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The latest technologies of integrated circuit manufacturing allow billions of transistors to be arranged on

a single chip, enabling the chip to implement a complex parallel system, which requires a communications

architecture that has high scalability and a high degree of parallelism, such as a Network-on-Chip (NoC).

These technologies are very close to the physical limitations, which increases the faults in manufacturing

and at runtime. Therefore, it is essential to provide a method for fault recovery that would enable the NoC to

operate in the presence of faults and still ensure deadlock-free routing. The preprocessing of the most proba-

ble fault scenarios enables us to anticipate the calculation of deadlock-free routings, reducing the time that is

necessary to interrupt the system during a fault occurrence. This work proposes a technique that employs the

preprocessing of fault scenarios based on forecasting fault tendencies, which is performed with a fault thresh-

old circuit operating in accordance with high-level software. We propose methods for dissimilarity analysis

of scenarios based on cross-correlation measurements of link fault matrices. Experimental results employ-

ing RTL simulation with synthetic traffic prove the quality of the analytic metrics that are used to select

the preprocessed scenarios. Furthermore, the experiments show the efficacy and efficiency of the proposed

dissimilarity methods, quantifying the latency penalization when using the coverage scenarios approach.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The evolution of Very-Large-Scale Integration (VLSI) semiconduc-

or technology enables us to integrate hundreds or even thousands of

ores into a single circuit. This massive integration allows us to imple-

ent the entire functionality of a system into a single chip, generat-

ng a System-on-Chip (SoC). The International Technology Roadmap

or Semiconductors (ITRS) foresees thousands of Processing Elements

PEs) integrated into an SoC by 2020 [1]. The Network-on-Chip (NoC)

echnology will play a key role in the implementation of these highly

ntegrated SoCs. The two-dimensional (2D) mesh is the most pop-

lar NoC topology; it offers a simple and regular structure, and the

mall wire length is suitable for the tile-based design [2]. Under the

oC communication paradigm, each PE that is placed in a tile is in-

erconnected throughout with routers and links to other PEs, and the

ommunication is normally performed by packet transmission [3].
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Recent submicron technologies provide more process variabil-

ty, increasing the quantity of defective components [4,5]. A defec-

ive router or link could ruin the 2D mesh communication structure,

hich would lead to an irregular topology (i.e., topologies derived

rom regular networks with induced faults or faulty links, also known

s agnostic topologies) [6]. As a consequence, static and determin-

stic routing algorithms that are tailored to a regular NoC topology

ill not operate properly, thus rendering the chip useless [2]. Aim-

ng to avoid this problem, the design of the routing algorithms must

rovide some degree of fault-tolerance while ensuring deadlock-

reeness. There are two approaches to achieve deadlock-free rout-

ng algorithms for irregular topologies: (i) one approach is based on

irtual channels (e.g., [7–12]), which requires a large extra area for

ultiplexing schemes and implies significant energy consumption

y the buffers of the routers; and (ii) another approach is based on

urn prohibition (e.g., [13–17]), which avoids deadlock by eliminat-

ng a subset of network turns. Our work employs this last approach

sing tables in each router that implement the routing algorithm.

owever, the area consumption and power dissipation make table-

ased techniques prohibitive for large networks. Aiming to overcome
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these problems, several studies (e.g., [6,18,19]) have proposed to com-

press the routing table. Our work employs a technique that is similar

to [6], which compresses the routing table according to the NoC re-

gions.

Efficient implementations of routing strategies address the dy-

namicity of the faults with fast computation and reconfiguration

of the fault-tolerant topology without requiring packet retrans-

mission. This fast computation and reconfiguration could combine

some static and/or dynamic tasks. For example, all of the possi-

ble fault scenarios could be computed before the system operation,

which characterizes a static computation in opposition to the ap-

proach that computes new scenarios only during the system op-

eration. Independent of the computation dynamicity, the reconfig-

uration could occur statically or dynamically. In the dynamic net-

work reconfiguration, the entire system remains operating and the

network traffic is not stopped, which implies that the router must

know all of the communication possibilities to avoid deadlock condi-

tions. On the other hand, in the static approach, the network enters

into a reconfiguration phase, where it is halted and all packets are

drained.

If each PE (connected to a router) preprocesses and stores sce-

narios, the system reconfiguration could be improved, which would

reduce the time that the network is halted waiting for the routing

algorithm computation that handles the topology changes. Unfortu-

nately, preprocessing all of the possible fault scenarios is a very com-

plex problem, which consumes time and memory. Aiming to min-

imize this problem, a system could statically elect and store only

some scenarios to be used in an appropriate situation, such as a

virtualization perspective or low power scenario. Additionally, in a

given set of fault scenarios, there are some scenarios that can be dis-

carded because they are covered by others, which enables us to min-

imize the memory area that is required to store the preprocessed

scenarios.

This work employs Phoenix [20] as the fault-tolerant target sys-

tem, which consists of a 2D mesh NoC and a layer for an operat-

ing system. Using Phoenix, this paper proposes an efficient approach

to addressing dynamic faults on NoC links. This approach consists

of preprocessing fault scenarios to quickly reconfigure the network

with new deadlock-free routing, in the case of fault detection. Ad-

ditionally, this work proposes a method for reducing a large set of

scenarios based on cross-correlation to identify dissimilarities in sets

of irregular topologies. This method consists of fault-monitors that

are placed in each input port of the Phoenix NoC routers. Each fault-

monitor evaluates whether the link is faulty or if there is a fault ten-

dency. This information is transmitted to a PE that is locally con-

nected to the router, and a communications driver placed inside

the operating system preprocesses new scenarios based on this fault

information.

This paper is organized as follows. Section 2 presents related

work on routing mechanisms and reconfiguration processing. Sec-

tion 3 describes the Phoenix architecture, which is the target archi-

tecture employed here. Section 4 describes the processing flow of

fault-tolerant scenarios. In Section 5, we present the fundamentals

of the fault scenario preprocessing. Section 6 presents some syn-

thesis results of Phoenix for a specific MPSoC architecture. Section

7 describes the methodology and experimental results of the ex-

ploration of analytic metrics for runtime latency estimation, while

Section 8 analyzes the methods and costs for the preprocessing

approach. Finally, Section 9 presents the main conclusions of this

work.

2. Related work and main contributions

Strategies applied to fault-tolerant routing for irregular NoCs can

employ static or dynamic fault models. In the first strategy, all of
he tolerable faults must be known at the design time. Then, dur-

ng the system operation, when a fault is discovered, the system

s halted, the packets are dropped, and a new deadlock-free rout-

ng is employed. The second strategy does not need to halt the net-

ork, and the routing computation is performed at runtime. More-

ver, the second strategy requires complex routing distributed mech-

nisms to avoid inconsistences (e.g., in routing tables) during the

etwork reconfiguration. The strategies that use static fault models

e.g., [21,22]) are less complex and less area consuming, but they can

olerate only a limited quantity of faults [23]. On the other hand,

he routing mechanisms of strategies that use dynamic fault mod-

ls (e.g., [23–25]) are more complex, but they allow many more

hanges to the network topology. This work focuses on this last

pproach.

A reconfigurable fault-tolerant system for irregular networks re-

uires mechanisms for (i) fault detection and diagnosis; (ii) fault

ecognition reporting; (iii) deadlock-free routing computation; and

iv) routing reconfiguration (e.g., routing tables and auxiliary

ircuits). This section discusses studies that are related to the

ast mechanism, which is the main focus of this work, account-

ng for only network architectures without virtual channels. Addi-

ionally, the routing reconfiguration is composed of the routing

echanism and reconfiguration processing ; both are discussed

ext.

The routing mechanism defines how the routing information is

omputed and stored. To support reconfiguration, the routing mech-

nism needs resources that could be changed during the runtime,

hich normally encompasses tables placed in each NoC router, stor-

ng the routing information. Routing tables support a large quantity

f topologies and are easy to implement. On the other hand, they

o not scale with an increase in the NoC size. Aiming to reach the

calability that is required for current and future highly populated

oCs, several studies employ techniques to compress or minimize the

izes of the routing tables, which is a complex task and could imply

loss of performance and/or an impossibility of reaching all of the

arget nodes. Examples of these studies are (i) Palesi et al. [18], which

ses a table compression technique for application-specific routing;

nd (ii) Bolotin et al. [19], which uses a table minimization tech-

ique that applies a fixed function combined with minimal deviation

ables.

