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ARTICLE INFO ABSTRACT

Keywords: The latest technologies of integrated circuit manufacturing allow billions of transistors to be arranged on
NoC a single chip, enabling the chip to implement a complex parallel system, which requires a communications
Irregular topology architecture that has high scalability and a high degree of parallelism, such as a Network-on-Chip (NoC).
ll;i::)tr_(:(c)olsirs?rr:;e These technologies are very close to the physical limitations, which increases the faults in manufacturing
Routing methods and at runtime. Therefore, it is essential to provide a method for fault recovery that would enable the NoC to
operate in the presence of faults and still ensure deadlock-free routing. The preprocessing of the most proba-
ble fault scenarios enables us to anticipate the calculation of deadlock-free routings, reducing the time that is
necessary to interrupt the system during a fault occurrence. This work proposes a technique that employs the
preprocessing of fault scenarios based on forecasting fault tendencies, which is performed with a fault thresh-
old circuit operating in accordance with high-level software. We propose methods for dissimilarity analysis
of scenarios based on cross-correlation measurements of link fault matrices. Experimental results employ-
ing RTL simulation with synthetic traffic prove the quality of the analytic metrics that are used to select
the preprocessed scenarios. Furthermore, the experiments show the efficacy and efficiency of the proposed

dissimilarity methods, quantifying the latency penalization when using the coverage scenarios approach.
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1. Introduction

The evolution of Very-Large-Scale Integration (VLSI) semiconduc-
tor technology enables us to integrate hundreds or even thousands of
cores into a single circuit. This massive integration allows us to imple-
ment the entire functionality of a system into a single chip, generat-
ing a System-on-Chip (SoC). The International Technology Roadmap
for Semiconductors (ITRS) foresees thousands of Processing Elements
(PEs) integrated into an SoC by 2020 [1]. The Network-on-Chip (NoC)
technology will play a key role in the implementation of these highly
integrated SoCs. The two-dimensional (2D) mesh is the most pop-
ular NoC topology; it offers a simple and regular structure, and the
small wire length is suitable for the tile-based design [2]. Under the
NoC communication paradigm, each PE that is placed in a tile is in-
terconnected throughout with routers and links to other PEs, and the
communication is normally performed by packet transmission [3].
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Recent submicron technologies provide more process variabil-
ity, increasing the quantity of defective components [4,5]. A defec-
tive router or link could ruin the 2D mesh communication structure,
which would lead to an irregular topology (i.e., topologies derived
from regular networks with induced faults or faulty links, also known
as agnostic topologies) [6]. As a consequence, static and determin-
istic routing algorithms that are tailored to a regular NoC topology
will not operate properly, thus rendering the chip useless [2]. Aim-
ing to avoid this problem, the design of the routing algorithms must
provide some degree of fault-tolerance while ensuring deadlock-
freeness. There are two approaches to achieve deadlock-free rout-
ing algorithms for irregular topologies: (i) one approach is based on
virtual channels (e.g., [7-12]), which requires a large extra area for
multiplexing schemes and implies significant energy consumption
by the buffers of the routers; and (ii) another approach is based on
turn prohibition (e.g., [13-17]), which avoids deadlock by eliminat-
ing a subset of network turns. Our work employs this last approach
using tables in each router that implement the routing algorithm.
However, the area consumption and power dissipation make table-
based techniques prohibitive for large networks. Aiming to overcome
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these problems, several studies (e.g., [6,18,19]) have proposed to com-
press the routing table. Our work employs a technique that is similar
to [6], which compresses the routing table according to the NoC re-
gions.

Efficient implementations of routing strategies address the dy-
namicity of the faults with fast computation and reconfiguration
of the fault-tolerant topology without requiring packet retrans-
mission. This fast computation and reconfiguration could combine
some static and/or dynamic tasks. For example, all of the possi-
ble fault scenarios could be computed before the system operation,
which characterizes a static computation in opposition to the ap-
proach that computes new scenarios only during the system op-
eration. Independent of the computation dynamicity, the reconfig-
uration could occur statically or dynamically. In the dynamic net-
work reconfiguration, the entire system remains operating and the
network traffic is not stopped, which implies that the router must
know all of the communication possibilities to avoid deadlock condi-
tions. On the other hand, in the static approach, the network enters
into a reconfiguration phase, where it is halted and all packets are
drained.

If each PE (connected to a router) preprocesses and stores sce-
narios, the system reconfiguration could be improved, which would
reduce the time that the network is halted waiting for the routing
algorithm computation that handles the topology changes. Unfortu-
nately, preprocessing all of the possible fault scenarios is a very com-
plex problem, which consumes time and memory. Aiming to min-
imize this problem, a system could statically elect and store only
some scenarios to be used in an appropriate situation, such as a
virtualization perspective or low power scenario. Additionally, in a
given set of fault scenarios, there are some scenarios that can be dis-
carded because they are covered by others, which enables us to min-
imize the memory area that is required to store the preprocessed
scenarios.

This work employs Phoenix [20] as the fault-tolerant target sys-
tem, which consists of a 2D mesh NoC and a layer for an operat-
ing system. Using Phoenix, this paper proposes an efficient approach
to addressing dynamic faults on NoC links. This approach consists
of preprocessing fault scenarios to quickly reconfigure the network
with new deadlock-free routing, in the case of fault detection. Ad-
ditionally, this work proposes a method for reducing a large set of
scenarios based on cross-correlation to identify dissimilarities in sets
of irregular topologies. This method consists of fault-monitors that
are placed in each input port of the Phoenix NoC routers. Each fault-
monitor evaluates whether the link is faulty or if there is a fault ten-
dency. This information is transmitted to a PE that is locally con-
nected to the router, and a communications driver placed inside
the operating system preprocesses new scenarios based on this fault
information.

This paper is organized as follows. Section 2 presents related
work on routing mechanisms and reconfiguration processing. Sec-
tion 3 describes the Phoenix architecture, which is the target archi-
tecture employed here. Section 4 describes the processing flow of
fault-tolerant scenarios. In Section 5, we present the fundamentals
of the fault scenario preprocessing. Section 6 presents some syn-
thesis results of Phoenix for a specific MPSoC architecture. Section
7 describes the methodology and experimental results of the ex-
ploration of analytic metrics for runtime latency estimation, while
Section 8 analyzes the methods and costs for the preprocessing
approach. Finally, Section 9 presents the main conclusions of this
work.

2. Related work and main contributions

Strategies applied to fault-tolerant routing for irregular NoCs can
employ static or dynamic fault models. In the first strategy, all of

the tolerable faults must be known at the design time. Then, dur-
ing the system operation, when a fault is discovered, the system
is halted, the packets are dropped, and a new deadlock-free rout-
ing is employed. The second strategy does not need to halt the net-
work, and the routing computation is performed at runtime. More-
over, the second strategy requires complex routing distributed mech-
anisms to avoid inconsistences (e.g., in routing tables) during the
network reconfiguration. The strategies that use static fault models
(e.g., [21,22]) are less complex and less area consuming, but they can
tolerate only a limited quantity of faults [23]. On the other hand,
the routing mechanisms of strategies that use dynamic fault mod-
els (e.g., [23-25]) are more complex, but they allow many more
changes to the network topology. This work focuses on this last
approach.

A reconfigurable fault-tolerant system for irregular networks re-
quires mechanisms for (i) fault detection and diagnosis; (ii) fault
recognition reporting; (iii) deadlock-free routing computation; and
(iv) routing reconfiguration (e.g. routing tables and auxiliary
circuits). This section discusses studies that are related to the
last mechanism, which is the main focus of this work, account-
ing for only network architectures without virtual channels. Addi-
tionally, the routing reconfiguration is composed of the routing
mechanism and reconfiguration processing ; both are discussed
next.

