8. Example of a scenario whose original data contained only Os, but
four bits were flipped. Although there is a triple error in the second col-
umn, the variables of the decoding algorithm detect it as a single error.

depending on where most errors occurred; if most errors
occurred on the rows (SEr > SEc), the algorithm corrects
single errors using Hamming on the rows and use Ham-
ming on the columns, in the opposite situation. This deci-
sion is performed because it increases the probability of
correcting more errors. Fig. 8 exemplifies a situation where
the variables point out two single errors on columns
(SEc=2) and four single errors on rows (SEr =4), but
none double errors. Therefore, the decoding algorithm
applies Hamming on the rows. This procedure enables us to
correct all errors. Note that if the decoding algorithm
decided to apply Hamming on the columns, it would cor-
rect a false error in the second column.

If DEr > 1and DEc > 1, LPCa starts by checking if there is
an intersection of rows and columns where a double error
occurs and inverts this bit. Next, LPCa corrects rows or col-
umns, depending on the comparison SEc > SEr; a similar
procedure that occurs in the case of DEr =0 and DEc = 0.
One the one hand, the inversion of a DFE intersection bit is a
technique that allows correcting error scenarios where a single
Hamming approach cannot act, thus increasing the code cor-
rection capacity. On the other hand, this technique requires
recomputing the check and parity bits of the corresponding
column or row after the bit inversion; consequently, increas-
ing the implementation cost of the decoding algorithm.

Fig. 9 exemplifies a scenario with two double errors and
two single errors in both rows and columns. The first row
and first column have a double error intersection, implying
the inversion of bit D, (see Fig. 7). Additionally, there is a
double error intersection in bit D;y; however, LPCa only
corrects the first occurrence of double errors the algorithm
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Fig. 9. Example of a scenario whose original data contained only Os, but
six bits were flipped, performing two double errors and two single errors
in both rows and columns. Within the dashed rectangle appears the data
area after the decoding algorithm is applied.
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Fig. 10. Example of a scenario whose original data contained only Os,
but four bits were flipped, performing two double errors on rows and four
single errors in columns.

finds from left to right and from top to bottom of the code.
Consequently, Dy is not inverted, precluding some correc-
tion of errors through Hamming. Next, LPCa correct bits
Dy, Dy and Dy; through Hamming on columns because of
SEc = SEr. After applying LPCa, the data field remains
with two errors on bits D, and D;; since Hamming cannot
correct the double error in the third column.

The cases (DEr > 1 and DEc=0) and (DEr =0 and
DEc > 1) are symmetric; the only difference is that the first
case applies Hamming on columns, and the second one
applies Hamming on rows. For both cases, LPCa does not
check SEr and SEc; it assumes that rows or columns with-
out double error can correct more possibilities. Due to the
symmetry of these cases, we only show in Fig. 10 an exam-
ple of the case DEr > 1 and DEc = 0. This example of error
scenario makes LPCa decide for applying Hamming on col-
umns, which allows correcting all single errors.

Note that if LPCa exploited all double error occurrences
instead of only the first one, the scenario of Fig. 9 would be
decoded without errors, but the limitation of applying the
inversion only on the first double error incidence was made
because we decided to implement a lightweight LPC-based
decoding algorithm; consequently, with lower costs of
implementation. Even so, Section 6 shows that LPCa
reached an outstanding performance.

4.2 LPC Format Considerations

Several works aim to achieve high reliability by apply-
ing ECCs to memories with different technologies and
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organizations. A set of these works employs ECCs with
low redundancy overhead (i.e., the ratio of the number of
data bits versus the number of redundancy bits) to correct
sporadic errors [25], [26], [27], [28], [29]. This type of ECC
provides a low error correction rate, being suitable for envi-
ronments that are not susceptible to faults and non-critical
applications. However, critical applications running in envi-
ronments that are more susceptible to faults demand more
robust ECCs implemented with a more considerable redun-
dancy overhead to achieve high error correction rates [30],
[31], [32], [33]. LPC belongs to this last class of ECCs,
designed to increase significantly the ability to correct and
detect errors.

LPC is an ECC based on the format of a product code
composed of extended Hamming codes, without using the
check bits of the check bits; therefore, multiple data bit
sizes/redundancy can respect this general format. This
work implements LPC with 16-bit data for two reasons
explained next.

