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Abstract This article presents a real-time scalable hard-

ware architecture for the bipartition modes of 3D high-

efficiency video coding (3D-HEVC) standard, which

includes the depth modeling modes 1 (DMM-1) and 4

(DMM-4). A simplification of the DMM-1 algorithm was

done, removing the refinement step. This simplification

causes a small BD-rate increase (0.09 %) with the advan-

tage of better using our hardware resources, reducing the

necessary memory required for storing all DMM-1 wed-

gelet patterns by 30 %. The scalable architecture can be

configured to support all the different block sizes supported

by the 3D-HEVC and also to reach different throughputs,

according to the application requirements. Then, the pro-

posed solution can be efficiently used for several encoding

scenarios and many different applications. Synthesis results

considering a test case show that the designed architecture

is capable of processing HD 1080p videos in real time, but

with other configurations, higher resolutions are also pos-

sible to be processed.

Keywords 3D-HEVC � Bipartition modes � Scalable
architecture � Hardware design

1 Introduction

The Joint Collaborative Team on 3D Video Coding

Extension Development (JCT-3V) is a group of experts

from ITU-T and ISO/IEC, which was established to work

on multiview and 3D video coding extensions of high-

efficiency video coding (HEVC). Due to the increase in 3D

video coding usage, the JCT-3V spends significant effort in

research and development to extend the HEVC standard to

3D video applications [1], which reduces the bandwidth for

a 3D video transmission or storage with similar quality [2].

The 3D-HEVC standard was finalized in February 2015 by

JCT-3V. It uses the most advanced features provided by

HEVC and proposes many new features to explore 3D

video characteristics.

A multiview video sequence consists of many views

captured from multiple cameras, displaced very close to

each other, to cover a different portion of a scene to support

3D applications [3]. Many coding features have already

been included in the previous 3D standard [4] to encode

videos from multiple cameras efficiently. However, 3D-

HEVC uses even more advanced texture coding tools such

as neighboring block-based disparity vector derivation [5]

[6], inter-view motion prediction, inter-view residual pre-

diction [7] and illumination compensation [8].

Another key factor for 3D-HEVC efficiency (regarding

the quality of compression) is the adoption of the multi-

view plus depth (MVD) [9] representation to encode and

transmit an enormous amount of data required by 3D video

applications. In MVD, each texture view is associated with

a depth map. The same camera captures the texture images

and depth maps, which provide geometrical information

according to the objects distance from the camera [10].

Eight-bit samples in gray shades compose these maps,

where the closer the object is from the camera, the lighter is
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the shade of gray will be used to represent the object.

Figure 1 presents a (a) texture view and its associated

(b) depth map extracted from Newspaper_CC video

sequence.

Themotivation forMVDusage is to reduce the bandwidth

for a 3D video transmission. Because in the decoder, it is

possible to synthesize virtual views [11] interpolating texture

and depth data with the use of techniques such as depth-

image-based rendering (DIBR) [9], these techniques allow

synthesizing a dense set of texture views of the scene [12]

and, consequently, to reduce the number of transmitted

texture views. Figure 2 illustrates a nine-view application,

which represents the advantage of using MVD format.

Traditionally, 3D standards would encode and transmit all

nine texture views, while when using MVD format only a

subset of those texture views (e.g., three texture views)

together with their depth maps is encoded and transmitted.

The 3D video decoder is capable of generating virtual views

located in any position between any two encoded views (e.g.,

views 2 to 4 and 6 to 8 in Fig. 2), which allows considerable

bandwidth reduction. This gain is important since each tex-

ture frame must be represented using three matrixes, one for

each color component, and the depth map is represented

using only one matrix, as previously discussed.

The quality of the depth maps is crucial to allow the

generation of virtual views with high quality, and this is a

significant challenge in this scenario. Figure 2 shows that

depth maps contain characteristics that contrast with tex-

ture frames; i.e., they contain large areas of constant values

(background or body of objects) and sharp edges (border of

objects) [13], while texture frames have smooth transitions

between its pixels. Therefore, using only traditional 2D

video coding techniques in depth maps compression

introduces blocking artifacts, mosquito noise and edge

blurring [14] if a high compression is desired.

It is important to emphasize that distortions in the depth

map indirectly impact on the video quality since they are

used to synthesize new texture views of the same scene

[15, 16]. Then, it is important to encode as precisely as

possible the depth maps, preserving these edges (i.e.,

without smoothing them) and avoiding errors in the video

synthesis process.