The routing mechanism defines how the routing information is
computed and stored. To support reconfiguration, the routing mech-
anism needs resources that could be changed during the runtime,
which normally encompasses tables placed in each NoC router, stor-
ing the routing information. Routing tables support a large quantity
of topologies and are easy to implement. On the other hand, they
do not scale with an increase in the NoC size. Aiming to reach the
scalability that is required for current and future highly populated
NoCs, several studies employ techniques to compress or minimize the
sizes of the routing tables, which is a complex task and could imply
a loss of performance and/or an impossibility of reaching all of the
target nodes. Examples of these studies are (i) Palesi et al. [ 18], which
uses a table compression technique for application-specific routing;
and (ii) Bolotin et al. [19], which uses a table minimization tech-
nique that applies a fixed function combined with minimal deviation
tables.

Scalability is also achieved by dividing the network into regions
and mapping those regions onto routing table entries. For exam-
ple, Mejia et al. [6] proposed the Region Based Routing (RBR) ap-
proach, where each node contains a set of regions that are based
on paths that cover all of the communications. RBR could be em-
ployed with a specific routing application, enabling the use of a small
number of regions and assuring full network coverage. Fukushima,
Fukushi and Yairi [26] propose another region-based approach that
is based on a set of rectangular faulty regions and the correspond-
ing deviation paths, which are employed to avoid the faulty re-
gions. Their approach improves the work of Holsmark et al. [27],
providing a complete and deadlock-free routing that reduces the
faulty regions’ sizes. Consequently, it reduces the number of nodes
to be deactivated and the routing implementation complexity. Al-
though the region-based approaches scale with the NoC size, it is
necessary to have a large number of regions to maintain full NoC
coverage with efficient paths, which prohibits a large routing ta-
ble reduction. Aiming to overcome this problem, Rodrigo et al. [2]
improved the previous LBDR work [28], proposing the universal
Logic-Based Distributed Routing (uLBDR), which provides an effi-
cient routing mechanism using a small set of configuration bits to-
gether with logic cells instead of large routing tables implemented
in memories. The main limitation of their work is that to cover
all of the deadlock situations, the approach must use virtual cut-
through switching, which limits the packet size to the length of the
buffers.
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The reconfiguration processing defines the computation cost of
making dynamic routing decisions, which could be implemented in
hardware, in software or in both, depending on the application re-
quirements.

Fick et al. [24] describe the architecture of Vicis, which is a fault-
tolerant NoC that preserves the functionality of the system based
on the inherent redundancy found in most networks. Vicis employs
routing reconfiguration at the router and network levels. The two-
level reconfiguration allows it to confine some in-router faults and
the corresponding action at the router level, thus simplifying the
process of reconfiguring and allowing the network performance to
degrade gracefully while increasing the quantity of network faults.
Feng et al. [29] propose a fault-tolerant solution for a bufferless
NoC that includes the detection of both transient and permanent
faults. They propose the reconfiguration of routing tables during
packet transmission through the Reconfigurable Fault-Tolerant De-
flection Routing (FTDR) algorithm to tolerate permanent faults with-
out deadlock and livelock situations and without loss of packets
during the reconfiguration process. In addition, their work presents
a hierarchical FTDR (FTDR-H) algorithm, to reduce the area over-
head of the FTDR router. The experimental results show that FTDR
and FTDR-H are implemented with reliable bufferless routers, which
can protect against any fault distribution pattern. Although there
is variation in the studies of Fick et al. [24] and Feng et al. [29],
both are conceptually similar, suggesting that a hierarchical imple-
mentation is a sound approach to optimizing the reconfiguration
process.

Strano et al. [23] propose the Overlapped Static Reconfigura-
tion (OSR), which is an old technique that was used in off-chip
networks; however, it is now adapted to the NoC restrictions.
Their approach allows new packets to be injected into the net-
work while old packets are routed or dropped. The authors use
token signals to separate the old packets from new ones; and
during the token signal propagation, the NoC retains both con-
figurations, the previous and the new one. This approach en-
ables fast recovery, providing little time to reload and have the
NoC working properly, but a complex hardware implementation is
implied.

Trivifio et al. [25] use a virtual-regions strategy to improve the per-
formances of the applications that are simultaneously running on a
Chip MultiProcessor (CMP), which splits the CMP into several regions.
Their approach dynamically reconfigures the network partitions, gen-
erating irregular NoC topologies that isolate the traffic of the applica-
tions and consequently reduce or even eliminate the interferences
among inter-application messages.

Our work employs a dynamic fault model that encompasses three
phases: (i) fault detection and fault propagation; (ii) deadlock-free
routing computation; and (iii) routing reconfiguration. The main con-
tribution of our work is in the routing reconfiguration phase that pro-
vides fast deadlock-free routing reconfigurations for irregular NoC
topologies. Our approach is based on preprocessing the most likely
fault scenarios, which are computed according to the detection of the
link fault tendency. Our approach, with the information on the fault
tendencies, enables us to employ more complex and time-consuming
algorithms that are aimed at producing optimal solutions for large
NoCs without compromising the execution time, once the routing ta-
bles were already preprocessed. Moreover, in a given set of scenar-
ios, some scenarios can cover others, which allows us to diminish a
large set of preprocessed scenarios. This approach provides two new
and important contributions: (i) an analytic metric to choose at run-
time the substitution scenario that provides the most efficient rout-
ing; and (ii) a novel method to reduce a large set of scenarios based on
cross-correlation measures to identify dissimilarities in sets of irregu-
lar topologies, which minimizes the storage area of the preprocessed
scenarios.

3. Phoenix architecture

Fig. 1 shows the Phoenix distributed fault-tolerant architecture
[20] over an NoC-based MPSoC platform that consists of a hardware
part (i.e., HwPhoenix) placed on each router of the NoC and a software
part (i.e., OsPhoenix) placed on the operating system of each PE com-
posed of a paired processor-memory. Additionally, each PE is con-
nected through an NoC interface to the local port of each router. Each
field of a Phoenix packet has a 1-flit length, and the number of flits in
a packet is limited to 2(flitsizeinbits) phoenix uses two types of pack-
ets: (i) the data packet, which carries the PE messages; and (ii) the
control packet, which controls the fault-tolerant mechanisms. The Os-
Phoenix communicates with the HwPhoenix via bidirectional control
packets that are transmitted through the local port of each PE. Ex-
amples of control packets are (i) test_links, which is employed when
the OsPhoenix needs to test all of the links of the local router; (ii)
tr_rout_tab, rd_rout_tab and wr_rout_tab, which are used to trans-
mit, read and write the Routing Table of each router (refer to Section
5.1), respectively; and (iii) tr_fault_tab, rd_fault_tab and wr_fault_tab,
which are analogous to the previous commands but account for the
Fault Table of each router.

3.1. OsPhoenix fundamentals

The OsPhoenix is a software layer placed into the PE’s operating
system, which contains drivers for high-level operation and routines
that implement the distributed fault-tolerant mechanisms. The Os-
Phoenix is perceived by the PE’s operating system as a network driver
interface that makes the fault-tolerant mechanism of the NoC trans-
parent to the system operation. Fig. 2 depicts the main modules of
OsPhoenix and their interactions.

The OsPhoenix’s Kernel consists of (i) the Control Module, which
manages the fault-tolerant mechanism; and (ii) the NoC Driver, which
contains the routines to convert logical addresses of the application
message to physical addresses of the network, and vice versa. Addi-
tionally, this driver makes the fault-tolerant mechanism to the PE’s
operating system transparent because control packets are exchanged
between the Control Module and NoC Interface without the knowl-
edge of the PE’s operating system.

The Global Fault Table stores the status (i.e., whether a link is
tested, faulty, with fault tendency or operating properly) for all of the
NoC links. This table is a global copy of all of the router Fault Tables
(refer to Section 5.1). The Control Module writes/reads this table to
synchronize the fault link knowledge of the OsPhoenix of all of the
PEs.