One of the reasons is choosing the best tradeoff between
cost and correction/detection capacity. Ham(4, 1) is the
smallest extended Hamming code, which codifies a single
data bit using three redundancy bits (2 check bits and one
parity bit), implying a high redundancy overhead. The sec-
ond smallest extended Hamming encoding is Ham(8, 4) -
the one employed here, where 4 data bits are encoded
with four redundancy bits (3 check bits and one parity bit).
The higher the number of data bits, the smaller the propor-
tion of redundancy bits. However, the Hamming code only
guarantees the correction of a single data bit; therefore, the
higher the number of data bits, the smaller the relation
between correctable bits and codeword size, which reduces
the decoding efficacy. Thus, the 16-bit data is a natural
consequence of the Ham(8, 4) spatially distributed as a
product code.

Another reason is associated with reading and writing
memory access latencies, as well as energy efficiency. Both
are related to the applicability of the LPC encoding/decod-
ing to existing processors and commercial memories.
Although still exists 8-bit processors used for specific appli-
cations, they are in disuse. 16-bit processors and memories
are still a reality for many embedded systems. For the case
of a 16-bit processor/memory, the proposed LPC requires
three memory accesses for each processor operation. If LPC
had a larger data format, energy consumption and latency
would be much higher, once more justifying the choice for
LPC’s 16-bit data format.

5 LPC MAPPING ON MEMORY

The LPC described in this work was implemented to be
used in 16-bit memories, the size of memory used in the
experimental results section. However, the coding model
defined by LPC can be applied to memories with different
manufacturing technologies, sizes, formats, and protocols,
as it implements a coding layer that can be adapted to dif-
ferent types of reading and writing procedures in memory.
For example, a logical organization of 32-bit memory words
can be implemented employing LPC with two 16-bit data
codes (i.e., 2 x 48 bits). Considering this example, the pro-
cessor would only have one access for writing or reading,
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Fig. 11. LPC encoding/decoding flow describing the modules that
depend on the processor, ECC, and memory characteristics.

and the subsequent level implemented by an encoder/
decoder adjusts the physical memory requirements. In this
same example, assuming a physical memory with 32-bit
words, three writes/readings to/from physical memory is
needed to access the 96 bits required by the two LPC code-
words. In this case, the encoder/decoder is responsible for
converting the physical and logical words.

Fig. 11 illustrates the encoding and decoding schemes
considering various types of memories with specific reading
and writing drivers to clarify the synthesized modules. It is
important to note that while the ECC encoder and decoder
modules are only dependent on the processor address/data
size and ECC algorithms, the driver modules are memory
configuration dependents.

Additionally, the 3D fault model makes room for the
codeword to be addressed in multiple layers; this is because
different paths have different rates of error incidences.
Thus, the distribution of a word in more than one memory
layer increases the probability of having fewer errors within
the codeword and, consequently, more decoding success.
Another opportunity is to use LPC in layers more suscepti-
ble to faults, such as the upper and lower memory layer,
and use less robust ECCs (therefore, with a lower associated
cost) in layers less susceptible to bitflips.

Finally, we point out that LPC can even be used as the
standard for memories that require a high degree of reli-
ability and employ ECC on-die [34], [35], as in this case,
the ECC becomes transparent to the memory controller.
Implementing an on-die ECC allows the complete knowl-
edge of the physical organization of the memory bits; this
knowledge makes it possible to apply codes that imple-
ment, for example, interleaving techniques, further increas-
ing the ability to correct bitflips concentrated in a memory
neighborhood.

6 EXPERIMENTAL SETUP AND METHODOLOGY

In the experimental setup, we choose to evaluate the poten-
tials of LPCa with 16-bit memory, and we compared LPCa
with Extended Hamming-based ECCs; both codes were
implemented with interleaved (LPCa-I and 4xHam(8,4)-I)
and non-interleaved (LPCa and 4 xHam(8,4)) versions. Note
that bit interleaving is a mitigation technique that makes an
MBU appears as multiple single bit upsets in different code-
words [36]. This technique is 100 percent efficacious when
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Fig. 12. Methodology applied to the work containing the four main activi-
ties used in the experimental results.
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(a) 4xHam(8,4)
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(c) LPCa

Dy | CC; | Dio [ CRs | Dy | CCs| Dus | CR; [ CCo| Dg [ CR, | Du | PRy D, | PRy | PG| m;
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(d) LPCa-I
Fig. 13. Memory organization of the ECCs after the encoding process
(m; is the ith memory position): (a) 4xHam(8,4), (b) 4xHam(8,4)-1 (Ham-
ming with interleaving), (c) LPCa, and (d) LPCa-l (LPCa with
interleaving).

the physical MBU is lesser or equal than the interleaving
scheme.