Scalability is also achieved by dividing the network into regions

nd mapping those regions onto routing table entries. For exam-

le, Mejia et al. [6] proposed the Region Based Routing (RBR) ap-

roach, where each node contains a set of regions that are based

n paths that cover all of the communications. RBR could be em-

loyed with a specific routing application, enabling the use of a small

umber of regions and assuring full network coverage. Fukushima,

ukushi and Yairi [26] propose another region-based approach that

s based on a set of rectangular faulty regions and the correspond-

ng deviation paths, which are employed to avoid the faulty re-

ions. Their approach improves the work of Holsmark et al. [27],

roviding a complete and deadlock-free routing that reduces the

aulty regions’ sizes. Consequently, it reduces the number of nodes

o be deactivated and the routing implementation complexity. Al-

hough the region-based approaches scale with the NoC size, it is

ecessary to have a large number of regions to maintain full NoC

overage with efficient paths, which prohibits a large routing ta-

le reduction. Aiming to overcome this problem, Rodrigo et al. [2]

mproved the previous LBDR work [28], proposing the universal

ogic-Based Distributed Routing (uLBDR), which provides an effi-

ient routing mechanism using a small set of configuration bits to-

ether with logic cells instead of large routing tables implemented

n memories. The main limitation of their work is that to cover

ll of the deadlock situations, the approach must use virtual cut-

hrough switching, which limits the packet size to the length of the

uffers.
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Fig. 1. Phoenix distributed architecture [20].
The reconfiguration processing defines the computation cost of

aking dynamic routing decisions, which could be implemented in

ardware, in software or in both, depending on the application re-

uirements.

Fick et al. [24] describe the architecture of Vicis, which is a fault-

olerant NoC that preserves the functionality of the system based

n the inherent redundancy found in most networks. Vicis employs

outing reconfiguration at the router and network levels. The two-

evel reconfiguration allows it to confine some in-router faults and

he corresponding action at the router level, thus simplifying the

rocess of reconfiguring and allowing the network performance to

egrade gracefully while increasing the quantity of network faults.

eng et al. [29] propose a fault-tolerant solution for a bufferless

oC that includes the detection of both transient and permanent

aults. They propose the reconfiguration of routing tables during

acket transmission through the Reconfigurable Fault-Tolerant De-

ection Routing (FTDR) algorithm to tolerate permanent faults with-

ut deadlock and livelock situations and without loss of packets

uring the reconfiguration process. In addition, their work presents

hierarchical FTDR (FTDR-H) algorithm, to reduce the area over-

ead of the FTDR router. The experimental results show that FTDR

nd FTDR-H are implemented with reliable bufferless routers, which

an protect against any fault distribution pattern. Although there

s variation in the studies of Fick et al. [24] and Feng et al. [29],

oth are conceptually similar, suggesting that a hierarchical imple-

entation is a sound approach to optimizing the reconfiguration

rocess.

Strano et al. [23] propose the Overlapped Static Reconfigura-

ion (OSR), which is an old technique that was used in off-chip

etworks; however, it is now adapted to the NoC restrictions.

heir approach allows new packets to be injected into the net-

ork while old packets are routed or dropped. The authors use

oken signals to separate the old packets from new ones; and

uring the token signal propagation, the NoC retains both con-

gurations, the previous and the new one. This approach en-

bles fast recovery, providing little time to reload and have the

oC working properly, but a complex hardware implementation is

mplied.

Triviño et al. [25] use a virtual-regions strategy to improve the per-

ormances of the applications that are simultaneously running on a

hip MultiProcessor (CMP), which splits the CMP into several regions.

heir approach dynamically reconfigures the network partitions, gen-

rating irregular NoC topologies that isolate the traffic of the applica-

ions and consequently reduce or even eliminate the interferences

mong inter-application messages.

Our work employs a dynamic fault model that encompasses three

hases: (i) fault detection and fault propagation; (ii) deadlock-free

outing computation; and (iii) routing reconfiguration. The main con-

ribution of our work is in the routing reconfiguration phase that pro-

ides fast deadlock-free routing reconfigurations for irregular NoC

opologies. Our approach is based on preprocessing the most likely

ault scenarios, which are computed according to the detection of the

ink fault tendency. Our approach, with the information on the fault

endencies, enables us to employ more complex and time-consuming

lgorithms that are aimed at producing optimal solutions for large

oCs without compromising the execution time, once the routing ta-

les were already preprocessed. Moreover, in a given set of scenar-

os, some scenarios can cover others, which allows us to diminish a

arge set of preprocessed scenarios. This approach provides two new

nd important contributions: (i) an analytic metric to choose at run-

ime the substitution scenario that provides the most efficient rout-

ng; and (ii) a novel method to reduce a large set of scenarios based on

ross-correlation measures to identify dissimilarities in sets of irregu-

ar topologies, which minimizes the storage area of the preprocessed

cenarios.
. Phoenix architecture

Fig. 1 shows the Phoenix distributed fault-tolerant architecture

20] over an NoC-based MPSoC platform that consists of a hardware

art (i.e., HwPhoenix) placed on each router of the NoC and a software

art (i.e., OsPhoenix) placed on the operating system of each PE com-

osed of a paired processor-memory. Additionally, each PE is con-

ected through an NoC interface to the local port of each router. Each

eld of a Phoenix packet has a 1-flit length, and the number of flits in

packet is limited to 2(flit size in bits). Phoenix uses two types of pack-

ts: (i) the data packet, which carries the PE messages; and (ii) the

ontrol packet, which controls the fault-tolerant mechanisms. The Os-

hoenix communicates with the HwPhoenix via bidirectional control

ackets that are transmitted through the local port of each PE. Ex-

mples of control packets are (i) test_links, which is employed when

he OsPhoenix needs to test all of the links of the local router; (ii)

r_rout_tab, rd_rout_tab and wr_rout_tab, which are used to trans-

it, read and write the Routing Table of each router (refer to Section

.1), respectively; and (iii) tr_fault_tab, rd_fault_tab and wr_fault_tab,

hich are analogous to the previous commands but account for the

ault Table of each router.

.1. OsPhoenix fundamentals

The OsPhoenix is a software layer placed into the PE’s operating

ystem, which contains drivers for high-level operation and routines

hat implement the distributed fault-tolerant mechanisms. The Os-

hoenix is perceived by the PE’s operating system as a network driver

nterface that makes the fault-tolerant mechanism of the NoC trans-

arent to the system operation. Fig. 2 depicts the main modules of

sPhoenix and their interactions.

The OsPhoenix’s Kernel consists of (i) the Control Module, which

anages the fault-tolerant mechanism; and (ii) the NoC Driver, which

ontains the routines to convert logical addresses of the application

essage to physical addresses of the network, and vice versa. Addi-

ionally, this driver makes the fault-tolerant mechanism to the PE’s

perating system transparent because control packets are exchanged

etween the Control Module and NoC Interface without the knowl-

dge of the PE’s operating system.

The Global Fault Table stores the status (i.e., whether a link is

ested, faulty, with fault tendency or operating properly) for all of the

oC links. This table is a global copy of all of the router Fault Tables

refer to Section 5.1). The Control Module writes/reads this table to

ynchronize the fault link knowledge of the OsPhoenix of all of the

Es.

The Scenarios Processing Module, which is the key aspect of

his work, computes routing tables according to the fault or ten-

ency of fault on links when commanded by the Control Module.

t uses the fault links information that is provided by the Global

ault Table together with new fault information to search a previous
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Kernel

NoC DriverControl Module

NoC Interface

OS Modules
Scenarios 
Processing 

Module

OsPhoenix

Scenarios and

Memory

(SRT Memory)

Global Fault 
Table

Fig. 2. Block diagram of the OsPhoenix architecture. The dashed line encloses OsPho-

enix and contains five main elements (i.e., the memory, tables and processing mod-

ules), and the black arrows show how the elements are interrelated.
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computed scenario that covers this new fault situation, in the Sce-

narios and Routing Table Memory (SRT Memory). If a candidate sce-

nario is found, then the associated Routing Table contains a new

routing and can be transmitted to the HwPhoenix. Otherwise, this

module preprocesses a new fault-tolerant scenario and its associated

RBR Table.