3D-HEVC considers that a depth map is encoded using

all HEVC encoding tools and inserting some new tools,

meaning that the depth map can be encoded using intra- or

inter-prediction [17]. This paper is focused on the intra-

prediction, where new tools were evaluated, and two of

them were included in the standard. The original HEVC

intra-prediction was not designed to explore the depth

maps characteristics, such as the presence of sharp edges.

Taking into account the importance of edge preservation,

the JCT-3V has proposed a coding tool called bipartition

modes, which should be applied in the 3D-HEVC intra-

prediction to encode better depth maps. The bipartition

modes were originally composed of four depth modeling

modes—DMM-1 to DMM-4; and the region boundary

chain—RBC [17, 18]. The final version of 3D-HEVC did

not include DMM-2, DMM-3 and RBC tools [18] because

they presented an adverse trade-off between complexity

and coding efficiency.

There already exist many solutions focusing on simpli-

fication or hardware architectures for HEVC standard that

could be extended to 3D-HEVC such as [19, 20]. Many

works have already proposed simplifications specifically

for 3D-HEVC such as [21–23]. However, as 3D-HEVC is

still a new standard demanding much computational com-

plexity, it still needs to obtain simplifications improvement

and low-power hardware designs, mainly when requiring

real-time processing 3D high definition videos running into

embedded systems. The only work that we found in the

literature that was focused on developing hardware for 3D-

HEVC depth maps coding tools was our previous work

[24], where DMM-4 architecture was designed.

Considering this scenario, this work presents a real-time

scalable hardware for the bipartition modes of the 3D-

HEVC. This architecture can be scaled to support all 3D-

HEVC block sizes (i.e., from 4 9 4 to 32 9 32) and dif-

ferent throughputs.

The remainder of this article is organized as follows.

Section 2 presents the 3D-HEVC depth intra-prediction

algorithm and explains the traditional HEVC intra-predic-

tion algorithm and the DMM-1 and the DMM-4 algo-

rithms. Section 3 describes the designed bipartition modes

architecture. Section 4 presents the obtained results and

discussion. Finally, Sect. 5 renders the conclusions of this

work.

2 3D-HEVC depth maps intra-prediction

Figure 3 illustrates the main blocks and flow of the depth

map intra-prediction implemented in 3D-HEVC reference

software [25]. It encloses two modules: the (1) HEVC
Fig. 1 a Texture view and its associated, b depth map extracted from

Newspaper_CC video sequence
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intra-prediction module that implements the same intra-

algorithms used for texture videos (presented in Sect. 2.1)

and the (2) bipartition modes, which focus mainly on

exploring depth maps properties during the encoding

process.

The bipartition modes should be evaluated in parallel

with the original HEVC intra-prediction step. However,

since depth coding blocks are very flat or smooth, in gen-

eral, and bipartition modes obtain better results in edges of

sharp transitions, 3D-HEVC depth intra-prediction algo-

rithm employs the fast intra-prediction mode (proposed in

[26]) to enable/disable the use of bipartition modes.

The fast intra-prediction mode only enables the bipar-

tition modes encoding when the first mode in the rate–

distortion list (RD-list) is not the planar mode and if the

encoding block variance is higher than a predefined

threshold [26], whose combination means that the encoding

block does not tend to be flat or smoothing. As in flat or

smoothing depth blocks, the HEVC intra-prediction obtains

best results, this procedure reduces the computational

complexity of intra-prediction process without reducing

encoding efficiency, because it reduces significantly the

percentage of bipartition modes evaluated when they are

not necessary.

When the bipartition modes are enabled, the DMM-1

and DMM-4 are processed, and their results are added in

the RD-list. In the following steps inside the encoder, the

RD-cost is computed for all modes inside this list (HEVC

intra-modes and bipartition modes).

The bipartition modes model an encoding depth block,

approaching its original signal by two rectangular regions,

which are represented by a constant value. Then, it is

necessary a pattern containing the segmentation informa-

tion for modeling a block with a bipartition mode speci-

fying which region each sample belongs to, and the

constant value that represents each region [27]. The pattern

containing the segmentation information is composed of an

array with N 9 N elements (N is the quantity of pixels that

contains a side of a square image), containing 0 or 1 when

the element belongs to region 0 or 1, respectively.

The 3D-HEVC bipartition modes use DMM-1 and

DMM-4 algorithms, which produce wedgelet (Fig. 4) and

contour (Fig. 5) [28] segmentation, respectively.