Fig. 12 describes the methodology employed to obtain
and evaluate the experimental results, covering a flow with
the four main activities.

Activity 1 represents the proposed ECC configurations
with and without interleaving when placed in consecutive
16-bit memory words, as shown in Fig. 13; all codes of
Fig. 13 cover exactly 16 data bits.

Fig. 13a describes 4xHam(8,4) - a configuration of four
Ham(8,4) encoded into four 8-bit words. Fig. 13b displays
4xHam(8,4)-1 - a configuration of four 8-bit interleaved
words. Fig. 13c describes the LPCa distribution in three con-
secutive 16-bit memory positions. Finally, Fig. 13d illus-
trates the LPCa-I in an interleaved distribution, which was
performed by an in-house tool that mapped the related bits
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Fig. 14. Experimental 3D memory, including four dies, each one with six
memory addresses of 16-bit words.
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Fig. 15. Incidence error cell (in red), inner-rectangle cells encompassing
the incidence error cell (in green), and outer-rectangle cells around the
inner one (in blue).

in memory over a distance higher than a cell. The configura-
tions 4xHam(8,4) and 4xHam(8,4)-1 are implemented with
k = 4 and n = 8; thus, only two memory addresses are
required to encode 16-bit data. LPCa and LPCa-], in turn,
have k = 16 and n = 48, requiring three memory addresses
to write 16-bit data.

The 3D experimental memory was implemented in four
dies, each one containing six memory addresses with 16-bit
words, achieving a die with 84 bits, as shown in Fig. 14. We
chose this reduced memory size to minimize the number of
simulations performed without losing the generalization of
the 3D error model.

Activity 2 represents the error pattern generation contain-
ing four levels of severity, which were created to represent
how much energy the alpha particles have or how much
the heat is affecting the memory layers. The higher the level,
the greater the percentage of errors to be generated in the
randomly selected layer, and consequently, the higher the
number of errors propagated to neighboring layers.

Several works [37], [38], [39] show that the incidence of
errors due to radiation or heat occurs within a neighbor-
hood. For example, in the region of a radiation event, more
than one neighboring cell may have its content changed. In
this work, we proposed a fault model that considers a
region composed of a cell considered the center of the event,
all the neighboring cells of this event, making up an inner
rectangle, and all the neighboring cells of the inner rectan-
gle, making up the outer rectangle. Fig. 15 illustrates that
the error pattern is inserted in a region consisting in a refer-
ence cell (in red), which is virtually surrounded by an inner
rectangle of cells (in green) that is wrapped by an outer rect-
angle of cells (in blue); thus, an error pattern can comprise
from one to 25 error cells.

This work follows the assumptions for the error pattern
generation based on the neighborhood models [37], [38], [39]:

a)  The radiation event changes the bit selected as a center of
the error region called incidence error cell;

b)  The inner rectangle surrounding the incidence error bit
can have up to 8 random bitflips called ib (inner bitflips);
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Fig. 16. Example of an error pattern generated in die 1 and propagated
to the other dies of the 3D memory.

c)  The outer rectangle that surrounds the inner rectangle can
have up to 16 random bitflips called ob (outer bitflips);

d) To avoid an exhaustive analysis of 1 to 25 errors, we
decided to use four levels of severity (Is) with values 1,
0.75, 0.50, and 0.25, representing the probability of error
generation; Is is used as a multiplicative factor to produce
the error pattern;

e) The total number of errors in a pattern (#e) is given

by the equation #e = 1 + ib + ob, with ib = 8 x Is and
ob =16 x Is. For example, if Is = 0.75, ib = 6, ob = 12
and #e = 19.