4. Scenario processing flow

The Phoenix NoC starts with all of the local routing tables config-

ured to operate with the XY routing algorithm. As soon as OsPhoenix

is loaded, the preliminary link tests are commanded. If all of the links

are working properly, the network starts operating. In the case of de-

tecting the faults, the OsPhoenix and HwPhoenix perform several steps

on all of the PEs and routers, to establish a new routing algorithm

[20] that allows deadlock-free communication. Aiming to capture dy-

namic faults during the network operation, the FPM modules search

for permanent faults and fault tendencies in all of the NoC links. The

information on these faults is transmitted to OsPhoenix for appropri-

ate handling. Fig. 3 illustrates a Message Sequence Chart (MSC) that

contains the steps that are taken after an FPM module detects a fault

on a link.
Fig. 3. MSC of the fault processing mechanism whe
The FPM notifies the Fault Monitor whenever a faulty link or fault

endency is detected. If this fault is already annotated in the Fault Ta-

le, the information is not propagated. Otherwise, the Fault Monitor

tores the fault information in the Fault Table and informs this event

o the Fault Control Machine, which propagates this event to the Os-

hoenix through a control packet that contains the Fault Table.

Inside the OsPhoenix kernel, the NoC Driver module captures the

ontrol packet and transmits it to the Control Module, which checks

f the fault is already annotated in the Global Fault Table. In the case

f positive checking, the Control Module considers that the problem is

lready known and treated and concludes the fault processing, i.e., no

ther message is generated. Otherwise, the Control Module updates

he Global Fault Table, and through a control packet, requests to the

ault Control Machine the broadcast propagation (i.e., to all neighbor-

ng routers) of the control packets that contain the fault information.

imultaneously, the Control Module commands the Scenarios Process-

ng Module to proceed with the next fault-tolerant steps (e.g., to pro-

ess a new fault coverage scenario).

The control packets are propagated among neighboring routers

ntil all of the OsPhoenix are notified. Any neighboring router that

eceives a control packet with the fault information propagates the

ame information to its OsPhoenix, following the same steps de-

cribed above. The control packet propagation generates extra com-

unication traffic. However, because the control packet is normally

hort (i.e., a 5-flit length in our implementation) and it is transmit-

ed only in the presence of new fault detection, they do not impact

ignificantly on the overall data communication. Additionally, each

sPhoenix contains a timing mechanism to define a maximum time

or network stabilization, which is reached when all of the OsPhoenix

eceive the same fault information. This mechanism is used when the

etwork is partitioned by a sequence of faulty links that precludes

ransmitting control packets to all of the routers [20].

Fig. 4 illustrates the fault-tolerant steps when the Scenarios Pro-

essing Module receives a fault message, which can be of two types:

aulty link or fault tendency.

When a message of fault tendency is received, the Scenarios

rocessing Module verifies whether the fault is already covered by

ome scenario that was previously computed. In case of a posi-

ive answer, no action is taken. Otherwise, aiming to enable a fast
n a faulty link or a fault tendency is detected.



J. Silveira et al. / Microprocessors and Microsystems 40 (2016) 137–153 141

Fig. 4. Scenarios Processing Module operation according to the fault type.
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outing reconfiguration, this module computes and stores in the SRT

emory, together with the associated routing tables, a new set of sce-

arios that cover this fault. However, the number of fault scenarios

ises exponentially with the quantity of faulty links. To address this

omplexity, this paper proposes to preprocess a limited set of scenar-

os based on a dissimilarity method that uses the cross-correlation

f fault matrices to better meet the applications requirements. The

reprocessing approach can be employed to fulfill several applica-

ions requirements (e.g., to reduce power dissipation and to achieve

omogeneous thermal distribution). Nevertheless, this work uses la-

ency minimization as an application requirement and employs the

verage Routing Distance (ARD) as a metric for fast latency estima-

ion. The dissimilarity method and ARD metric are explained next in

ection 5.

When a message of a faulty link is received, the decision about

etwork recovery is preeminent because the FPM module can no

onger recover defective packets, which prevents network commu-

ication. The Scenarios Processing Module checks whether the fault is

overed by the scenarios that are stored in SRT Memory. If the fault is

overed, then OsPhoenix can perform the fast routing reconfiguration.

he Scenarios Processing Module searches the one that better fulfills

he application requirement and sends a control packet to the Control

odule that contains the routing table that will be configured on the

ocal router. Otherwise, the routing reconfiguration takes much more

ime. The Scenarios Processing Module starts computing the best set of

overage scenarios along with the minimum cost routing algorithm,

nd at that time, it configures the routing table, as described above.

The Phoenix platform accounts for the premise that “all PEs have

he same algorithm to generate scenarios and routing paths”. This

remise allows for each OsPhoenix to have its own Global Fault Table

nd its own SRT Memory, and all of the OsPhoenix’s (i.e., one per PE)

perate independently and in a distributed way. This arrangement

lso avoids having it be necessary for routing tables to be propagated

hrough the NoC because each router has a Routing Table that is set by

ts local OsPhoenix.

. Fundamentals of the fault scenarios preprocessing

The high variability of the most recent technologies applied to

he manufacture of CMOS circuits makes these circuits susceptible

o transitory changes, for example, voltage fluctuations and tem-

erature variations, which can be perceived by the monitoring sys-

em as a dynamic operation fault. In the context of a system that

as many and frequent dynamic faults, a preprocessed scenarios

pproach is important to meet the requirements of the perfor-

ance, latency and throughput. Additionally, the greater the num-

er of processed scenarios, the greater is the fault coverage. Un-

ortunately, preprocessing a large number of scenarios is a very
omplex problem, which consume both time and memory. This sec-

ion describes the fundamentals of the scenario preprocessing and

ow the number of scenarios can be reduced without decreasing the

uality of the fault-tolerant solution.

.1. HwPhoenix fundamentals

Phoenix NoC employs a direct 2D mesh topology with m lines and

columns, which consists of m × n routers with bidirectional links

o connect with the other routers and PEs. The NoC employs routing

ables for the source routing decisions, and the OsPhoenix performs

outing algorithms to fill the routing table according to the positions

f the PEs and the faulty links. Furthermore, the Phoenix NoC imple-

ents wormhole switching, which divides the packets into flits (the

it size of the Phoenix is equal to the phit size), demanding only small

uffers for data storing. Additionally, the Phoenix NoC uses credit-

ased flow control to reduce the number of clocks that are required

or the flit transmissions.

Fig. 5 shows the Phoenix router architecture, which includes

echanisms for packet routing and fault-tolerance. The basic packet

outing mechanism of Phoenix router encompasses four set of com-

onents, which are described next: (i) Four bidirectional ports (north,

outh, east and west) dedicated to interconnect routers and a bidi-

ectional port (local) that enables communication between the router

nd its local PE. All of the input links contain configurable buffers that

re used when packets congest the routing path; (ii) a Crossbar Switch

hat establishes unblocking connections between input and output

orts; (iii) a Routing Table that associates regions of the NoC with out-

ut ports; and (iv) a Switch Control circuit that performs packet rout-

ng and arbitration according to the packet header and Routing Table

ontent. The arbitration follows a dynamic rotating policy to ensure

hat all of the incoming requests are processed, which avoids the star-

ation phenomenon.

Phoenix NoC employs distributed routing in which routes are

omputed according to the Routing Table, which is initialized with

Y routing. Nonetheless, depending on the occurrence of faults, a

ew deadlock-free routing is provided by OsPhoenix that modifies the

outing Table. The NoC routing algorithm is similar to RBR [6], which

roups target addresses into regions to reduce the Routing Table size.

n addition, the Routing Table provides several paths, even in the pres-

nce of faults, with a minimum of four regions. If the Routing Table

ize increases, then OsPhoenix provides an alternative for the mini-

um path using, e.g., heuristic algorithms.