The wedgelet segmentation pattern divides the block

with a straight line—Fig. 4a. As there are samples near of

the straight line that are not fully inside a region, a dis-

cretization should be performed to select which region

these samples belongs to, as presented in Fig. 4b.

While DMM-1 assumes only predefined patterns, the

DMM-4 employs a contour segmentation that can model

arbitrary patterns and even consisting of several parts (but

only two regions with constant values are allowed).

View 1 View 5 View 9

3D-HEVC 
Encoder

Encoded
Video 3D-HEVC

Decoder

View 1 View 5 View 9

View
Synthesis

View 2 View 3 View 4 View 6 View 7 View 8

Generated Virtual Views

Original Views Decoded Views

Fig. 2 Motivation of MVD format usage—tree-encoded views among with their depth maps and six virtual views generated at the decoder using

view synthesis techniques
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Figure 5a exemplifies the contour segmenting a block in

two regions, and Fig. 5b presents the contour signal model

with the constant value of each region.

The next sections will better explain the main tools used

in the depth maps intra-prediction. Section 2.1 describes

the HEVC intra-prediction, and Sects. 2.2 and 2.3 detail the

DMM-1 and DMM-4 segmentation algorithms,

respectively.

2.1 HEVC intra-prediction

The 3D-HEVC depth map intra-prediction can use all the

HEVC intra-prediction coding tools. The HEVC intra-

prediction defines the planar mode, the DC mode and 33

directional modes, whose directions are presented in Fig. 6.

Samples of spatially neighboring blocks are used as a

reference when creating a predicted block using these

modes [29].

The full RD evaluation, which performs an exhaustive

calculation of all defined HEVC modes searching for the

lowest RD-cost, is the most intuitive approach [30]. It is

hard to deal with applications that require a real-time

operation and low power dissipation when performing

exhaustive approaches, needing techniques for complexity

reduction and dedicated hardware design.

L. Zhao et al. [29] proposed a technique that simplifies

the full RD evaluation, saves time and does not affect the

encoding efficiency significantly. They proposed to create a

list containing few modes among all available modes and

only apply RD-cost computation over them. This tech-

nique, which was adopted in HEVC reference software and

consequently in 3D-HEVC intra-prediction, is described

next.

This technique surrounds two algorithms: the rough

mode decision (RMD) and the most probable modes

(MPM). In RMD algorithm, the sum of absolute trans-

formed differences (SATD) between the original block and

the predicted one enables to evaluate all HEVC intra-

modes locally (without the complete RD-cost evaluation).

The algorithm orders the modes in a list by their SATDs

and inserts the modes with the lowest SATDs (8 modes for

4 9 4 and 8 9 8 blocks and 3 modes for 16 9 16 and

32 9 32 blocks) ordered into the RD-list.

The MPM is used after the RMD algorithm. The MPM

gets the used modes in the encoded neighbor blocks (the

left and above neighbors) and inserts them into the RD-list.

Finally, the RD-cost is fully calculated only for the

modes inside the RD-list. The RD-cost calculation gener-

ates real data of compression rate and distortion, and then,

it is possible to choose the mode of the best performance

(lowest RD-cost). These two algorithms (RMD and MPM)

reduce a lot the number of RD-cost calculations, signifi-

cantly decreasing the HEVC intra-prediction complexity.

2.2 Depth modeling mode 1 (DMM-1) algorithm

As previously discussed, the DMM-1 algorithm is based on

wedgelets, where a wedgelet is a straight line that segments

a block in two regions.

Table 1 clarifies that 3D-HEVC standard has many

possible wedgelets in a depth map block. However, 3D-

HEVC defines a three-stage search (i.e., main, refinement

Region 0

Region 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

(a) (b)

Fig. 4 Wedgelet segmentation model of a depth block: a pattern with

region 0 and region 1 and b discretization with constant values
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Fig. 5 Contour segmentation model of a depth block: a pattern with

region 0 and region 1 and b discretization with constant values
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and residue) over the complete wedgelet set. Consequently,

only a subset of them should be evaluated, resulting in a

reduction in the DMM-1 complexity.

Additionally, Table 1 presents the number of wedgelets

evaluated before the refinement process and the corre-

sponding decrease, according to the encoding block size.