The levels of severity affect only the incidence die, pro-
ducing an error pattern; the error mapping in the remaining
dies depends on the selected Test case (Fig. 1), which is per-
formed in Activity 3.

Activity 3 is the error and ECC mapping in the 3D experi-
mental memory, which starts fulfilling all memory with a
selected ECC. The six memory addresses of each die allows
fitting two LPCa, two LPCa-l, three 4xHam(8,4) or three
4xHam(8,4)-1, per die; therefore, the entire 3D memory
allows mapping eight LPCa-based ECCs or 12 4 x Hamming-
based ECCs. Next, the error mapping algorithm fills errors in
the dies of the 3D memory.

The error mapping algorithm starts randomly selecting
one of the four test cases shown in Fig. 1, which allows
defining the model of error propagation among the dies
and the die of the initial error incidence. Test cases (a)-(c)
use only die 1 to map the initial error incidence, whereas
test case (d) has two initial error incidences, one for die 1
and another one for die 4. Next, the algorithm randomly
generates the initial cell of error incidence in the selected
die, which can be one of the 96 memory cells; this cell is the
center of the error pattern produced in Activity 2.

The next step of the algorithm defines how many errors are
propagated to the neighbor dies and their random position
relative to the cells of the initial error pattern. As previously
described, the number of errors propagated depends on the
radiation decay or heat effects among the dies. The error cells
in the neighbor dies, respect the limits defined by the mask of
the initial error pattern, can be nonadjacent, and use at least
the same position of the initial error incidence (the center
of the error pattern — cell in red). Besides, test case (d) propa-
gates error patterns from dies 1 and 4, allowing for the compo-
sition of error patterns in the central dies.

Fig. 16 exemplifies an error pattern and its propagation
among the dies in the test case (c). Fig. 16a depicts that the
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error pattern covers 19 errors in the first die, 7 in the inner-
rectangle, and 11 in the outer-rectangle, besides the initial
error incidence. Fig. 16b and Fig. 16c show that 6 and 2
errors were propagated to the die 2 and 3, respectively,
while no error reached die 4 (Fig. 16d). The propagation to
neighboring dies follows randomly the error positions gen-
erated in the incidence layer, and with an error rate decay
that respects the models defined in the test case of Fig. 1
that is being used in the experiment.

According to the ECC mapped, Activity 4 uses in-house
simulation software to analyze the error correction capabil-
ity in each die of the 3D memory. We repeated S times the
simulations of each one of the 48 experiments to have a cer-
tain degree of confidence and representativeness due to the
number of random elements. In the experiments, we used g
equal to 30 thousand, which allows reaching more than
99.9 percent confidence degree.

7 EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents and discusses the error correction
results achieved when applied the methodology described
in Section 6, and analyzes the implementation costs and reli-
ability of LPCa, LPCa-I, 4 xHam(8,4), and 4xHam(8,4)-L.

7.1 Error Corrected Analysis

Fig. 17 displays the average error correction rates of the
four ECCs evaluated in each die, relative to four error
severity levels and the four test cases described in Fig. 1.
The 3D error model makes die 1 (for all test cases) and
die 4 (in the test case (d)) to receive the highest inci-
dence of errors; consequently, the error correction capa-
bilities of each ECC are better observed in these dies.
Moreover, in the test case (c), the incidence of errors falls
by only 50 percent in the second die; therefore, it also
allows the observation of high variation among the cor-
rection capacities of each ECC. Only die 3 has little error
correction need, as it is protected against alpha particles
by two dies, and the heating from the lower die does
not propagate errors significantly.

We focus the error correction analysis on die 1 because it
is the die with the highest error incidence. In general, LPCa-
I and LPCa have the highest correction capacity, followed
by 4xHam(8,4)-1, and with the lowest error correction rates,
comes 4xHam(8,4). LPCa-I obtained the highest rates of
error correction in all cases; besides, LPCa has similar val-
ues than 4xHam(8,4)-I only when the severity error level is
1.0, varying at most 2.63 percent. Additionally, the aggres-
siveness of error level 1, does not allow any code to achieve
an error correction rate greater than 30 percent for test cases
(a), (b), and (c).