The fault-tolerance mechanism implemented in each router of

he HwPhoenix includes three types of circuits: (i) a fault detec-

ion and correction module that contains a Hamming Encoder (HE),

amming Decoder (HD) and Fault Prediction Module (FPM), which

s placed in each one of the bidirectional links that interconnects

he routers; (ii) a Fault Monitor that communicates with the FPM
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Fig. 5. The basic components of Phoenix router architecture. The main components of HwPhoenix are bounded by dashed lines.
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to set the status of the links on the Fault Table according to a two-level

fault model; and (iii) a Fault Control Machine, which controls the Fault

Monitor and the FPM and communicates via control packets with the

OsPhoenix and with the Fault Control Machine of other routers.

Fig. 6 depicts the two-level fault model that is implemented in

each Phoenix router. The first level is a 4-field vector in which each

field stores the operation status of the north, south, east and west

links, which contains two bits to inform whether the link is (i) not

verified, (ii) faulty, (iii) operating properly, or (iv) operating with fault

tendency. The second level complements the first level, providing ex-

tra information about the quality of the link. This second level, which

is physically placed inside each FPM, has counters with the operation

status of the output link: (i) No Error (NE), (ii) Corrected Error (CE)

and (iii) Detected Error (DE). In the example of Fig. 6, the counters

have different lengths to implement a window of events to capture

the probabilities of NE, CE and DE.

The Phoenix implements two mechanisms for testing the link

qualities: a static and a dynamic mechanism, which are independent
NE4

NE4

NE4

NE4

Level 1Level 1
StatusPort

NORTH Bit0Bit1

SOUTH Bit0Bit1

EAST Bit0Bit1

WEST Bit0Bit1

2 bits

dleifEN

NE1NE3 NE2

NE1NE3 NE2

NE1NE3 NE2

NE1NE3 NE2

NE5NE6

NE5NE6

NE5NE6

NE5NE6

Fig. 6. The two-level fault model (i.e., Level 1 – F
ut complementary. The static link test starts with OsPhoenix send-

ng, through the router local port, the test_links control packet, to

he HwPhoenix. The Fault Control Machine interprets this command as

roadcasting a predefined test packet to all of the output ports except

or the local output port. When a neighbor router receives the test

acket, it loops back a packet with the same information. Then, the

ault Monitor detects whether the link is faulty or not, sets this infor-

ation on the Fault Table and informs this procedure to the Fault Con-

rol Machine, which sends the tr_fault_tab control packet containing

he Fault Table to the OsPhoenix [20], with a higher priority assigned to

inimize the control packet latency. The static mechanism sets only

he Level 1 of the fault model with a “faulty” or “operating properly”

tatus. Typically, the OsPhoenix produces a test_links control packet

hen the system is started or asynchronously by a high-level com-

and (i.e., provided by the application layer – this procedure is not

iscussed here). Note that although the dynamic mechanism does not

nterrupt the network operation, the static mechanism must stop the

outer communication when not all of the links are verified.
Level 2Level 2
dleifEDdleifEC

NE0 CE1 CE0CE3 CE2CE4 DE1 DE0DE2

NE0

NE0

NE0

15 bits

CE1 CE0CE3 CE2CE4 DE1 DE0DE2

CE1 CE0CE3 CE2CE4 DE1 DE0DE2

CE1 CE0CE3 CE2CE4 DE1 DE0DE2

ault Table; Level 2 – Link status counter).
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To implement the dynamic link test, each bidirectional link con-

ains an HE and HD to perform a strategy that is similar to the strategy

sed in [30], which identifies fault tendencies using circuits based on

threshold. The HD, which is placed on the input of each buffer, re-

eives the data plus the redundancy bits encoded by the HE of the

djacent router. The HD module can correct one bit flip and detect

t most two faults in a data flit, and thus, the module informs the

ommunication status by the signals NE, EC and ED. The HE mod-

le generates the redundancy bits according to the flit that is trans-

itted. Additionally, associated with each data link between routers,

here are control signals to request the retransmission of faulty pack-

ts. However, this mechanism is omitted here because this aspect is

ot the focus of the present paper.

Based on monitoring the density of acknowledges and negative-

cknowledges (ACKs/NACKs), an error detection and correction cir-

uit distinguishes between transient and non-transient faults, and

he FPM, which is placed inside the Fault Monitor, measures the den-

ity of the errors that are corrected and deduces a link fault ten-

ency. This fault tendency information is propagated to the OsPho-

nix, which makes inferences to permanent errors or tendencies of

rrors. According to these inferences, OsPhoenix can set, on Level 1

f the Fault Table, the bidirectional link to be faulty (e.g., a perma-

ent error) and/or could start the preprocessing of a new routing

cenario that avoids the use of a link with fault tendency. When

link is marked as faulty, the HE and HD modules are turned off

nd remain in this status until the OsPhoenix requires a new link

valuation.

.2. On-demand processing versus preprocessing approach

One of two approaches, illustrated in Fig. 7, is employed to recon-

gure a NoC from a fault occurrence: on-demand processing or pre-

rocessing of fault scenarios. Three intervals of time compose the on-

emand processing: (i) scenario computation (�Sc), which consists of

he calculation of the routing tables when new faults are detected;

ii) NoC reconfiguration (�Nr1), which includes stopping the network

peration, a possible discard of packets, reconfiguring the new rout-

ng tables, and resynchronizing the network for the next operation

eriod; and (iii) system operation (�t 1), where the network provides

ew communication paths for data traffic.

Let �Ri be a time interval between two Reconfiguration Commands

RCs), which depends on a random fault event. Let �Nr1 be the time

nterval for the NoC reconfiguration, which is nearly constant for each

oC size. Let �Ri = �Sc + �Nr1 + �t 1 be the equation that de-

nes the composition of �Ri for the on-demand processing approach.

hen, reducing the routing algorithm interval for new scenario com-

utation (i.e., �Sc) increases the time remaining for the system op-

ration (i.e., �t 1). However, reducing �Sc reduces the efficiency of

he routing algorithm, thereby increasing the communication laten-

ies. Thus, the on-demand processing approach implies a tradeoff be-

ween �Sc and �t 1.

Four intervals of time compose a reconfiguration approach that

mploys the preprocessing of fault scenarios: (i) scenarios preprocess-

ng (�Sp), which implies the routing table computation for each fault
APPROACH EMPLOYING PREPROCE

APPROACH EMPLOYING ON-DE

Reconfigura�on command (
Reconfigura�on in

NoC reconfigura�onScenario computa�on (Δ )

NoC reconfigura�on (Δ 2)
Scenario

selec�on (Δ )

Scenarios preproce

Fig. 7. Stages for a fault-tolerant NoC that employs on-d
cenario; (ii) scenario selection (�Ss), which implies selecting the cov-

rage scenario that provides the most efficient communication of all

f the stored scenarios; (iii) NoC reconfiguration (�Nr2); and (iv) sys-

em operation (�t 2). These two last intervals of time have the same

eaning as those described in the on-demand processing approach.

he �Sp can be performed throughout all of the system operation,

.e., �Sp can be less than or equal to �Ri, and no extra processing

ime is required in the occurrence of an RC. Thus, the routing algo-

ithm has much time to search for efficient routing paths. The �Ss is

ot time-consuming because the scenarios can be stored and ordered

o facilitate the scenario selection. However, this stage is important

ecause a bad scenario selection can compromise the system perfor-

ance. Aiming to evaluate the quality of this task, we adopt the con-

ept of coverage penalization, which is the average latency measured

y the difference between the latency achieved with an optimum so-

ution (e.g., a scenario whose routing tables produce the minimum

verage latency) and the latency achieved by the selected coverage

cenario. Section 8 describes the experimental results on the cover-

ge penalization.