This three-stage search can reduce the evaluation set

ranging from 24.7 % to 60.8 %, according to the block

size. The complete assessment process signalizes the

selected wedgelet and sends the residue between the orig-

inal depth block and the predicted depth block to the next

encoder modules.

Figure 7 presents a high-level diagram of the DMM-1

encoding algorithm, which is composed of three stages: (1)

Main Stage, (2) Refinement Stage and (3) Residue Stage.

The Main Stage evaluates the initial wedgelet set (i.e.,

wedgelets that should be assessed before the refinement)

and finds the best wedgelet partition among the available

ones. The process of finding the best wedgelet requires

mapping the encoding block in the binary pattern defined

by each wedgelet. According to this mapping, the average

values of all samples mapped into regions 0 and 1 are

computed, and the predicted block is defined as the average

value of each region (Prediction step). Next, for each

wedgelet pattern, the sum of absolute differences (SADs) is

computed using Eq. (1), where | Pi,j – Oi,j | is the absolute

value of the residue between the predicted and original

depth samples at position (i, j). Finally, all SADs are

compared and the pattern that obtained the lowest SAD

defines the best wedgelet (SAD step).

SAD ¼
XN

i¼1

XN

j¼1

Pi;j � Oi;j

�� �� ð1Þ

The Refinement Stage evaluates up to eight wedgelets

around of the selected one in the previous operation (i.e.,

with a similar pattern). Again, the wedgelet that obtained

the lowest SAD among these eight possibilities, along with

the first wedgelet selected in Main Stage, is selected as the

best one.

Finally, the Residue Stage subtracts the predicted block

of the elected wedgelet from the original one and adds this

wedgelet into the RD-list.

Figure 8 exemplifies the encoding of a 4 9 4 depth

block along with the evaluation of three different wedgelet

patterns. Besides, Fig. 8 shows that the prediction process

of DMM-1 encodes the depth block sample according to

the evaluated wedgelet (i.e., patterns a, b and c). This

procedure maps the pixels of the block sample in one of the

two regions. Subsequently, the predicted block step com-

putes the average value of all pixels in the region (e.g., the

average value of regions 0 and 1 of pattern a is 64 and 76,

respectively). The residue step annotates the position cor-

responding to each pixel with the difference between the

predicted and original depth sample. The SAD of all pat-

terns is attained, and finally, the pattern b is elected since it

has the lowest SAD.

2.3 Depth modeling mode 4 (DMM-4) algorithm

The DMM-4 algorithm uses a technique called inter-com-

ponent prediction to find the best contour partition. This

inter-component prediction uses previously encoded

information from one component (i.e., texture) during the

others component prediction (i.e., depth).

The motivation for employing the DMM-4 algorithm is

that the encoding depth block represents the same scene

than the texture block (previously encoded). Depth data

contain considerably different signal characteristics than

the texture data; however, it does exhibit some structural

similarity to the corresponding texture. For instance, an

edge in the depth component usually corresponds to an

edge in the texture component [31]. Therefore, there is

Table 1 Number of evaluated

wedgelets in DMM-1
Block size Total possible wedgelets Evaluated wedgelets Percentage of reduction

4 9 4 86 58 32.5 %

8 9 8 802 314 60.8 %

C16 9 16 510 384 24.7 %
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Fig. 7 Main blocks of the DMM-1 encoding algorithm
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significant redundant information between both blocks.

Figure 9 highlights this redundant information, showing

the high similarity and correlation of both blocks. This

characteristic motivated the design of DMM-4 by JCT-3V.

Figure 10 presents an example of DMM-4 execution,

while Fig. 11 demonstrates the DMM-4 encoding flow.

The only information known at the beginning of DMM-4

execution is the texture and depth blocks. Besides, only the

reconstructed luminance signal (previously encoded)

composes the texture block used as a reference in the

DMM-4 algorithm.

Three stages compose the DMM-4 algorithm: Texture

Average Stage, Prediction Stage and Residue Stage.

Texture Average Stage starts computing the average

value (u) of the texture block using Eq. (2) (143 in

Fig. 10), where Ti,j denotes the reconstructed texture pixel

at (i,j) position.

u ¼
PN

i¼1

PN
j¼1 Ti;j

N2
ð2Þ

Let u be an adaptive threshold, the pseudo-code

described in Fig. 12 is used to construct a binary map that

determines the DMM-4 contour partition. From this

pseudo-code, one can conclude that all texture samples

smaller than u are mapped to region 0, while all others

samples are mapped to region 1, generating a binary map.