The Scenarios Processing Module, which is the key aspect of
this work, computes routing tables according to the fault or ten-
dency of fault on links when commanded by the Control Module.
It uses the fault links information that is provided by the Global
Fault Table together with new fault information to search a previous
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Fig. 1. Phoenix distributed architecture [20].
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computed scenario that covers this new fault situation, in the Sce-
narios and Routing Table Memory (SRT Memory). If a candidate sce-
nario is found, then the associated Routing Table contains a new
routing and can be transmitted to the HwPhoenix. Otherwise, this
module preprocesses a new fault-tolerant scenario and its associated
RBR Table.

4. Scenario processing flow

The Phoenix NoC starts with all of the local routing tables config-
ured to operate with the XY routing algorithm. As soon as OsPhoenix
is loaded, the preliminary link tests are commanded. If all of the links
are working properly, the network starts operating. In the case of de-
tecting the faults, the OsPhoenix and HwPhoenix perform several steps
on all of the PEs and routers, to establish a new routing algorithm
[20] that allows deadlock-free communication. Aiming to capture dy-
namic faults during the network operation, the FPM modules search
for permanent faults and fault tendencies in all of the NoC links. The
information on these faults is transmitted to OsPhoenix for appropri-
ate handling. Fig. 3 illustrates a Message Sequence Chart (MSC) that
contains the steps that are taken after an FPM module detects a fault
on a link.

The FPM notifies the Fault Monitor whenever a faulty link or fault
tendency is detected. If this fault is already annotated in the Fault Ta-
ble, the information is not propagated. Otherwise, the Fault Monitor
stores the fault information in the Fault Table and informs this event
to the Fault Control Machine, which propagates this event to the Os-
Phoenix through a control packet that contains the Fault Table.

Inside the OsPhoenix kernel, the NoC Driver module captures the
control packet and transmits it to the Control Module, which checks
if the fault is already annotated in the Global Fault Table. In the case
of positive checking, the Control Module considers that the problem is
already known and treated and concludes the fault processing, i.e., no
other message is generated. Otherwise, the Control Module updates
the Global Fault Table, and through a control packet, requests to the
Fault Control Machine the broadcast propagation (i.e., to all neighbor-
ing routers) of the control packets that contain the fault information.
Simultaneously, the Control Module commands the Scenarios Process-
ing Module to proceed with the next fault-tolerant steps (e.g., to pro-
cess a new fault coverage scenario).

The control packets are propagated among neighboring routers
until all of the OsPhoenix are notified. Any neighboring router that
receives a control packet with the fault information propagates the
same information to its OsPhoenix, following the same steps de-
scribed above. The control packet propagation generates extra com-
munication traffic. However, because the control packet is normally
short (i.e., a 5-flit length in our implementation) and it is transmit-
ted only in the presence of new fault detection, they do not impact
significantly on the overall data communication. Additionally, each
OsPhoenix contains a timing mechanism to define a maximum time
for network stabilization, which is reached when all of the OsPhoenix
receive the same fault information. This mechanism is used when the
network is partitioned by a sequence of faulty links that precludes
transmitting control packets to all of the routers [20].

Fig. 4 illustrates the fault-tolerant steps when the Scenarios Pro-
cessing Module receives a fault message, which can be of two types:
faulty link or fault tendency.

When a message of fault tendency is received, the Scenarios
Processing Module verifies whether the fault is already covered by
some scenario that was previously computed. In case of a posi-
tive answer, no action is taken. Otherwise, aiming to enable a fast
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routing reconfiguration, this module computes and stores in the SRT
Memory, together with the associated routing tables, a new set of sce-
narios that cover this fault. However, the number of fault scenarios
rises exponentially with the quantity of faulty links. To address this
complexity, this paper proposes to preprocess a limited set of scenar-
ios based on a dissimilarity method that uses the cross-correlation
of fault matrices to better meet the applications requirements. The
preprocessing approach can be employed to fulfill several applica-
tions requirements (e.g., to reduce power dissipation and to achieve
homogeneous thermal distribution). Nevertheless, this work uses la-
tency minimization as an application requirement and employs the
Average Routing Distance (ARD) as a metric for fast latency estima-
tion. The dissimilarity method and ARD metric are explained next in
Section 5.

When a message of a faulty link is received, the decision about
network recovery is preeminent because the FPM module can no
longer recover defective packets, which prevents network commu-
nication. The Scenarios Processing Module checks whether the fault is
covered by the scenarios that are stored in SRT Memory. If the fault is
covered, then OsPhoenix can perform the fast routing reconfiguration.
The Scenarios Processing Module searches the one that better fulfills
the application requirement and sends a control packet to the Control
Module that contains the routing table that will be configured on the
local router. Otherwise, the routing reconfiguration takes much more
time. The Scenarios Processing Module starts computing the best set of
coverage scenarios along with the minimum cost routing algorithm,
and at that time, it configures the routing table, as described above.

The Phoenix platform accounts for the premise that “all PEs have
the same algorithm to generate scenarios and routing paths”. This
premise allows for each OsPhoenix to have its own Global Fault Table
and its own SRT Memory, and all of the OsPhoenix’s (i.e., one per PE)
operate independently and in a distributed way. This arrangement
also avoids having it be necessary for routing tables to be propagated
through the NoC because each router has a Routing Table that is set by
its local OsPhoenix.

5. Fundamentals of the fault scenarios preprocessing

The high variability of the most recent technologies applied to
the manufacture of CMOS circuits makes these circuits susceptible
to transitory changes, for example, voltage fluctuations and tem-
perature variations, which can be perceived by the monitoring sys-
tem as a dynamic operation fault. In the context of a system that
has many and frequent dynamic faults, a preprocessed scenarios
approach is important to meet the requirements of the perfor-
mance, latency and throughput. Additionally, the greater the num-
ber of processed scenarios, the greater is the fault coverage. Un-
fortunately, preprocessing a large number of scenarios is a very

complex problem, which consume both time and memory. This sec-
tion describes the fundamentals of the scenario preprocessing and
how the number of scenarios can be reduced without decreasing the
quality of the fault-tolerant solution.

5.1. HwPhoenix fundamentals

Phoenix NoC employs a direct 2D mesh topology with m lines and
n columns, which consists of m x n routers with bidirectional links
to connect with the other routers and PEs. The NoC employs routing
tables for the source routing decisions, and the OsPhoenix performs
routing algorithms to fill the routing table according to the positions
of the PEs and the faulty links. Furthermore, the Phoenix NoC imple-
ments wormhole switching, which divides the packets into flits (the
flit size of the Phoenix is equal to the phit size), demanding only small
buffers for data storing. Additionally, the Phoenix NoC uses credit-
based flow control to reduce the number of clocks that are required
for the flit transmissions.

Fig. 5 shows the Phoenix router architecture, which includes
mechanisms for packet routing and fault-tolerance. The basic packet
routing mechanism of Phoenix router encompasses four set of com-
ponents, which are described next: (i) Four bidirectional ports (north,
south, east and west) dedicated to interconnect routers and a bidi-
rectional port (local) that enables communication between the router
and its local PE. All of the input links contain configurable buffers that
are used when packets congest the routing path; (ii) a Crossbar Switch
that establishes unblocking connections between input and output
ports; (iii) a Routing Table that associates regions of the NoC with out-
put ports; and (iv) a Switch Control circuit that performs packet rout-
ing and arbitration according to the packet header and Routing Table
content. The arbitration follows a dynamic rotating policy to ensure
that all of the incoming requests are processed, which avoids the star-
vation phenomenon.

Phoenix NoC employs distributed routing in which routes are
computed according to the Routing Table, which is initialized with
XY routing. Nonetheless, depending on the occurrence of faults, a
new deadlock-free routing is provided by OsPhoenix that modifies the
Routing Table. The NoC routing algorithm is similar to RBR [6], which
groups target addresses into regions to reduce the Routing Table size.
In addition, the Routing Table provides several paths, even in the pres-
ence of faults, with a minimum of four regions. If the Routing Table
size increases, then OsPhoenix provides an alternative for the mini-
mum path using, e.g., heuristic algorithms.