Both approaches are performed during the same �Ri, such that

Sc + �Nr1 + �t 1 = �Ss + �Nr2 + �t 2. Considering that the NoC

econfiguration is independent of the reconfiguration approach, �Nr1

= �Nr2. In addition, to achieve efficient routing, the on-demand pro-

essing approach requires �Sc � �Ss, and then, �t 2 > �t 1. Con-

equently, the preprocessing approach also increases the time that

s available for the system operation, which emphasizes another im-

rovement of the approach adopted here.

.3. Definition of coverage scenarios

In a given set of scenarios, some of the scenarios cover others,

hich enables a reduction in the number of scenarios to be stored.

et sa and sb be two fault scenarios; then, sa is a coverage scenario

f sb (i.e., the covered scenario) when all of the communication al-

owed in sa is allowed in sb , but the opposite is not necessarily true.

onsequently, a coverage scenario is equally restrictive or more re-

trictive than the covered scenario, and then a coverage scenario can

e used instead of the covered scenario.

Fig. 8(a) exemplifies this situation, where a 5 × 5 mesh NoC has

our links (l1, l2, l3 and l4) that have the tendency to fail. To cover

ll of the fault situations would be necessary to preprocess 16 sce-

arios. Fig. 8(b) shows the best coverage scenario for the faults on

inks l1 and l3. However, the scenarios presented in Fig. 8(c and d) can

over this same fault combination. We remark that these two cover-

ge scenarios contain an extra faulty link (i.e., l4 or l2). Therefore, the

reprocessing mechanism must choose which one of these scenarios

rovides better performance to the system operation. When a given

cenario covers others, the set of routing tables applied to the cover-

ge scenario can be employed to the routers of the covered scenario.

hus, in the fault occurrence situation, the OsPhoenix will find out, in

reduced set of scenarios, which are the stored scenarios that cover

he fault links together with the associated RBR Table, which was al-

eady computed.
SSING OF FAULT SCENARIOS

MAND COMPUTATION

terval (Δ )

System opera�on (Δ 1)(Δ 1)

System opera�on (Δ 2)

ssing (ΔSp)

emand processing or preprocessing approaches.
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(a) (b) (c) (d)

Fig. 8. A 5 × 5 mesh NoC with four links with fault tendency (i.e., dashed lines) and some coverage scenarios.
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5.4. Level of similarity with a cross-correlation method

The selection method should search for coverage scenarios that

do not degrade the communication, i.e., those that keep the latency

of the packets as low as possible. Aiming to attain this goal, this

work uses two approaches that are based on the 2D cross-correlation

method [31] and that enable searching for sound coverage scenarios

based on dissimilarity in the fault scenarios.

The 2D cross-correlation of an M × N matrix A and a P × Q

matrix B is a matrix X of size M + P − 1 by N + Q − 1, such that

X = A ∗ B. Eq. (1) computes each element of X, which is a weighted

sum of neighboring elements.

X(k,q) =
M∑

m=1

N∑
n=1

A(m,n) × B(m − k,n − q)

∀ − 1P + 1 ≤ k ≤ M − 1, − Q + 1 ≤ q ≤ N − 1 (1)

Let M and N be the lines and columns of a 2D mesh NoC, respec-

tively. We define the following matrices that are depicted in Fig. 9

(a and b): (i) R represents the routers; (ii) H and V represent the hori-

zontal and vertical links, respectively; and (iii) C represents a compo-

sition of links.

R m,n is a router, and C m,n is a composition of links, and both have

coordinates m and n, ∀ 1 � m � M and 1 � n � N. In addition, H

m,n is a horizontal connection between R m,n and R m,n − 1 ∀ 1 � m

� M and 1 � n � N − 1, and V m,n is a vertical connection between

R m,n and R m−1,n ∀ 1 � m � M − 1 and 1 � n � N. If a link in the

basic scenario has the same status (i.e., with or without fault), then

the element in the H or V matrix is 1; otherwise, it is 0. Following the

same rule, each element of the C matrix is the sum of each link that

is directly connected to the router.

This work uses 2D cross-correlation to compare scenarios to

find dissimilarities. We define LsHV (Level of similarity on Vertical

and Horizontal links) as a method that employs cross-correlation

on the matrices H and V, and LsC (Level of similarity on links

Composition) as a method that employs cross-correlation while

accounting for the joint effect of all of the links in each router

(i.e., matrix C). LsHV and LsC indicate the level of similarity be-

tween the scenarios given by the Euclidian norm (represented
Fig. 9. Matrices employed in the cross-correlation method: (a) illustrates matrices R, H and V

arrows); (b) describes matrix C, where each rectangle contains the sum of all of the links tha
y operator ||) of the cross-correlation. Both levels of similarity are

ormalized by an auto cross-correlation (e.g., ‖Va ∗ Va‖). The highest

evel of similarity occurs when LsHV or LsC are equal to 1. Inasmuch

s the value departs from 1, the level of similarity is reduced, increas-

ng the level of dissimilarity. Eqs. (2) and (3) illustrate LsHV and LsC,

espectively, for the two synthetic scenarios a and b.

LsHab = ||Ha ∗ Hb||
||Ha ∗ Ha|| , LsVab = ||Va ∗ Vb||

||Va ∗ Va|| ,

LsHVab = LsHab + LsVab

2
(2)

sCab = ||Ca ∗ Cb||
||Ca ∗ Ca|| (3)

Next, we follow a synthetic example of a 3 × 3 mesh NoC with

and 4 faulty links, preforming the basic scenario a and the evalu-

ted scenario b, respectively, with the corresponding LsC formulation.

a =

⎡
⎣

2 3 2

3 4 3

2 3 2

⎤
⎦, Cb =

⎡
⎣

2 3 2

3 3 2

2 3 2

⎤
⎦, Ca ∗ Cb =

⎡
⎢⎢⎢⎢⎢⎣

4 12 17 12 4

10 29 43 32 12

14 41 61 45 17

10 29 43 32 12

4 12 17 12 4

⎤
⎥⎥⎥⎥⎥⎦

,

a ∗ Cb =

⎡
⎢⎢⎢⎢⎢⎣

4 12 17 12 4

12 34 48 34 12

17 48 68 48 17

12 34 48 34 12

4 12 17 12 4

⎤
⎥⎥⎥⎥⎥⎦
, which are represented in a NoC fashion (routers are rectangles, and links are double

t are directly connected.
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sCab = ||Ca ∗ Cb||
||Ca ∗ Ca|| = 130.5517

144.3460
= 0.9044

.5. Reduction of coverage scenarios

Eq. (4) computes the quantity of links (QL ) that connect all of the

× N NoC routers. For example, QL = 112 links in an 8 × 8 mesh

oC

L = M × (N − 1) + N × (M − 1) (4)

Accounting for the scenario in which all of the links and/or each

ndividual link could be faulty, Eq. (5) computes the maximum quan-

ity of fault scenarios (QS ), which is the combination of all of the

ossibilities of faulty links.

S = 2QL (5)

As the number of scenarios grows exponentially with the num-

er of faults, computing all of the possible scenarios is both time

nd memory consuming, even for a small percentage of links, which

akes this approach unfeasible. For example, if 10% of the faulty links

ere considered in a 9 × 9 mesh NoC (i.e., 15 of the faulty links), it

ould be necessary to preprocess QS = 215 scenarios. However, we

mploy three strategies to decrease the number of preprocessed sce-

arios: (i) differential treatment for static and dynamic faults, (ii) in-

remental fault scenarios, and (iii) dissimilarity approach.

The monitoring system classifies faults as static or dynamic ac-

ording to the way they were detected. Faults classified as static de-

ermine an irregular NoC topology that is perceived by the Scenarios

rocessing Module as a basic NoC topology. Consequently, indepen-

ent of the quantity of static faults, there will be only a single scenario

hat represents the basic NoC topology. Over this basic topology, only

he dynamic faults can perform temporary path changes, which im-

lies computing new fault scenarios.

Although the total number of fault scenarios grows exponentially

ith the total number of faults, the number of new fault scenarios

hat must be preprocessed is incremental, i.e., it is not necessary to

ecalculate the previously stored scenarios. Let QF be the quantity of

ynamic faults that are previously known, and let QN be the quantity

f new fault tendencies currently detected; then, Eq. (6) calculates

he quantity of new scenarios to be computed (Q SC). For example, if

he system has 4 links with fault tendency already known (QF = 4)

nd the Fault Monitors detects two new links with fault tendency (QN

= 2), then the OsPhoenix must preprocess 48 more scenarios (i.e.,
(4+2) − 24), to assure that the system will provide all of the fault

cenarios.