It is important to notice that it is not necessary depth

information during the generation of the binary map.

Moreover, considering this information, the DMM-4 pat-

tern does not need to be transmitted because the decoder

can use the texture block (which should be decoded before

the depth block) and adaptively generate the DMM-4

pattern.
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1. for i = 1 to N
2. for j = 1 to N
3. if sample[i][j] < u
4. Region 0 sample[i][j]
5. else
6. Region 1 sample[i][j]

Fig. 12 Pseudo-code representing the mapping of samples in regions

0 and 1 in the DMM-4 algorithm
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The Prediction Stage processes the depth map using the

binary map determined in the previous stage and calculates

the average values of all depth block samples mapped in

region 0 (AVG_0) and region 1 (AVG_1) (e.g., Fig. 10).

These average values are selected as the predicted block,

according to the binary map value.

Finally, the Residue Stage of DMM-4 subtracts the

predicted block from the original depth block, generating

the residues. Next, the RD-cost is then calculated for this

DMM-4 block together with the DMM-1 selected block

and the blocks defined by RMD and MPM traditional

HEVC intra-prediction.

3 Bipartition modes architecture implementation

This section describes our scalable architecture to imple-

ment the bipartition modes algorithm. This novel archi-

tecture simplifies the DMM-1 algorithm by removing its

refinement process (Sect. 4.1 discuss the impacts of this

simplification) and maintains the DMM-4 algorithm

unaltered.

The Bipartition Core (BP-Core) is the basic structure of

the designed architecture, which is replicated according to

the size of the encoding block. The architecture has been

developed using a regular structure, allowing two levels of

scalability: (1) targeting different 3D-HEVC block sizes

and (2) targeting various levels of throughput. Section 3.1

presents the BP-Core structure, which can be replicated to

reach the scalability required for different block sizes or

throughputs. Section 3.2 shows the high-level structure of

the proposed scalable architecture.

3.1 Bipartition Core architecture

Figure 13 depicts the BP-Core architecture. The entire

bipartition architecture is assembled replicating K times

(see Sect. 3.2) an array of N 9 N BP-Core in a scalable

shape to reach the throughput that supports to encode a

N 9 N block size.

Each BP-Core receives a pixel value (PIXEL_IN signal)

that carries the texture or depth information of the pixel.

These pixels are stored in two registers controlled by the

ST_TEXT and ST_DEPTH signals, respectively.

Table 2 presents the signals arrangement that controls

the BP-Core operation. The MODE signal selects if DMM-

1 or DMM-4 should be computed, and the combination of

signals OP(0) and OP(1) defines the stage and step of each

algorithm.

In our architecture, the implementation of DMM-1

algorithm is composed of three operations: Main Stage,

which should perform Prediction Step and SAD Step, and

the Residue Stage, which is computed in a single operation:

• Prediction Step (OP(0) = 0 and OP(1) = 0) computes

the average depth value of each region. Thus, the

architecture selects the depth stored pixel to be added to

the previous value of the region that the current pixel

belongs (i.e., depending on the signals PREVIOUS_0

or PREVIOUS_1).

• SAD Step (OP(0) = 0 and OP(1) = 1) computes the

SAD of each wedgelet pattern. Thus, the stored pixel is

subtracted from the average value of the region it

belongs (i.e., AVG_0 or AVG_1). The absolute value

of this result is added to the values generated by

previous BP-Cores (i.e., PREVIOUS_0 and

PREVIOUS_1).

• Residue Stage (OP(0) = 1 and OP(1) = 0) computes

the residues between the predicted sample and the

original signal subtracting PRED, which is the value of

the predicted sample, from the stored pixel. The

obtained results are sent to the output (RESIDUE).

Fig. 13 Schematic of the BP-Core architecture

Table 2 Control signals combination to choose the DMM-1 or

DMM-4 algorithm and its execution stage and step

MODE OP(0) OP(1) Stage Step

DMM-

1

1 0 0 Main Prediction

1 0 1 SAD

1 1 0 Residue –

DMM-

4

0 0 0 Texture

average

–

0 0 1 Prediction –

0 1 0 Residue –
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The implementation of DMM-4 algorithm is also com-

posed of three operations: Texture Average Stage, Pre-

diction Stage and Residue Stage:

• Texture Average Stage (OP(0) = 0 and OP(1) = 0)

computes the average value of the entire texture block.