The fault-tolerance mechanism implemented in each router of
the HwPhoenix includes three types of circuits: (i) a fault detec-
tion and correction module that contains a Hamming Encoder (HE),
Hamming Decoder (HD) and Fault Prediction Module (FPM), which
is placed in each one of the bidirectional links that interconnects
the routers; (ii) a Fault Monitor that communicates with the FPM
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Fig. 5. The basic components of Phoenix router architecture. The main components of HwPhoenix are bounded by dashed lines.

to set the status of the links on the Fault Table according to a two-level
fault model; and (iii) a Fault Control Machine, which controls the Fault
Monitor and the FPM and communicates via control packets with the
OsPhoenix and with the Fault Control Machine of other routers.

Fig. 6 depicts the two-level fault model that is implemented in
each Phoenix router. The first level is a 4-field vector in which each
field stores the operation status of the north, south, east and west
links, which contains two bits to inform whether the link is (i) not
verified, (ii) faulty, (iii) operating properly, or (iv) operating with fault
tendency. The second level complements the first level, providing ex-
tra information about the quality of the link. This second level, which
is physically placed inside each FPM, has counters with the operation
status of the output link: (i) No Error (NE), (ii) Corrected Error (CE)
and (iii) Detected Error (DE). In the example of Fig. 6, the counters
have different lengths to implement a window of events to capture
the probabilities of NE, CE and DE.

The Phoenix implements two mechanisms for testing the link
qualities: a static and a dynamic mechanism, which are independent

Level 1

but complementary. The static link test starts with OsPhoenix send-
ing, through the router local port, the test_links control packet, to
the HwPhoenix. The Fault Control Machine interprets this command as
broadcasting a predefined test packet to all of the output ports except
for the local output port. When a neighbor router receives the test
packet, it loops back a packet with the same information. Then, the
Fault Monitor detects whether the link is faulty or not, sets this infor-
mation on the Fault Table and informs this procedure to the Fault Con-
trol Machine, which sends the tr_fault_tab control packet containing
the Fault Table to the OsPhoenix [20], with a higher priority assigned to
minimize the control packet latency. The static mechanism sets only
the Level 1 of the fault model with a “faulty” or “operating properly”
status. Typically, the OsPhoenix produces a test_links control packet
when the system is started or asynchronously by a high-level com-
mand (i.e., provided by the application layer - this procedure is not
discussed here). Note that although the dynamic mechanism does not
interrupt the network operation, the static mechanism must stop the
router communication when not all of the links are verified.

<2 bits—»

Fig. 6. The two-level fault model (i.e., Level 1 - Fault Table; Level 2 - Link status counter).
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To implement the dynamic link test, each bidirectional link con-
tains an HE and HD to perform a strategy that is similar to the strategy
used in [30], which identifies fault tendencies using circuits based on
a threshold. The HD, which is placed on the input of each buffer, re-
ceives the data plus the redundancy bits encoded by the HE of the
adjacent router. The HD module can correct one bit flip and detect
at most two faults in a data flit, and thus, the module informs the
communication status by the signals NE, EC and ED. The HE mod-
ule generates the redundancy bits according to the flit that is trans-
mitted. Additionally, associated with each data link between routers,
there are control signals to request the retransmission of faulty pack-
ets. However, this mechanism is omitted here because this aspect is
not the focus of the present paper.

Based on monitoring the density of acknowledges and negative-
acknowledges (ACKs/NACKs), an error detection and correction cir-
cuit distinguishes between transient and non-transient faults, and
the FPM, which is placed inside the Fault Monitor, measures the den-
sity of the errors that are corrected and deduces a link fault ten-
dency. This fault tendency information is propagated to the OsPho-
enix, which makes inferences to permanent errors or tendencies of
errors. According to these inferences, OsPhoenix can set, on Level 1
of the Fault Table, the bidirectional link to be faulty (e.g., a perma-
nent error) and/or could start the preprocessing of a new routing
scenario that avoids the use of a link with fault tendency. When
a link is marked as faulty, the HE and HD modules are turned off
and remain in this status until the OsPhoenix requires a new link
evaluation.

5.2. On-demand processing versus preprocessing approach

One of two approaches, illustrated in Fig. 7, is employed to recon-
figure a NoC from a fault occurrence: on-demand processing or pre-
processing of fault scenarios. Three intervals of time compose the on-
demand processing: (i) scenario computation (ASc), which consists of
the calculation of the routing tables when new faults are detected;
(ii) NoC reconfiguration (ANry ), which includes stopping the network
operation, a possible discard of packets, reconfiguring the new rout-
ing tables, and resynchronizing the network for the next operation
period; and (iii) system operation (At 1), where the network provides
new communication paths for data traffic.

Let ARi be a time interval between two Reconfiguration Commands
(RCs), which depends on a random fault event. Let ANr; be the time
interval for the NoC reconfiguration, which is nearly constant for each
NoC size. Let ARi= ASc+ ANr; + At ; be the equation that de-
fines the composition of ARi for the on-demand processing approach.
Then, reducing the routing algorithm interval for new scenario com-
putation (i.e., ASc) increases the time remaining for the system op-
eration (i.e., At 1). However, reducing ASc reduces the efficiency of
the routing algorithm, thereby increasing the communication laten-
cies. Thus, the on-demand processing approach implies a tradeoff be-
tween ASc and At 4.

Four intervals of time compose a reconfiguration approach that
employs the preprocessing of fault scenarios: (i) scenarios preprocess-
ing (ASp), which implies the routing table computation for each fault

scenario; (ii) scenario selection (ASs), which implies selecting the cov-
erage scenario that provides the most efficient communication of all
of the stored scenarios; (iii) NoC reconfiguration (ANr,); and (iv) sys-
tem operation (At ,). These two last intervals of time have the same
meaning as those described in the on-demand processing approach.
The ASp can be performed throughout all of the system operation,
i.e.,, ASp can be less than or equal to ARi, and no extra processing
time is required in the occurrence of an RC. Thus, the routing algo-
rithm has much time to search for efficient routing paths. The ASs is
not time-consuming because the scenarios can be stored and ordered
to facilitate the scenario selection. However, this stage is important
because a bad scenario selection can compromise the system perfor-
mance. Aiming to evaluate the quality of this task, we adopt the con-
cept of coverage penalization, which is the average latency measured
by the difference between the latency achieved with an optimum so-
lution (e.g., a scenario whose routing tables produce the minimum
average latency) and the latency achieved by the selected coverage
scenario. Section 8 describes the experimental results on the cover-
age penalization.

Both approaches are performed during the same ARi, such that
ASc+ ANr; + Atq = ASs+ ANr, + At . Considering that the NoC
reconfiguration is independent of the reconfiguration approach, ANry
= ANr,. In addition, to achieve efficient routing, the on-demand pro-
cessing approach requires ASc > ASs, and then, At, > At.Con-
sequently, the preprocessing approach also increases the time that
is available for the system operation, which emphasizes another im-
provement of the approach adopted here.

5.3. Definition of coverage scenarios

In a given set of scenarios, some of the scenarios cover others,
which enables a reduction in the number of scenarios to be stored.
Let s, and s, be two fault scenarios; then, s, is a coverage scenario
of s, (i.e., the covered scenario) when all of the communication al-
lowed in sq is allowed in s, , but the opposite is not necessarily true.
Consequently, a coverage scenario is equally restrictive or more re-
strictive than the covered scenario, and then a coverage scenario can
be used instead of the covered scenario.