SC = 2(QF+QN) − 2QF (6)

Identifying the most dissimilar scenarios that cover the same fault

cenario allows us to save a reduced set of scenarios with a wider

overage. This wider and reduced coverage is achieved by sorting the

ew scenarios according to the dissimilarity level and storing only a

ercentage of the most dissimilar scenarios. When the percentage of

torage is low, only the most dissimilar scenarios are stored; other-

ise, when the percentage increases, more similar scenarios are also

tored. The choice of a suitable storing percentage depends on the
Table 1

Average occupancy of data and code memories for each MPSoC tile.

Memory occupation Hellfire OS OsPhoenix

Kernel

Code in KB (%) 24 (9.38%) 4 (1.56%)

Data in KB (%) 4 (3.13%) 1 (0.78%)
arget architecture size and the fault quantity. We consider this per-

entage to be a selection criterion, and we provide analysis of this

oncept in Section 8.

. OsPhoenix and HwPhoenix implementation results

This section describes the synthesis of the Phoenix architecture

hile targeting a mesh NoC-based MPSoC whose tiles contain a

lasma processor and a local memory. This architecture was applied

o collect experimental results on the quality of the analytical met-

ics and the costs associated with scenario preprocessing, which are

escribed in Sections 7 and 8, respectively.

.1. OsPhoenix implementation on the plasma processor

Each MPSoC tile consists of a 32-bit Plasma processor running at

00 MHz, whose source code is based on the processor available in

he OpenCore site [32], with 256 KB of program memory and 256

B of data memory. Running on the Plasma processor, the OsPhoenix

orks like a device-driver of the Hellfire Operating System [33], en-

bling a distributed and fault-tolerant operation of a network, which

s transparent to the OS. Table 1 shows the data and code memory

ootprint for the Hellfire OS and for the main modules of OsPhoenix

i.e., Kernel and Scenarios Processing Module), in addition to the mem-

ry area that is left for user applications.

Hellfire OS and OsPhoenix are designed for low memory consump-

ion, allowing approximately 80% of the code memory and more

han 85% of the data memory for user applications. It is important

o note that the Scenarios Processing Module consumes 32 KB of the

ata memory, which is almost all available to store the data tables

hat contain preprocessed scenarios. This consumption depends on

he number of scenarios that the designer wants to store.

Fig. 10(a) illustrates the memory consumption of the Scenarios

rocessing Module during the execution of the preprocessing scenar-

os algorithms with respect to the NoC size variation, on average. Ad-

itionally, Fig. 10(b) shows the Plasma processing cost (in clock cycles

nd in seconds) for these same experiments.

The main implementation complexity of OsPhoenix is in the Sce-

arios Processing Module due to the network segmentation algorithm

which provides deadlock-free routes) and the regions calculation al-

orithm (which generates the routing tables for the NoC reconfigu-

ation). Fig. 10(a) illustrates that during the execution of these al-

orithms, the data memory consumption of the Scenarios Process-

ng Module grows proportionally with the NoC size, thereby reduc-

ng the data memory that is available for user applications. Although

ot shown in Fig. 10(a), the data memories of the Hellfire OS and the

ernel of OsPhoenix only change slightly with the NoC size.

Fig. 10(b) shows that the processing time of these algorithms

rows more than linearly with the NoC size. When employing the sce-

ario preprocessing approach for these same experiments, the total

rocessing time is reduced to 5500 cycles, on average. These figures

upport the feasibility and importance of the preprocessing approach

ecause the identification of the scenario faults allows us to reconfig-

re the network approximately a thousand times faster.
User application

Scenarios Processing Module

25 (9.77%) 203 (79.30%)

32 (12.50%) 219 (85.54%)
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Fig. 10. Memory consumption of the Scenarios Processing Module and the CPU cost for scenarios preprocessing while accounting for seven NoC sizes. The CPU cost is given in

millions of clock cycles and in seconds (Plasma operating at 100 MHz).

Table 2

Area and power reports of the Phoenix router with 16-flit depth buffers (synthesis with Encounter [34] using STM 65 nm CMOS and 100 MHz).

Characteristic Router Fault Control Machine Fault Monitor FPM (per channel) HE (per channel) HD (per channel)

Power (μW)

Leakage 626.36 136.73 24.00 3.84 1.08 3.02

Dynamic 7112.25 1206.44 758.49 52.49 3.08 93.91

Total (%) 7738.61 (100%) 1343.17 (17.36%) 782.49 (10.10%) 56.33 (0.73%) 4.16 (0.05%) 96.92 (1.25%)

Area (nm2)

Cell area 58,159 12,003 1460 497 127 353

Net area 49,430 9309 2627 495 58 418

Total (%) 107,589 (100%) 21,312 (19.81%) 4087 (3.80%) 992 (0.92%) 185 (0.17%) 771 (0.72%)
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6.2. HwPhoenix synthesis details

All of the fault-tolerant mechanisms of Phoenix are implemented

within each NoC router, in the static monitoring module (i.e., Fault

Monitor), in the modules for dynamic fault monitoring and correction

(i.e., FPM, HE and HD), and in the central machine that coordinates

these mechanisms and performs the communication with the OsPho-

enix (i.e., Fault Control Machine). Table 2 presents the area and power

reports of Phoenix router, highlighting the fault-tolerant modules, in

a standard cell implementation (STM 65 nm CMOS) for a 100 MHz

operation frequency and 16-flit depth buffers.

In the experimental setup, we employed a [16,5] Hamming code

(i.e., 16 data bits and 5 bits of data redundancy), which was imple-

mented using fixed masks that operate data and parity in a com-

bination of blocks designed to affect minimally the operation fre-

quency of the NoC links. Table 2 illustrates that HE consumes an

insignificant portion of the router area and power. The ability to

perform bit error detection and correction makes the HD circuit

much more complex than the HE circuit. Consequently, HD has

four times more area consumed and 20 times more power dissi-

pated than HE. However, this increase in the complexity does not

imply a significant portion of the area and power of the router.

The FPM has the same magnitude of the HD circuit, consuming lit-

tle more area due to the internal fault tables but dissipating less

dynamic energy. As a consequence, the dynamic fault monitoring

and correction mechanism dissipates only approximately 2% of the

router power and consumes less than 2% of the router area, per

channel.

While HD, HE and FPM are replicated on each channel between

routers, there is a single centralized Fault Monitor to perform the

static monitoring of all of the channels between routers. This mon-

itoring is started by a control packet sent by OsPhoenix via a local

link to the Fault Control Machine, which in turn controls the Fault

Monitor to make a loopback test on all of the channels between
outers. To accomplish this task, the Fault Monitor implements a

ow-complexity finite state machine whose area consumption is al-

ost the same as the sum of all of the dynamic fault monitor-

ng and correction mechanisms, but the power dissipation is almost

ouble.

The Fault Control Machine is responsible for sending and receiv-

ng control packets, monitoring the status of the static and dynamic

ault mechanisms and updating the Fault Table. This machine also up-

ates the Routing Table according to the control packets. These fea-

ures make the Fault Control Machine the higher power- and area-

onsuming circuit, occupying almost 20% of the NoC router area

nd dissipating more than 17% of the router power. Finally, all of

he fault-tolerant circuits of Phoenix dissipate approximately 35%

f the router power and consume less than 30% of the router area,

hich shows that the fault-tolerant model that is adopted (which

mplements part of the functionality in software and part in hard-

are) enables the production of low-cost and efficient fault-tolerant

ardware.

. Exploration of analytic metrics for runtime latency estimation

.1. Experimental setup

The fabrication process variability of VLSI circuits increases dur-

ng every scale-down of new, deep submicron technologies, due

o phenomena such as imprecise impurity deposition and non-

niformity in the lithography exposure field. This variability can

eviate the circuit from its nominal specification or even pre-

ent its partial or total operation [35]. In other words, it is a

ource of static and dynamic faults. Therefore, and without lack

f generality, we choose the variability model proposed by Harg-

eaves et al. [36] for generating the fault scenarios for the exper-

mental results presented here. This model considers the effect of
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Table 3

Expansion of fault scenarios for 48 irregular NoC mesh topologies.