In this step, our implementation of BP-Core sends

previous values using NEXT_0 signal (NEXT_1 is only

used in latter steps). Similar to the Prediction Step of

DMM-1, the architecture selects the stored texture pixel

to be added to previous values of PREVIOUS_0 and

send this result to the next BP-Core as NEXT_0 signal.

In our implementation, mapping each sample into

region 0 or region 1 is done in Prediction Stage due to

data dependencies.

• Prediction Stage (OP(0) = 0 and OP(1) = 1) subtracts

the average value obtained in the previous stage

(AVG_0) from the stored texture pixel value. The

BP-Core detects if the depth sample should be mapped

to region 0 or region 1 according to the most significant

bit obtained in the subtraction operation. Besides, the

depth stored pixel is added to PREVIOUS_0 or

PREVIOUS_1 signal, according to the mapped region.

• Residue Stage (OP(0) = 1 and OP(1) = 0) performs a

similar computation than that one carried out in the

Residue Stage of the DMM-1 algorithm.

3.2 Bipartition modes architecture

Figure 14 shows a high-level diagram of the proposed

architecture for the bipartition modes of the 3D-HEVC.

This regular and scalable structure is composed of (1)

K 9 N 9 N BP-Cores array; (2) two memories for storing

the DMM-1 patterns (PATTERNS MEMORY) and the

division values (DIVIDER MEMORY); (3) four add trees

(represented by only one add tree for better visualization)

for each N 9 N array; (4) two divider circuits (represented

by only one divider circuit) for each N 9 N array; (5)

K comparator circuits; and (6) K register banks. This

structure scales to all HEVC block sizes (i.e., 4 9 4,

8 9 8, 16 9 16 and 32 9 32) expanding the N 9 N BP-

Core array. Additionally, this structure also enables to vary

the data throughput varying the K factor.

The detailed architecture processing flow is described in

Fig. 15 for the 1 9 4 9 4 (block size 4 9 4) case of study,

where, as presented in Table 1, 58 wedgelets patterns

should be computed in the DMM-1 algorithm along with

DMM-4 algorithm. The cycle diagram presented Fig. 15

could be extended to any available block size. Notice that

when expanding the architecture by the K factor, the

architecture maintains the same cycle diagram by com-

puting K different depth blocks with the same patterns in

the same time instant.

During the first four (N for a generic performance)

cycles of execution, 1 (K for a generic performance) array

containing four (N for a generic performance) BP-Cores is

filled with PIXEL_IN signal (1 byte) containing a line of

the depth block. Thus, the generic architecture has a

bandwidth of K 9 N bytes (4 bytes in this case). As DMM-

4 algorithm requires first the texture data to starts it pro-

cessing and DMM-1 algorithm only requires the depth

block, DMM-1 can start being processed, immediately.

As storing pixels does not require passing the data

through the processing path, during the next four cycles

(N for a generic performance), the texture block is inserted

in four (N for a generic performance) BP-Cores per cycle;

in the same moment the DMM-1 starts processing the first

patterns in its Prediction Step. Moreover, one can notice

from Fig. 15 that the DMM-4 algorithm is performed after

computing the first six (N?2 for the generic case) patterns.

The architecture calculates N?1 DMM-1 patterns, in

pipeline mode with DMM-4 execution, to maximize the

architecture performance.

The signals of the BP-Cores positioned in the east col-

umn of each N 9 N BP-Cores array are added in two add

trees (one for region 0 and one for region 1). These results

are sent to two dividers in the DMM-1 Prediction Step,

which are responsible for obtaining the average value of

each region. Besides, the sum of these results is sent to the

comparator in the DMM-1 SAD Step, which is responsible

for finding the best SAD among all evaluated patterns until

that moment. Then, the comparator stores the best SAD,

the pattern and the average value of each region.

In the DMM-4 execution, the sum obtained by the add

trees is sent to the divider circuit to get the average value of
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the texture block in the Texture Average Stage (where only

one add tree is used and only one divider is used). More-

over, NEXT_0 and NEXT_1 values of BP-Cores posi-

tioned in the east column are added, and its result is divided

by the number of elements that composes each region (they

are added to the remaining two add trees) during the

DMM-4 Prediction Stage.