The error correction capacity of LPCa-I is up to 2.3 times
higher compared to 4xHam(8,4) when regarding die 1 and
all error severity levels, on average; but the error correction
rate is reduced to 1.4 times higher when this same analysis
is performed between LPCa-I and 4xHam(8,4)-1.

As die 3 is the most protected die against faults, all codes
reach high error correction rates, on average, LPCa-I, LPCa,
4xHam(8,4)-1 and 4xHam(8,4) reach 99.8, 99.3, 97.9 and
86.5 percent of error correction rates, respectively.
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Fig. 17. Correctability results for LPCa, LPCa-l, 4xHam(8,4), and 4 xHam(8,4)-I in each die of the 3D memory, considering the four test cases shown

in Fig. 1, and four levels of error severity.

7.2 Analysis of the Algorithm Implementation Costs
We performed the implementation cost analysis based on
the redundancy needs to implement LPCa-I, LPCa, 4xHam
(8,4)-1 and 4xHam(8,4), and on the area consumption (in
pum?), power dissipation (in nW) and delay (in ps) of the
encoders and decoders employed on these ECCs.

Let r be the number of redundancy bits, and n be the
number of codeword bits; then, Equation (25) computes the
redundancy rate 7, and Table 2 presents the rr results for
the three ECC configurations.

(27)

T
r=—.
n

Both LPCa-based algorithms have the highest rr with
about 66 percent of their bits in the codeword being redun-
dant, whereas both Hamming-based codes have half of the
codeword being redundant. This higher rr naturally con-
ducts LPCa-based algorithms to higher error correction rate
capacity and higher synthesis costs.

Fig. 18 allows us to compare the synthesis costs of the
four ECCs proportionally; the values shown are achieved
with Cadence software synthesis RTL Compiler for a 65 nm
CMOS technology.

For all analyzed ECCs, the decoder synthesis values are
higher than the encoder ones, which was expected since most
of the calculations performed are made on the decoder side.
LPCa and LPCa-I have the same synthesis cost, and both
Hamming-based codes have practically equal synthesis values
because the only difference between them is the interleaving
technique. The area consumption and power dissipation of the

TABLE 2
Redundancy Rate Results
Configuration rr(%)
LPCa(48, 16) and LPCa(48, 16)-1 66.7
4xHam(8,4) and 4 x Ham(8,4)-1 50.0

LPC-based decoders are about 5x larger than the correspond-
ing values of Hamming-based ECCs, whereas the delay of the
LPC-based decoders is about 3.8 x higher than the delays of the
two other two ECCs.

7.3 Reliability Analysis

The reliability analysis of this work is based on the works of
Silva et al. [20] and Argyrides et al. [40]. We assume the fol-
lowing statements that were also assumed by [40]: (i) transi-
ents faults occur with a Poisson distribution, and (ii) bit
faults are statistically independent.

Let Ne be the maximum number of errors that can arise
during time ¢, FC be the errors corrected, MF be a value
that indicates if memory fails and i F" be a value indicating ¢
faults in the memory; then, Equation (2) computes the fault
correction in a word F.(¢) in a given time ¢.

Ne
F.(t) = (P{FC|iF} x P{iF|MF?}).

i=1

(28)
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Fig. 18. Synthesis cost analysis, encompassing area consumption,
power dissipation, and delay of each ECC configuration.
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Fig. 19. Reliability provided by LPCa-l, LPCa, 4 xHam(8,4)-1 and 4 xHam
(8,4) on die 1. The reliability regards three values of X (bit faults per day).
The horizontal axis is the time in days, and the vertical axis is the reliabil-
ity in %.

The probability of having exact ¢ upsets in memory when
memory is faulty can be reached by Equation (2).

P{iF}

P{iF|MF} = PO

(29)

Let n be the number of bits in the codeword and A be the
one-bit fault per day; then, P{i[F'} is given by Equation (30).

P{iF} = (7;) (1 _ efkt)ief)\(n—i)t'

Equation (31) computes the probability of a memory fail-
ure over time.

(30)

P{MF}=1-—¢" (31)

Since P{FC|iF'} values are obtained in the previous sec-
tion through the simulation results of the first die presented
in Fig. 17a and M is the number of words in memory, then
the reliability of a memory R(t) is the product of the reliabil-
ity of all words, which is computed by Equation (32).

i=1

R(t) = (1 — P{MF} + AZ P{iF} x P{FC’|z'F}>
(32)

For the sake of simplicity, this paper uses M = 1. Addi-
tional information on the equations can be found in [40].