NoC size Distribution fault Amount of fault channels (3 samples) Amount of scenarios expanded (3 samples) Total amount of scenarios

σ λ

5 × 5 0.05 1.2 4, 4, 4 15, 15, 15 45

0.18 1.2 4, 4, 4 15, 15, 15 45

0.05 0.4 6, 6, 6 63, 63, 63 189

0.18 0.4 6, 6, 6 63, 63, 63 189

6 × 6 0.05 1.2 5, 5, 5 31, 31, 31 93

0.18 1.2 5, 5, 5 31, 31, 31 93

0.05 0.4 7, 7, 7 127, 127, 127 381

0.18 0.4 7, 7, 7 127, 127, 127 381

7 × 7 0.05 1.2 5, 5, 5 31, 31, 31 93

0.18 1.2 5, 5, 5 31, 31, 31 93

0.05 0.4 9, 9, 9 511, 511, 511 1533

0.18 0.4 8, 8, 8 255, 255, 255 765

8 × 8 0.05 1.2 4, 4, 4 15, 15, 15 45

0.18 1.2 5, 5, 5 31, 31, 31 93

0.05 0.4 11, 11, 10 2047, 2047, 1023 5117

0.18 0.4 10, 10, 10 1023, 1023, 1023 3069

Total 48 NoC topologies 12,224 scenarios 12,224
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ariability on the switch-to-switch link delay, which employs two

ariation parameters: the link-delay variability σ and the spatial cor-

elation variability λ.

Aiming to explore scenarios with 65 nm and 22 nm manufactur-

ng processes, the link-delay variability was set to 5% (σ = 0.05) and

8% (σ = 0.18), respectively, as predicted by the ITRS roadmap [37].

dditionally, experiments were produced with λ = 0.4 and λ = 1.2,

hich represent high and low strengths of the spatial correlation

ariability, respectively. These values are representative of the typi-

al correlation that is induced by fabrication processes [36]. The ex-

eriments encompass four NoC sizes (5 × 5, 6 × 6, 7 × 7 and 8 × 8).

able 3 shows each NoC size combined with the link-delay and spatial

orrelation parameters, which produces 16 fault scenarios. Aiming to

xplore the randomness of the variability model, we generated each

f these scenarios three times, resulting in 48 irregular NoC mesh

opologies. Finally, an in-house tool expands these 48 topologies into

2,224 scenarios by combining all of the possibilities of faulty links.
Fig. 11. Setup of exper
Fig. 11 describes how the simulation scenarios are composed and

pplied to achieve the experimental results. For each of the 12,224

cenarios, the in-house tool performs the following two steps: (i)

egmentation of the network using the segment routing approach to

enerate a restriction file. This file contains all of the forbidden direc-

ions, to avoid deadlock situations; and (ii) computation of minimal

aths using the restriction file information, which allows us to gener-

te the set of virtual regions for the RBR approach.

When there is an occurrence of a new fault, the OsPhoenix must

elect, out of the available preprocessed set of scenarios, the one that

inimizes the overall system latency. Aiming to choose a sound run-

ime metric, we employed an RTL simulation with synthetic traffic

o evaluate all of the scenarios. The simulation results were com-

ared with the results of three analytic metrics: (i) Average Rout-

ng Distance (ARD), which is the sum of all path lengths (mea-

ured as the number of hops) divided by the number of paths; (ii)

ink Weight (LW), which is the number of communications that
imental results.
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Fig. 12. Pearson correlation for the average latency: (a) comparison of 3 analytic metrics (i.e., ARD, LW and SLW) with uniform traffic simulations (injection rates of 5%, 10%, 15%

and 20%); and (b) comparison of ARD with uniform traffic simulations, at an injection rate fixed at 5% and with 4 NoC sizes (5 × 5, 6 × 6, 7 × 7, 8 × 8).
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crosses each link, considering the links direction; and (iii) Standard

deviation of LW (SLW). Aiming to evaluate these metrics, we em-

ploy the Pearson correlation analysis [38] between the average la-

tency simulated and the estimates provided by the analytic metrics.

According to the Pearson correlation, the closer the correlation is to

1, the better the metric that is used. The experimental results are dis-

cussed next.

7.2. Experimental results for analytic metric selection

The experimental results were obtained using uniform traffic

with four injection rates (5%, 10%, 15% and 20%) and for all of the

12,224 fault scenarios in which each PE sends 50 packets of 100 flits.

Fig. 12(a) shows that except for the 10% injection rate, all of the an-

alytic metrics presented positive, significant and strong correlations

(i.e., closer to 0.9).

The highest correlation values are achieved with a 5% injection

rate because the NoC resources are not overloaded, which mini-

mizes the packet contentions. At almost 10% of the injection rate,

the NoC reaches the saturation point, where the traffic behavior

is unpredictable, which presents enormous variability in the com-

munication latency. Consequently, the Pearson correlation is re-

duced for all of the analytic metrics. Finally, after the saturation

point, the Pearson correlation increases again, which shows that
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(i.e., ARD, LW and SLW) under uniform traffic simulations, with an injection rate fixed

at 5% and 4 types of fault distribution.
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he proposed analytic metrics can capture the behavior of a congested

raffic scenario. Assuming ARD to be the better analytic metric for

raffic with low injection rates, Fig. 12(b) shows the experimental re-

ults of the Pearson correlation according to the NoC sizes. This figure

ighlights that the increase in the NoC size reduces the Pearson corre-

ation, which is justifiable due to the increase in the additional paths

etween the communication pairs and the increase in random packet

ollisions.

Fig. 13 illustrates the quality of the analytic metrics (i.e., ARD, LW

nd SLW) for estimating the average latency according to the type

f fault distribution, i.e., the link-delay variability considering CMOS

anufacturing technology (σ = 0.05 / 65 nm, σ = 0.18 / 22 nm) as-

ociated with the strength of the spatial correlation variability (i.e., a

igh or low strength for λ = 0.4 or λ = 1.2, respectively). Account-

ng for the spatial correlation variability, the highest correlations be-

ween the analytic metrics and the average latency are obtained in

etworks with λ = 1.2 because this spatial correlation produces the

owest degree of severity faults, the greatest fault dispersion and a

ower percentage of faults. A high variability in the spatial correlation

λ = 0.4) reduces the correlation degree between the analytic met-

ics and the average latency because it produces scenarios with a high

uantity of faults that are highly grouped. Nevertheless, the experi-

ental results display a strong correlation for λ = 0.4, which shows

hat the analytic metrics can be used to estimate the average latency

ven with these aggressive fault distributions. Finally, the link-delay

ariability shows that the analytic metrics have a stronger correlation

ith σ = 0.18 than σ = 0.05, which displays a tendency to achieve

ound results for the most recent technologies.

Fig. 14 illustrates the quality of the analytic metrics according to

he number of fault links. It is evident that there is a reduction in the

earson correlation with an increase in the number of faulty links.

his finding can be explained because occurrences of faulty links im-

ly a reduction in minimal paths. Consequently, more communica-

ions share the same paths, which increases the concurrency for the

oC resources (i.e., the input buffers and links of the router). This cir-

umstance implies more packet contention and more unpredictable

atencies, which are not captured by the estimates of the analytic

etrics.

The simulation results show that the three analytic metrics pro-

uce similar and satisfactory estimates for the end-to-end average

atency. However, the ARD is less susceptible to an increase in the

umber of faulty links. Thus, we chose to employ this metric in the

cenarios Processing Module of OsPhoenix for the execution of all of the

xperiments.
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. Analysis of methods and costs of the preprocessing approach

This section displays the experimental results that are employed

o quantify the coverage penalization, as defined in Section 5.1, and

nalyze the efficacy and efficiency of both the LsHV and LsC cross-

orrelation methods in searching for a suitable reduced set of cover-

ge scenarios.