During both, DMM-1 Prediction Step and SAD Step,

and DMM-4 Texture Average Stage and Prediction Stage,

the information of region 0 and 1 of the previous BP-Cores

(i.e., NEXT_0 and NEXT_1, respectively) is sent in pipe-

line stages to the next cores. The signals NEXT_0 and

NEXT_1 are connected to signals PREVIOUS_0 and

PREVIOUS_1 of the following BP-Core to achieve higher

performance. The east BP-Cores send their following val-

ues to the add tree so that all values are added in one

pipeline stage. Moreover, one can notice from the detached

patterns in Fig. 15 that the DMM-1 Prediction Step and the

SAD step are interlaced.

When a pattern reaches the end of the DMM-1 Predic-

tion Step (i.e., the division is computed), the average value

of each region is stored in the register bank, and this

information is feedback in the architecture to process the

SAD of that pattern.

When all SADs have been computed, the average value

of the best pattern is feedback to the register bank

according to the region the sample belongs, which will be

inserted as the signal PRED in the BP-Cores to compute

the residues in N cycles.

In DMM-4, when the total texture average is computed,

this value is stored in the register bank, and the information is

inserted in the next cycles in the BP-Cores array to allow

computing the DMM-4 Prediction Stage. Besides, when this

step ends, the average value of each region along with the

region is inserted into the register bank, and these values are

used to compute the DMM-4 residues in N cycles .

The inclusion of DMM-4 together with DMM-1 algo-

rithm increases only two cycles the time required for an

entire block computation when compared to using only the

DMM-1 algorithm. Table 3 presents the accurate number

of cycles according to the block size regarding only DMM-

1 computation and both bipartition modes encoding.

Moreover, the required frequency for real-time encoding

1080p@30fps videos is presented in Table 3, which can be

computed using (3), where H and W are the resolution

height and width, respectively; BSize is the block size

width; Cycles are the required cycles for a given block size

(presented in Table 3), and Fr is the frame rate.

Analyzing (3) along with Table 3, one can notice that

8 9 8 blocks require the higher frequency to achieve real-

time processing. It happens because, in the first part of the

equation, where the number of blocks of a given size inside a

frame is computed, there are much more 8 9 8 blocks than

16 9 16 and 32 9 32. Moreover, each of these blocks

requires almost the same number of cycles to be calculated;

consequently, the 8 9 8 requires higher frequency than the

others.

Freq Hzð Þ ¼ H �W
BSize2

� Cycles BSizeð Þ � Fr ð3Þ

4 Experimental results

This section contains the experimental results of this work.

Section 4.1 presents an analysis of the impact caused by

the DMM-1 refinement removal, and Sect. 4.2 shows the

synthesis results for different configurations of the pro-

posed architecture.

4.1 Removal of DMM-1 refinement analysis

The DMM-1 algorithm without the refinement step was

evaluated using the HTM-16.0 reference software [25],

considering the random access mode and using the videos

defined in the common test conditions (CTC) for 3D videos

[32]. Table 4 illustrates the results, showing that the removal

of DMM-1 refinement step causes a BD-rate [33] degrada-

tion of 0.09 % and 0.25 %, in average, for the synthesized

views, for random access and all intra cases, respectively.

1 2 3 4 5 6 1 2 3 4 5 6 7
1 2 3 4 5 6 1 2 3 4 5 6

51 52 53 55 56 57 58 54 55 56 57 58
50 51 52 53 55 56 57 58 54 55 56 57 58

1351 6 13111
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BP-Core 4
Add Trees
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Fig. 15 Cycle diagram of bipartition modes architecture for 1 9 4 9 4 architecture configuration
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Table 5 presents the required memory bits considering

that all wedgelets patterns should be stored in a PAT-

TERNS MEMORY inside the architecture. The compar-

ison between storing all wedgelets and removing the

refinement shows memory savings higher than 30 %. Due

to the large memory resources that should be spent to store

all available refinement wedgelets, the removal of DMM-1

refinement in a hardware design presents a sound trade-off

between hardware resources, performance and coding

efficiency.

In a world dominated by battery-based devices, low-

complexity systems are desired. In this direction, our

simplification that removes DMM-1 refinement and redu-

ces significantly the hardware complexity is essential for

allowing a low-power hardware design.

Simplifications of the DMM-1 wedgelets patterns have

already been proposed by other works such as [34], where

27.8 % of reduction is obtained with coding losses of

0.03 % and 0.05 % in random access and all intra. How-

ever, such technique requires sharing the memory among

different block sizes, which cannot be applicable in the

proposed hardware design.