Fig. 8(a) exemplifies this situation, where a 5 x 5 mesh NoC has
four links (1, I, 13 and 14) that have the tendency to fail. To cover
all of the fault situations would be necessary to preprocess 16 sce-
narios. Fig. 8(b) shows the best coverage scenario for the faults on
links 1; and l3. However, the scenarios presented in Fig. 8(c and d) can
cover this same fault combination. We remark that these two cover-
age scenarios contain an extra faulty link (i.e., 4 or I, ). Therefore, the
preprocessing mechanism must choose which one of these scenarios
provides better performance to the system operation. When a given
scenario covers others, the set of routing tables applied to the cover-
age scenario can be employed to the routers of the covered scenario.
Thus, in the fault occurrence situation, the OsPhoenix will find out, in
areduced set of scenarios, which are the stored scenarios that cover
the fault links together with the associated RBR Table, which was al-
ready computed.

APPROACH EMPLOYING ON-DEMAND COMPUTATION
Scenario computation (ASc)  NoC reconfiguration (ANr,) -

System operation (At;)

APPROACH EMPLOYING PREPROCESSING OF FAULT SCENARIOS

"

A

| q

1 Scenario

1selection (ASs) NoC reconfiguration (ANr;) . System operation (At,)

4’ Scenarios preprocessing (ASp) ‘4}

¢ Reconfiguration interval (ARi) > H

! Reconfiguration command (RC) RC

Fig. 7. Stages for a fault-tolerant NoC that employs on-demand processing or preprocessing approaches.
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Fig.8. A5 x 5 mesh NoC with four links with fault tendency (i.e., dashed lines) and some coverage scenarios.

5.4. Level of similarity with a cross-correlation method

The selection method should search for coverage scenarios that
do not degrade the communication, i.e., those that keep the latency
of the packets as low as possible. Aiming to attain this goal, this
work uses two approaches that are based on the 2D cross-correlation
method [31] and that enable searching for sound coverage scenarios
based on dissimilarity in the fault scenarios.

The 2D cross-correlation of an M x N matrix Aand a P x Q
matrix B is a matrix X of size M + P —1 by N + Q — 1, such that
X =AxB. Eq. (1) computes each element of X, which is a weighted
sum of neighboring elements.

M N
> > A(mn) x B(m — k;n - q)

m=1n=1

V -1P+1<k<M-1,

X(kq) =

-Q+1=<g=<N-1 (1)

Let M and N be the lines and columns of a 2D mesh NoC, respec-
tively. We define the following matrices that are depicted in Fig. 9
(aand b): (i) R represents the routers; (ii) H and V represent the hori-
zontal and vertical links, respectively; and (iii) C represents a compo-
sition of links.

R mn isarouter,and C 1, is a composition of links, and both have

coordinates mand n,V1< m < Mand 1< n < N.In addition, H
mn is a horizontal connection betweenR , andR n —1V1< m
< Mand1< n < N —1,andV j, isavertical connection between
RmnandR 1, V1< m <M —1and1< n < N.Ifalinkin the
basic scenario has the same status (i.e., with or without fault), then
the element in the H or V matrix is 1; otherwise, it is 0. Following the
same rule, each element of the C matrix is the sum of each link that
is directly connected to the router.

This work uses 2D cross-correlation to compare scenarios to
find dissimilarities. We define LsHV (Level of similarity on Vertical
and Horizontal links) as a method that employs cross-correlation
on the matrices H and V, and LsC (Level of similarity on links
Composition) as a method that employs cross-correlation while
accounting for the joint effect of all of the links in each router
(i.e., matrix C). LsHV and LsC indicate the level of similarity be-
tween the scenarios given by the Euclidian norm (represented

Ri1(=H11 Hy o2 <FH1N1
Via Vi Vin
H21H22:> «=HaN- 1
V£1 V2 V@N
4) 4} Fts

MlZ M-1,N

HMl HMzQ «Hwmn-1

(©) (d)

by operator ||) of the cross-correlation. Both levels of similarity are
normalized by an auto cross-correlation (e.g., ||Vy * Vq||). The highest
level of similarity occurs when LsHV or LsC are equal to 1. Inasmuch
as the value departs from 1, the level of similarity is reduced, increas-
ing the level of dissimilarity. Eqs. (2) and (3) illustrate LsHV and LsC,
respectively, for the two synthetic scenarios a and b.

||Hy = Hy| 11Va = Vi
LsH,}p = ——nr, LsV —_—
S0 = 1H, + H, SVab = TV w Val|”
LsHV,, = LsH,;, -2|— LsVp )
11Ca Gy
LsCyp, = ——— 3
SCob = G+ G| ®

Next, we follow a synthetic example of a 3 x 3 mesh NoC with
3 and 4 faulty links, preforming the basic scenario a and the evalu-
ated scenario b, respectively, with the corresponding LsC formulation.
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Fig.9. Matrices employed in the cross-correlation method: (a) illustrates matrices R, H and V, which are represented in a NoC fashion (routers are rectangles, and links are double
arrows); (b) describes matrix C, where each rectangle contains the sum of all of the links that are directly connected.
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5.5. Reduction of coverage scenarios

Eq. (4) computes the quantity of links (Q; ) that connect all of the
M x N NoC routers. For example, Q; = 112 links in an 8 x 8 mesh
NoC

Q=Mx(N-=1)+Nx (M-1) (4)

Accounting for the scenario in which all of the links and/or each
individual link could be faulty, Eq. (5) computes the maximum quan-
tity of fault scenarios (Qs ), which is the combination of all of the
possibilities of faulty links.

Qs =2 (5)

As the number of scenarios grows exponentially with the num-
ber of faults, computing all of the possible scenarios is both time
and memory consuming, even for a small percentage of links, which
makes this approach unfeasible. For example, if 10% of the faulty links
were considered in a 9 x 9 mesh NoC (i.e., 15 of the faulty links), it
would be necessary to preprocess Qs = 21> scenarios. However, we
employ three strategies to decrease the number of preprocessed sce-
narios: (i) differential treatment for static and dynamic faults, (ii) in-
cremental fault scenarios, and (iii) dissimilarity approach.

The monitoring system classifies faults as static or dynamic ac-
cording to the way they were detected. Faults classified as static de-
termine an irregular NoC topology that is perceived by the Scenarios
Processing Module as a basic NoC topology. Consequently, indepen-
dent of the quantity of static faults, there will be only a single scenario
that represents the basic NoC topology. Over this basic topology, only
the dynamic faults can perform temporary path changes, which im-
plies computing new fault scenarios.

Although the total number of fault scenarios grows exponentially
with the total number of faults, the number of new fault scenarios
that must be preprocessed is incremental, i.e., it is not necessary to
recalculate the previously stored scenarios. Let Qr be the quantity of
dynamic faults that are previously known, and let Qy be the quantity
of new fault tendencies currently detected; then, Eq. (6) calculates
the quantity of new scenarios to be computed (Q s¢c). For example, if
the system has 4 links with fault tendency already known (Qr =4)
and the Fault Monitors detects two new links with fault tendency (Qy

=2), then the OsPhoenix must preprocess 48 more scenarios (i.e.,
2(4%2) _ 24) to assure that the system will provide all of the fault
scenarios.

Qsc = 2(QF+QN) _ HQF (6)

Identifying the most dissimilar scenarios that cover the same fault
scenario allows us to save a reduced set of scenarios with a wider
coverage. This wider and reduced coverage is achieved by sorting the
new scenarios according to the dissimilarity level and storing only a
percentage of the most dissimilar scenarios. When the percentage of
storage is low, only the most dissimilar scenarios are stored; other-
wise, when the percentage increases, more similar scenarios are also
stored. The choice of a suitable storing percentage depends on the

Table 1
Average occupancy of data and code memories for each MPSoC tile.

target architecture size and the fault quantity. We consider this per-
centage to be a selection criterion, and we provide analysis of this
concept in Section 8.