.1. Experimental setup to estimate the coverage penalization

Fig. 15 shows the flow that is employed in each experiment,

hich encompasses the 48 basic mesh topologies detailed in

able 3 and two traffic injection rates (5% and 20%). Additionally,
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Fig. 15. Flow for the cross-correlation method and cost analysis, which is applied to ea
or each cross-correlation method, we use three different percentages

f stored fault scenarios (10%, 30% and 50%).

As described in Section 5.5, a given set of faults alters a mesh

oC into an irregular mesh topology, which is considered here to

e a basic topology. Each basic topology encompasses Q SC possi-

le scenarios. For example, a 6 × 6 NoC with 7 faulty links produces

27 fault scenarios (i.e., 27 = 128, but one scenario does not con-

ain faulty links). The set of 48 scenarios with its corresponding

uantity is surrounded by a rounded rectangle in Fig. 15. From one

f this set of scenarios 1©, we can apply the LsHV and LsC cross-

orrelation methods, selecting a percentage P of the most relevant

cenarios 2©. The remaining scenarios (1 − P) are used to evalu-

te the coverage penalization, because none of these scenarios are
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stored at runtime 3©. Once a scenario is selected to be evaluated 4©,

the flow, which reflects the OsPhoenix operation, checks whether at

least one stored scenario covers the selected one 5©. In the negative

case, the flow marks this non-success to evaluate the efficacy of the

LsHV and LsC methods 6© (at runtime, the network must stop wait-

ing for the processing of the new routing tables that cover this fault

situation, which is a timing-consuming task). Otherwise, the flow se-

lects, from the set of coverage scenarios, the scenario that produces

the lower latency 7© (at runtime, the OsPhoenix uses this scenario

for NoC reconfiguration, and the scenario latency is estimated using

ARD). Thus, the selected scenario and the scenario under evaluation

are compared in terms of the latency – i.e., the coverage penalization

is quantified 8©. These latency results, which are computed by Eq. (6),

are stored for statistical analysis 9©. The flow performs these previous

steps until all of the remaining scenarios are evaluated 10©. Once all of

the scenarios are evaluated, the flow stops 11©, and a new experiment

can be evaluated.

overage penalization = Average LatencySelected Scenario − Average L

Average LatencyScenario Und
)a(
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cyScenario Under Evaluation
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% (7)

.2. Experimental results for coverage penalization and correlation

ethods analysis

The first set of results explores the efficacy of both cross-

orrelation methods in searching for sound coverage scenarios. The

esults determined that the LsC method did not present any uncov-

red scenarios, which shows that it is efficacious in finding the best

cenarios according to the coverage criterion. This finding occurs be-

ause LsC selects the most dissimilar scenarios, which provides large

overage possibilities. On the other hand, Fig. 16 shows that the LsHV

s less efficacious, because this method produced a large quantity

f uncovered scenarios, even storing 50% of the scenarios. Addition-

lly, Fig. 16 shows three other aspects about the efficacy of the LsHV

ethod: (i) it is independent of CMOS manufacturing technology (i.e.,

= 0.05/65 nm, σ = 0.18/22 nm), which highlights the potential of

he approach for other CMOS technologies; (ii) it increases with an
)b(
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ncrease in the NoC size. This relationship occurs because the increase

n the NoC size sparsifies the faults, making the capture of dissimilar-

ties easy; (iii) it increases with a reduction in λ because a reduction

n λ means an increase in the spatial correlation that produces sce-

arios with more faulty links. In turn, the increase in the faulty links

llows it to find more dissimilarities between the scenarios.

Fig. 17 (a) presents the coverage penalization, which compares the

fficiency of the LsHV and LsC methods, considering only a 5% traffic

njection rate and only the scenarios whose coverage was found by

oth methods. Although the LsHV method does not show high effi-

acy in finding sound coverage scenarios, the experiments highlight

hat (i) LsHV presents a lower coverage penalization, but the increase

n the coverage penalization for the LsC method is not meaningful; and

ii) the coverage penalization increases slightly with the reduction in

he scenarios storage, which indicates that the cross-correlation to

dentify dissimilarities is a promising technique for the scenarios re-

uction approach.

Fig. 17(b) depicts the average coverage penalization, accounting for

wo traffic injection rates (IR 5% and IR 20%), four NoC sizes (5 × 5,

× 6, 7 × 7 and 8 × 8) and only the LsC method for all of the 48 sce-

arios in the set of scenarios. It shows that the coverage penalization

ncreases significantly with the increase in the network traffic. For ex-

mple, with 50% of the storage scenarios, the increase from IR 5% to

R 20% implies an increase from 4.0% to 28.2% in the coverage penal-

zation. This finding can be explained because the coverage scenario

as fewer operational links, which increases the traffic competition

or the same NoC resources. Furthermore, the increase in the network

raffic that is associated with the reduction in the coverage scenarios

roduces an additional increase in the coverage penalization. For ex-

mple, with 50% of the storage scenarios, the increase from IR 5% to

R 20% implies 7.08 times more coverage penalization, while with 10%

f the storage scenarios, the same increase in IR implies 8.85 times

ore coverage penalization. This last situation argues against the em-

loyment of the approach of coverage scenario reduction. However,

n practice, only a few sets of IO-bounded applications produce large

Rs, on average. Additionally, our synthetic experiments produce large

uantities of data without compromising CPU utilization, and they

eached only 25% IR, even using a DMA channel.

Fig. 18 shows the variation in the coverage penalization with

n increase in the NoC size while considering the LsC method and

R 20%, i.e., the same experiment as depicted in Fig. 17(b) – column

sC (50%) + IR 20%, but identifying the average of the coverage penal-

zation for each NoC size.

These last results show that the coverage penalization decreases

hen the NoC size increases. This relationship occurs because larger

oCs contain many more links, enabling them to produce efficient
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hen applying the LsC methods under a 20% traffic injection rate and considering four

oC sizes.

w

R

outing paths even in the presence of unused links. Accounting

or recent and future systems that contain large quantities of PEs,

hich require large NoCs and in which the traffic injection rate

s almost less than 20%, the coverage penalization tends to be less

ignificant, which justifies an even larger preprocessing approach

sage.

. Conclusions

This paper proposes a hardware/software reconfiguration ap-

roach that is based on preprocessing fault scenarios. The soft-

are is a small part of the operating system kernel called

sPhoenix, which preprocesses fault scenarios as soon as a

ault prediction monitor (monitors are placed on each link of

ach router) detects a fault tendency. The hardware part is a

ault-tolerant mesh NoC, which employs a region-based routing

echanism.

The preprocessed scenarios approach reduces the time that the

etwork is halted, waiting for the computation of the routing algo-

ithm that enables the NoC operation in the occurrence of new faults.

he quantity of scenarios grows exponentially with the quantity of

aults, which implies that there is a large area of memory and process-

ng time to compute all of the scenarios in the set of scenarios. Aim-

ng to minimize this problem, this work employs three strategies: (i)

ifferential treatment for static and dynamic faults, (ii) incremental

rocessing of fault scenarios, and (iii) a dissimilarity approach, which

nables finding the most dissimilar scenarios based on the 2D cross-

orrelation method.

We concluded that the preprocessed scenarios approach, in con-

unction with the analysis of fault tendency detection, allows us to

reprocess sound coverage scenarios, enabling a faster reconfigura-

ion and reducing the time that the network is halted waiting for the

omputation of the routing algorithm that handles topology modifi-

ations. The preprocessing of scenarios implies a coverage penaliza-

ion, which is the difference between the latency that is achieved

ith an optimum solution and the latency that is achieved by the

elected coverage scenario. However, according to the experimental

esults, the coverage penalization is not meaningful and tends to be

lower when the traffic injection rates are reduced and when the NoC

ize is increased. Furthermore, when compared with on-demand pro-

essing approaches, the preprocessing of fault scenarios approach en-

bles a larger CPU time to compute the routing algorithm, which en-

bles communication paths to be selected that minimize the overall

atency and increase the time for the system operation, which high-

ights the efficiency of the preprocessing approach proposed in this

ork.
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