Fig. 19 shows the reliability over time R(t) of LPCa,
LPCa-I, 4xHam(8,4), and 4 xHam(8,4)-I regarding the error
correction rates of the die 1, and encompassing three values
of A (1074,1075,107%). The horizontal axis is time expressed
in days, while the vertical axis is reliability R(t) expressed
in percent.

The )\ parameter indicates the error incidence rate in
memory. For example, A = 10~* indicates one bitflip every
10,000 days; consequently, one bitflip every 208 days in the
48-bit LPC. As R(t) is computed cumulatively, Fig. 19
shows that in 3000 days, for instance, the memory would
have 14 bitflips, which would lead to reliability close to zero
for all evaluated ECCs.
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For all values of A, Fig. 19 displays that LPCa-I, followed
by LPCa, is the most reliable ECC throughout the period.
For instance, with A = 1075, LPCa-I reaches a rate of 99.96,
70.26 and 53.33 percent at days 1, 1000, and 2000, respec-
tively. For these same days, 4xHam(8,4)-1 has 99.96, 69.99,
and 53.22 percent, while Ham(8,4) has 99.95, 64.57, and
43.74 percent. Until day 2000, the values of LPCa and
4xHam(8,4)-I are very close to each other, not exceeding a
difference greater than 0.4 percent. After this day, the differ-
ence reaches almost 20 percent. As of day 7000, 4 x Ham(8,4)
has a reliability of less than 20 percent. Finally, at day 15000,
LPCa, 4xHam(8,4)-1 and 4xHam(8,4) have reliabilities of
12.38, 10.10, and 6.13 percent, respectively.

7.4 Final Remarks

Experimental results show that there is a high variation in
the incidence of errors between the dies of a 3D memory.
This feature makes room for the research of heterogeneous
ECC models, whose correction capacity is higher in the
upper and lower dies, significantly reducing in the inter-
mediate dies. This research involves exploring the relation-
ship between the number of information bits versus
redundancy bits and, consequently, working with various
requirements, such as minimizing area consumption and
power dissipation.

8 CONCLUSION

This work proposes LPC - a product-type ECC that uses
Hamming and parity codes on both rows and columns. The
experimental results demonstrate that this code imple-
mented in two lightweight decoding versions, in inter-
leaved (LPCa-I) and non-interleaved (LPCa) algorithms, has
high error correction capability enabling its usage in space
application memories.

The validation of the proposed ECC and the correction
technique applied by the LPCa-based decoding algorithms
were performed using a set of simulations varying the error
severity level and test cases, producing different numbers
of errors on the dies of the 3D memory. The results were
analyzed and discussed comparing LPCa-I and LPCa with
two other ECCs based on the Hamming codes (4xHam
(8,4)-1 and 4xHam(8,4)), equally designed for use in space
application memories.

For each ECC, 16 combinations of error severity levels
and test cases were simulated 30,000 to achieve a high confi-
dence degree for error correction rate and reliability results.
When considering the higher error severity level, the error
correction capacities of LPCa-I is only 1.3 times higher than
4xHam(8,4)-I; and, in the same situation, the LPCa-I error
correction capacity is more than 2 times higher when com-
pared to 4xHam(8,4). When considering all dies and all
error severity levels, the error correction rate of LPCa-I, on
average, is 7.1 and 22.1 percent higher than 4xHam(8,4)-1
and 4xHam(8,4), respectively. The higher error correction
results of LPCa-based algorithms are due to (i) its matrix
format and (ii) the existence of two syndromes for each row
and column (Hamming check and parity bit), and (ii) a
novel technique that improves Hamming capacity by apply-
ing bit inversions in double error occurrences.
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Finally, the experimental results show that the die stack-
ing characteristics of 3D memories provide radiation protec-
tion, reducing the incidence of errors in lower layers;
Additionally, the heat dissipated by the active logic below
the lower die also generates errors, but these are little prop-
agated to the upper dies. This 3D error incidence model
makes room for researching ECCs with different error cor-
rection capabilities applied to each layer of 3D memory.
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