6. OsPhoenix and HwPhoenix implementation results

This section describes the synthesis of the Phoenix architecture
while targeting a mesh NoC-based MPSoC whose tiles contain a
plasma processor and a local memory. This architecture was applied
to collect experimental results on the quality of the analytical met-
rics and the costs associated with scenario preprocessing, which are
described in Sections 7 and 8, respectively.

6.1. OsPhoenix implementation on the plasma processor

Each MPSoC tile consists of a 32-bit Plasma processor running at
100 MHz, whose source code is based on the processor available in
the OpenCore site [32], with 256 KB of program memory and 256
KB of data memory. Running on the Plasma processor, the OsPhoenix
works like a device-driver of the Hellfire Operating System [33], en-
abling a distributed and fault-tolerant operation of a network, which
is transparent to the OS. Table 1 shows the data and code memory
footprint for the Hellfire OS and for the main modules of OsPhoenix
(i.e., Kernel and Scenarios Processing Module), in addition to the mem-
ory area that is left for user applications.

Hellfire OS and OsPhoenix are designed for low memory consump-
tion, allowing approximately 80% of the code memory and more
than 85% of the data memory for user applications. It is important
to note that the Scenarios Processing Module consumes 32 KB of the
data memory, which is almost all available to store the data tables
that contain preprocessed scenarios. This consumption depends on
the number of scenarios that the designer wants to store.

Fig. 10(a) illustrates the memory consumption of the Scenarios
Processing Module during the execution of the preprocessing scenar-
ios algorithms with respect to the NoC size variation, on average. Ad-
ditionally, Fig. 10(b) shows the Plasma processing cost (in clock cycles
and in seconds) for these same experiments.

The main implementation complexity of OsPhoenix is in the Sce-
narios Processing Module due to the network segmentation algorithm
(which provides deadlock-free routes) and the regions calculation al-
gorithm (which generates the routing tables for the NoC reconfigu-
ration). Fig. 10(a) illustrates that during the execution of these al-
gorithms, the data memory consumption of the Scenarios Process-
ing Module grows proportionally with the NoC size, thereby reduc-
ing the data memory that is available for user applications. Although
not shown in Fig. 10(a), the data memories of the Hellfire OS and the
kernel of OsPhoenix only change slightly with the NoC size.

Fig. 10(b) shows that the processing time of these algorithms
grows more than linearly with the NoC size. When employing the sce-
nario preprocessing approach for these same experiments, the total
processing time is reduced to 5500 cycles, on average. These figures
support the feasibility and importance of the preprocessing approach
because the identification of the scenario faults allows us to reconfig-
ure the network approximately a thousand times faster.

Memory occupation Hellfire OS OsPhoenix User application
Kernel Scenarios Processing Module

Code in KB (%) 24 (9.38%) 4(1.56%) 25(9.77%) 203 (79.30%)

Data in KB (%) 4(3.13%) 1(0.78%) 32(12.50%) 219 (85.54%)
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Fig. 10. Memory consumption of the Scenarios Processing Module and the CPU cost for scenarios preprocessing while accounting for seven NoC sizes. The CPU cost is given in

millions of clock cycles and in seconds (Plasma operating at 100 MHz).

Table 2

Area and power reports of the Phoenix router with 16-flit depth buffers (synthesis with Encounter [34] using STM 65 nm CMOS and 100 MHz).

Characteristic Router Fault Control Machine Fault Monitor FPM (per channel) HE (per channel) HD (per channel)
Power (uW)

Leakage 626.36 136.73 24.00 3.84 1.08 3.02

Dynamic 7112.25 1206.44 758.49 52.49 3.08 93.91

Total (%) 7738.61 (100%) 1343.17 (17.36%) 782.49 (10.10%) 56.33 (0.73%) 4.16 (0.05%) 96.92 (1.25%)
Area (nm?)

Cell area 58,159 12,003 1460 497 127 353

Net area 49,430 9309 2627 495 58 418

Total (%) 107,589 (100%) 21,312 (19.81%) 4087 (3.80%) 992 (0.92%) 185 (0.17%) 771 (0.72%)

6.2. HwPhoenix synthesis details

All of the fault-tolerant mechanisms of Phoenix are implemented
within each NoC router, in the static monitoring module (i.e., Fault
Monitor), in the modules for dynamic fault monitoring and correction
(i.e., FPM, HE and HD), and in the central machine that coordinates
these mechanisms and performs the communication with the OsPho-
enix (i.e., Fault Control Machine). Table 2 presents the area and power
reports of Phoenix router, highlighting the fault-tolerant modules, in
a standard cell implementation (STM 65 nm CMOS) for a 100 MHz
operation frequency and 16-flit depth buffers.

In the experimental setup, we employed a [16,5] Hamming code
(i.e., 16 data bits and 5 bits of data redundancy), which was imple-
mented using fixed masks that operate data and parity in a com-
bination of blocks designed to affect minimally the operation fre-
quency of the NoC links. Table 2 illustrates that HE consumes an
insignificant portion of the router area and power. The ability to
perform bit error detection and correction makes the HD circuit
much more complex than the HE circuit. Consequently, HD has
four times more area consumed and 20 times more power dissi-
pated than HE. However, this increase in the complexity does not
imply a significant portion of the area and power of the router.
The FPM has the same magnitude of the HD circuit, consuming lit-
tle more area due to the internal fault tables but dissipating less
dynamic energy. As a consequence, the dynamic fault monitoring
and correction mechanism dissipates only approximately 2% of the
router power and consumes less than 2% of the router area, per
channel.

While HD, HE and FPM are replicated on each channel between
routers, there is a single centralized Fault Monitor to perform the
static monitoring of all of the channels between routers. This mon-
itoring is started by a control packet sent by OsPhoenix via a local
link to the Fault Control Machine, which in turn controls the Fault
Monitor to make a loopback test on all of the channels between

routers. To accomplish this task, the Fault Monitor implements a
low-complexity finite state machine whose area consumption is al-
most the same as the sum of all of the dynamic fault monitor-
ing and correction mechanisms, but the power dissipation is almost
double.

The Fault Control Machine is responsible for sending and receiv-
ing control packets, monitoring the status of the static and dynamic
fault mechanisms and updating the Fault Table. This machine also up-
dates the Routing Table according to the control packets. These fea-
tures make the Fault Control Machine the higher power- and area-
consuming circuit, occupying almost 20% of the NoC router area
and dissipating more than 17% of the router power. Finally, all of
the fault-tolerant circuits of Phoenix dissipate approximately 35%
of the router power and consume less than 30% of the router area,
which shows that the fault-tolerant model that is adopted (which
implements part of the functionality in software and part in hard-
ware) enables the production of low-cost and efficient fault-tolerant
hardware.

7. Exploration of analytic metrics for runtime latency estimation
7.1. Experimental setup

The fabrication process variability of VLSI circuits increases dur-
ing every scale-down of new, deep submicron technologies, due
to phenomena such as imprecise impurity deposition and non-
uniformity in the lithography exposure field. This variability can
deviate the circuit from its nominal specification or even pre-
vent its partial or total operation [35]. In other words, it is a
source of static and dynamic faults. Therefore, and without lack
of generality, we choose the variability model proposed by Harg-
reaves et al. [36] for generating the fault scenarios for the exper-
imental results presented here. This model considers the effect of
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Expansion of fault scenarios for 48 irregular NoC mesh topologies.
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NoC size Distribution fault Amount of fault channels (3 samples) Amount of scenarios expanded (3 samples) Total amount of scenarios
o A

5x5 0.05 1.2 4,4,4 15,15,15 45
0.18 1.2 4,4,4 15,15, 15 45
0.05 0.4 6,6,6 63, 63,63 189
0.18 0.4 6,6,6 63, 63,63 189

6 x 6 0.05 1.2 555 31,31,31 93
0.18 1.2 55,5 31,31,31 93
0.05 0.4 7,77 127,127,127 381
0.18 0.4 7,77 127,127,127 381

7x7 0.05 12 5,5,5 31,31,31 93
0.18 1.2 555 31,31,31 93
0.05 0.4 9,9,9 511, 511, 511 1533
0.18 0.4 8,8,8 255, 255, 255 765

8x8 0.05 1.2 4,4,4 15,15,15 45
0.18 1.2 55,5 31,31,31 93
0.05 0.4 11, 11,10 2047, 2047, 1023 5117
0.18 0.4 10, 10, 10 1023, 1023, 1023 3069

Total 48 NoC topologies 12,224 scenarios 12,224

variability on the switch-to-switch link delay, which employs two
variation parameters: the link-delay variability o and the spatial cor-
relation variability A.