4.2 Hardware results for bipartition modes

architecture

We described in VHDL and synthesized for ST 65 nm

standard cells technology, the basic configuration of the

designed scalable architecture. All synthesis results were

intended to achieve real-time processing with HD

1080p@30fps depth maps.

The first four lines of Table 6 present the synthesis

results of this experiment targeting different block sizes

and using K = 1. As one can notice, comparing synthesis

frequencies to required frequencies in Table 3, all archi-

tecture configurations were capable of reaching real-time

processing with HD 1080p@30fps videos.

One can notice that gates and power do not grow lin-

early when the block size increase. It happens because the

number of available wedgelets and the required clock

cycles to evaluate an entire block does not grow linearly.

Consequently, hardware resources and power consumption

have the same behavior, as demonstrated in Table 6.

Our second scalability axis can be used to increase the

throughput of the architecture. As in 3D video coding, it

can be necessary to encode more than one depth view; our

architecture allows increasing its throughput by a factor of

K, which multiplies by K the architecture performance.

Moreover, when increasing by this K factor, PATTERNS

MEMORY and DIVIDER MEMORY should be shared

between the different N 9 N BP-Core arrays. Conse-

quently, the architecture resources and power consumption

would not grow linearly.

As up to the best of our knowledge, this article is the

first one that proposes an architecture for all 3D-HEVC

bipartition modes; it is not possible to compare with related

works. Moreover, the only work that already proposed a

bipartition mode architecture was [24], where only FPGA

Table 3 Required clock cycles

and frequency according to

bipartition mode algorithm and

block size

Encoding algorithm Block size

4 9 4 8 9 8 16 9 16 32 9 32

DMM-1 only

Cycles per block 132 648 816 876

Required Freq (MHz) @30 1080p fps 514 630 199 54

Entire bipartition modes

Cycles per block 134 650 818 878

Required Freq (MHz) @30 1080p fps 521 631 199 54

Table 4 BD-rate when removing DMM-1 refinement step

Video BD-rate random access (%) BD-rate all intra (%)

Balloons 0.16 0.21

Kendo 0.00 0.24

Newspaper_CC 0.19 0.40

GT_Fly 0.02 0.20

Poznan_Hall2 0.03 0.23

Poznan_Street 0.10 0.09

Undo_Dancer 0.08 0.25

Shark 0.15 0.41

Average 0.09 % 0.25 %

Table 5 Memory reduction when DMM-1 refinement is removed

Block size Memory (bits) Reduction (%)

All wedgelets Without refinement

4 9 4 1376 928 32.6

8 9 8 51,328 20,096 60.8

16 9 16 130,560 98,304 24.7

32 9 32 130,560 98,304 24.7

Total 313,824 217,632 30.6
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results were presented. Considering it, Table 6 also pre-

sents synthesis results of the proposed architecture for all

available block sizes, targeting an Altera Stratix V FPGA

(to allow a comparison using the same FPGA used in our

previous work). Furthermore, Table 6 illustrates the results

obtained by work [24]. For small block sizes (i.e., 4 9 4

and 8 9 8), the Altera synthesis tool did not include a

memory to store the DMM-1 patterns and the divider

values because it considered the use of multiplexers instead

of memory bits.

The work [24], which is our previous work that imple-

ments only the DMM-4 architecture, was not designed to

process 4 9 4 blocks because when it was designed, the

version of 3D-HEVC reference software did not include

4 9 4 blocks when encoding DMM-4. Also, DMM-4

architecture presented in [24] does not present a regular

pattern design and consequently it does not allow easily

modifying to insert 4 9 4 blocks or even higher blocks size

in futures video coding standards when beyond high defi-

nition videos should be used.

5 Conclusions

This work presented a real-time scalable and low-cost

architecture for the bipartition modes based on the 3D-

HEVC standard, which is composed of both DMM-1 and

DMM-4 algorithms. The DMM-1 algorithm was simpli-

fied, removing the refinement process and reducing in

30 % the necessary memory to store all available wedge-

lets (which represents almost 100 Kbits) with a drawback

of only 0.09 % of BD-rate in random access mode, in

average. The designed architecture merges the execution of

DMM-1 and DMM-4 using shared resources to allow better

resources usage, smaller power consumption and to

achieve higher throughput. The designed architecture was

synthesized for standard cell ST 65 nm technology when it

achieved real-time processing for HD 1080p videos. It is

crucial to detach that the designed architecture is scalable,

and it can easily be adapted to process different block sizes

and different throughputs according to the application

requirements.
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