Aiming to explore scenarios with 65 nm and 22 nm manufactur-
ing processes, the link-delay variability was set to 5% (¢ = 0.05) and
18% (o0 = 0.18), respectively, as predicted by the ITRS roadmap [37].
Additionally, experiments were produced with A =0.4and A =12,
which represent high and low strengths of the spatial correlation
variability, respectively. These values are representative of the typi-
cal correlation that is induced by fabrication processes [36]. The ex-
periments encompass four NoC sizes (5 x 5,6 x 6, 7 x 7 and 8 x 8).
Table 3 shows each NoC size combined with the link-delay and spatial
correlation parameters, which produces 16 fault scenarios. Aiming to
explore the randomness of the variability model, we generated each
of these scenarios three times, resulting in 48 irregular NoC mesh
topologies. Finally, an in-house tool expands these 48 topologies into
12,224 scenarios by combining all of the possibilities of faulty links.

Spatial correlation
(A=0.4 and 1=1.2)

Link delay
(6=0.05 and =0.18)

Fig. 11 describes how the simulation scenarios are composed and
applied to achieve the experimental results. For each of the 12,224
scenarios, the in-house tool performs the following two steps: (i)
segmentation of the network using the segment routing approach to
generate a restriction file. This file contains all of the forbidden direc-
tions, to avoid deadlock situations; and (ii) computation of minimal
paths using the restriction file information, which allows us to gener-
ate the set of virtual regions for the RBR approach.

When there is an occurrence of a new fault, the OsPhoenix must
select, out of the available preprocessed set of scenarios, the one that
minimizes the overall system latency. Aiming to choose a sound run-
time metric, we employed an RTL simulation with synthetic traffic
to evaluate all of the scenarios. The simulation results were com-
pared with the results of three analytic metrics: (i) Average Rout-
ing Distance (ARD), which is the sum of all path lengths (mea-
sured as the number of hops) divided by the number of paths; (ii)
Link Weight (LW), which is the number of communications that
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Fig. 11. Setup of experimental results.
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Fig. 12. Pearson correlation for the average latency: (a) comparison of 3 analytic metrics (i.e., ARD, LW and SLW) with uniform traffic simulations (injection rates of 5%, 10%, 15%
and 20%); and (b) comparison of ARD with uniform traffic simulations, at an injection rate fixed at 5% and with 4 NoC sizes (5 x 5,6 x 6,7 x 7,8 x 8).

crosses each link, considering the links direction; and (iii) Standard
deviation of LW (SLW). Aiming to evaluate these metrics, we em-
ploy the Pearson correlation analysis [38] between the average la-
tency simulated and the estimates provided by the analytic metrics.
According to the Pearson correlation, the closer the correlation is to
1, the better the metric that is used. The experimental results are dis-
cussed next.

7.2. Experimental results for analytic metric selection

The experimental results were obtained using uniform traffic
with four injection rates (5%, 10%, 15% and 20%) and for all of the
12,224 fault scenarios in which each PE sends 50 packets of 100 flits.
Fig. 12(a) shows that except for the 10% injection rate, all of the an-
alytic metrics presented positive, significant and strong correlations
(i.e., closer to 0.9).

The highest correlation values are achieved with a 5% injection
rate because the NoC resources are not overloaded, which mini-
mizes the packet contentions. At almost 10% of the injection rate,
the NoC reaches the saturation point, where the traffic behavior
is unpredictable, which presents enormous variability in the com-
munication latency. Consequently, the Pearson correlation is re-
duced for all of the analytic metrics. Finally, after the saturation
point, the Pearson correlation increases again, which shows that
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Fig. 13. Pearson correlation for the average latency: comparison of 3 analytic metrics
(i.e., ARD, LW and SLW) under uniform traffic simulations, with an injection rate fixed
at 5% and 4 types of fault distribution.

the proposed analytic metrics can capture the behavior of a congested
traffic scenario. Assuming ARD to be the better analytic metric for
traffic with low injection rates, Fig. 12(b) shows the experimental re-
sults of the Pearson correlation according to the NoC sizes. This figure
highlights that the increase in the NoC size reduces the Pearson corre-
lation, which is justifiable due to the increase in the additional paths
between the communication pairs and the increase in random packet
collisions.

Fig. 13 illustrates the quality of the analytic metrics (i.e., ARD, LW
and SIW) for estimating the average latency according to the type
of fault distribution, i.e., the link-delay variability considering CMOS
manufacturing technology (6 = 0.05 /65 nm, 0 = 0.18 /22 nm) as-
sociated with the strength of the spatial correlation variability (i.e., a
high or low strength for A =0.4 or A = 1.2, respectively). Account-
ing for the spatial correlation variability, the highest correlations be-
tween the analytic metrics and the average latency are obtained in
networks with A = 1.2 because this spatial correlation produces the
lowest degree of severity faults, the greatest fault dispersion and a
lower percentage of faults. A high variability in the spatial correlation
(A =0.4) reduces the correlation degree between the analytic met-
rics and the average latency because it produces scenarios with a high
quantity of faults that are highly grouped. Nevertheless, the experi-
mental results display a strong correlation for A = 0.4, which shows
that the analytic metrics can be used to estimate the average latency
even with these aggressive fault distributions. Finally, the link-delay
variability shows that the analytic metrics have a stronger correlation
with 0 =0.18 than o = 0.05, which displays a tendency to achieve
sound results for the most recent technologies.

Fig. 14 illustrates the quality of the analytic metrics according to
the number of fault links. It is evident that there is a reduction in the
Pearson correlation with an increase in the number of faulty links.
This finding can be explained because occurrences of faulty links im-
ply a reduction in minimal paths. Consequently, more communica-
tions share the same paths, which increases the concurrency for the
NoC resources (i.e., the input buffers and links of the router). This cir-
cumstance implies more packet contention and more unpredictable
latencies, which are not captured by the estimates of the analytic
metrics.

The simulation results show that the three analytic metrics pro-
duce similar and satisfactory estimates for the end-to-end average
latency. However, the ARD is less susceptible to an increase in the
number of faulty links. Thus, we chose to employ this metric in the
Scenarios Processing Module of OsPhoenix for the execution of all of the
experiments.
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8. Analysis of methods and costs of the preprocessing approach

This section displays the experimental results that are employed
to quantify the coverage penalization, as defined in Section 5.1, and
analyze the efficacy and efficiency of both the LsHV and LsC cross-
correlation methods in searching for a suitable reduced set of cover-
age scenarios.

8.1. Experimental setup to estimate the coverage penalization
Fig. 15 shows the flow that is employed in each experiment,

which encompasses the 48 basic mesh topologies detailed in
Table 3 and two traffic injection rates (5% and 20%). Additionally,

for each cross-correlation method, we use three different percentages
of stored fault scenarios (10%, 30% and 50%).

As described in Section 5.5, a given set of faults alters a mesh
NoC into an irregular mesh topology, which is considered here to
be a basic topology. Each basic topology encompasses Q sc possi-
ble scenarios. For example, a 6 x 6 NoC with 7 faulty links produces
127 fault scenarios (i.e., 27 = 128, but one scenario does not con-
tain faulty links). The set of 48 scenarios with its corresponding
quantity is surrounded by a rounded rectangle in Fig. 15. From one
of this set of scenarios (1), we can apply the LsHV and LsC cross-
correlation methods, selecting a percentage P of the most relevant
scenarios (2. The remaining scenarios (1 — P) are used to evalu-
ate the coverage penalization, because none of these scenarios are
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Fig. 15. Flow for the cross-correlation method and cost analysis, which is applied to each set of scenarios that compose each one of the 48 basic mesh NoC topologies.
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Fig. 16. Percentage of uncovered scenarios when applying the LsHV dissimilarity method. The experiment evaluates all 48 basic NoC topologies with three percentages of scenario

selection (10%, 30% and 50%).

stored at runtime (3). Once a scenario is selected to be evaluated @),
the flow, which reflects the OsPhoenix operation, checks whether at
least one stored scenario covers the selected one (5. In the negative
case, the flow marks this non-success to evaluate the efficacy of the
LsHV and LsC methods &) (at runtime, the network must stop wait-
ing for the processing of the new routing tables that cover this fault
situation, which is a timing-consuming task). Otherwise, the flow se-
lects, from the set of coverage scenarios, the scenario that produces
the lower latency (7) (at runtime, the OsPhoenix uses this scenario
for NoC reconfiguration, and the scenario latency is estimated using
ARD). Thus, the selected scenario and the scenario under evaluation
are compared in terms of the latency - i.e., the coverage penalization
is quantified (®). These latency results, which are computed by Eq. (6),
are stored for statistical analysis (9). The flow performs these previous
steps until all of the remaining scenarios are evaluated @0. Once all of
the scenarios are evaluated, the flow stops @), and a new experiment
can be evaluated.

Average LatencySelected Scenario — Average LatenCYScenario Under Evaluation

8.2. Experimental results for coverage penalization and correlation
methods analysis

The first set of results explores the efficacy of both cross-
correlation methods in searching for sound coverage scenarios. The
results determined that the LsC method did not present any uncov-
ered scenarios, which shows that it is efficacious in finding the best
scenarios according to the coverage criterion. This finding occurs be-
cause LsC selects the most dissimilar scenarios, which provides large
coverage possibilities. On the other hand, Fig. 16 shows that the LsHV
is less efficacious, because this method produced a large quantity
of uncovered scenarios, even storing 50% of the scenarios. Addition-
ally, Fig. 16 shows three other aspects about the efficacy of the LsHV
method: (i) it is independent of CMOS manufacturing technology (i.e.,
o =0.05/65nm, o = 0.18/22 nm), which highlights the potential of
the approach for other CMOS technologies; (ii) it increases with an

Coverage penalization =

Coverage penalization
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Fig. 17. Average of the coverage penalization for a 10%, 30% and 50% fault scenario reduction: (a) the LsHV and LsC methods under a 5% Injection Rate (IR); and (b) LsC method under

a 5% and 20% IR.
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increase in the NoC size. This relationship occurs because the increase
in the NoC size sparsifies the faults, making the capture of dissimilar-
ities easy; (iii) it increases with a reduction in A because a reduction
in A means an increase in the spatial correlation that produces sce-
narios with more faulty links. In turn, the increase in the faulty links
allows it to find more dissimilarities between the scenarios.

Fig. 17 (a) presents the coverage penalization, which compares the
efficiency of the LsHV and LsC methods, considering only a 5% traffic
injection rate and only the scenarios whose coverage was found by
both methods. Although the LsHV method does not show high effi-
cacy in finding sound coverage scenarios, the experiments highlight
that (i) LsHV presents a lower coverage penalization, but the increase
in the coverage penalization for the LsC method is not meaningful; and
(ii) the coverage penalization increases slightly with the reduction in
the scenarios storage, which indicates that the cross-correlation to
identify dissimilarities is a promising technique for the scenarios re-
duction approach.

Fig. 17(b) depicts the average coverage penalization, accounting for
two traffic injection rates (IR 5% and IR 20%), four NoC sizes (5 x 5,
6 x 6,7 x 7 and 8 x 8) and only the LsC method for all of the 48 sce-
narios in the set of scenarios. It shows that the coverage penalization
increases significantly with the increase in the network traffic. For ex-
ample, with 50% of the storage scenarios, the increase from IR 5% to
IR 20% implies an increase from 4.0% to 28.2% in the coverage penal-
ization. This finding can be explained because the coverage scenario
has fewer operational links, which increases the traffic competition
for the same NoC resources. Furthermore, the increase in the network
traffic that is associated with the reduction in the coverage scenarios
produces an additional increase in the coverage penalization. For ex-
ample, with 50% of the storage scenarios, the increase from IR 5% to
IR 20% implies 7.08 times more coverage penalization, while with 10%
of the storage scenarios, the same increase in IR implies 8.85 times
more coverage penalization. This last situation argues against the em-
ployment of the approach of coverage scenario reduction. However,
in practice, only a few sets of I0-bounded applications produce large
IRs, on average. Additionally, our synthetic experiments produce large
quantities of data without compromising CPU utilization, and they
reached only 25% IR, even using a DMA channel.

Fig. 18 shows the variation in the coverage penalization with
an increase in the NoC size while considering the LsC method and
IR 20%, i.e., the same experiment as depicted in Fig. 17(b) - column
LsC (50%) + IR 20%, but identifying the average of the coverage penal-
ization for each NoC size.

These last results show that the coverage penalization decreases
when the NoC size increases. This relationship occurs because larger
NoCs contain many more links, enabling them to produce efficient

60%
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40%
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20%

Coverage penalization

10%

5x5 6x6 7x7 8x8
NoC Sizes
Fig. 18. Average of the coverage penalization for 50% of the fault scenario reductions,

when applying the LsC methods under a 20% traffic injection rate and considering four
NoC sizes.

routing paths even in the presence of unused links. Accounting
for recent and future systems that contain large quantities of PEs,
which require large NoCs and in which the traffic injection rate
is almost less than 20%, the coverage penalization tends to be less
significant, which justifies an even larger preprocessing approach
usage.

9. Conclusions

This paper proposes a hardware/software reconfiguration ap-
proach that is based on preprocessing fault scenarios. The soft-
ware is a small part of the operating system Kkernel called
OsPhoenix, which preprocesses fault scenarios as soon as a
fault prediction monitor (monitors are placed on each link of
each router) detects a fault tendency. The hardware part is a
fault-tolerant mesh NoC, which employs a region-based routing
mechanism.

The preprocessed scenarios approach reduces the time that the
network is halted, waiting for the computation of the routing algo-
rithm that enables the NoC operation in the occurrence of new faults.
The quantity of scenarios grows exponentially with the quantity of
faults, which implies that there is a large area of memory and process-
ing time to compute all of the scenarios in the set of scenarios. Aim-
ing to minimize this problem, this work employs three strategies: (i)
differential treatment for static and dynamic faults, (ii) incremental
processing of fault scenarios, and (iii) a dissimilarity approach, which
enables finding the most dissimilar scenarios based on the 2D cross-
correlation method.

We concluded that the preprocessed scenarios approach, in con-
junction with the analysis of fault tendency detection, allows us to
preprocess sound coverage scenarios, enabling a faster reconfigura-
tion and reducing the time that the network is halted waiting for the
computation of the routing algorithm that handles topology modifi-
cations. The preprocessing of scenarios implies a coverage penaliza-
tion, which is the difference between the latency that is achieved
with an optimum solution and the latency that is achieved by the
selected coverage scenario. However, according to the experimental
results, the coverage penalization is not meaningful and tends to be
slower when the traffic injection rates are reduced and when the NoC
size is increased. Furthermore, when compared with on-demand pro-
cessing approaches, the preprocessing of fault scenarios approach en-
ables a larger CPU time to compute the routing algorithm, which en-
ables communication paths to be selected that minimize the overall
latency and increase the time for the system operation, which high-
lights the efficiency of the preprocessing approach proposed in this
work.
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