
A Fault Prediction Module for a Fault Tolerant NoC Operation

Jarbas Silveira1, Mathieu Bodin2, João Marcelo Ferreira1,
Alan Cadore Pinheiro1, Thais Webber3, César Marcon3

1LESC-DETI / Federal University of Ceará - Fortaleza, Ceará, Brazil - 90455-970
2 Polytechnique Nice Sophia Antipolis, Département Electronique – Biot, France - 06410

3PPGCC / PUCRS - Porto Alegre, Brazil – 90619-900
E-mail: jarbas@lesc.ufc.br

Abstract

Each new production technology of integrated circuit (IC)
drives more transistors area reduction, implying smaller and
denser circuits. This scenario allows integrating several
Processing Elements (PEs) into the same IC with efficient
communication architecture such as the scalable topologies of
Network on Chip (NoC). However, these newer production
technologies introduce more defects in various parts of the IC
that have to be detected and well corrected to prevent
malfunction of the IC. This work presents the Fault Prediction
Module (FPM), which presents low area consumption and a
power circuit based on thresholds enabling to detect link
quality, i.e. operating properly, operating with fault tendency
or with permanent fault. Additionally, we show how to tune
the FPM threshold parameter aiming to use this circuit as a
mechanism with comprehensive fault model. The set of
experimental results shows the effectiveness of our proposal.

Keywords
Fault-tolerance, NoC, latency evaluation

1. Introduction
A Network-on-Chip (NoC) is a communication

architecture that plays a key role in the implementation of a
highly integrated System-on-Chip (SoC). Mesh is the most
popular NoC topology offering simple and regular structure,
and small wire length being suitable to the tile-based design.
Routers and links interconnect each Processing Element (PE)
to other PEs placed into a tile.

Recent deep submicron technologies increase defective
components, mainly due to process variability [1],
electromagnetic interferences, charge injection or radiation
[2], or even cross talk effect [3]. Therefore, it is essential to
provide support for dynamic faults using a circuit that detects
and corrects faults, and additionally providing statistics to a
high-level layer (e.g. an operating system).

This work presents the Fault Prediction Module (FPM),
which is a circuit that distinguishes both transient and
permanent faults, and determines if there is fault tendency on
a link. The fault detection model is based on thresholds,
which are triggered according to three types of transmissions:
(i) a transmission without error, which produces an
acknowledgement (ACK); (ii) a transmission with corrected
errors, which also produces an acknowledgement but it is
represented as ACKC (i.e. an ACK with error correction);
and (iii) an unsuccessful transmission due to the quantity of
errors that are detected but not corrected, which produces a
negative-acknowledgment (NACK). The main challenge of
FPM design is how the threshold parameters have to be set

for the correct detection of fault tendency and permanent
faults. FPM is part of the fault-tolerant mechanism of Phoenix
NoC [4], and each input link of NoC’s router contains a FPM.

The paper is organized as follows. Section 2 provides an
overview of Phoenix NoC’s architecture providing the
architectural context of FPM. Section 3 details FPM circuit
and its overall behavior. In Section 4, we show and discuss
experimental results. Finally, Section 5 concludes this work.

2. Phoenix NoC’s Architecture
Phoenix is a distributed fault-tolerant architecture

implemented over a NoC-based MPSoC platform. It
comprises hardware part placed on each NoC router and
software part (i.e. OsPhoenix) placed into the operating
system of each PE [5], which is composed of a processor-
memory pair [4]. In addition, Phoenix NoC employs a direct
2D mesh topology consisting of routers using bidirectional
links to connect with other routers and PEs. The NoC
employs tables for source routing decisions, and the
OsPhoenix implements routing algorithms to fill the Routing
Table according to the position of PEs and faulty links.

Figure 1 shows the Phoenix’s router architecture, which
includes mechanisms for packet routing and fault-tolerance.

Figure 1: The basic components of Phoenix’s router
architecture.

978-1-4799-7581-5/15/$31.00 ©2015 IEEE 284 16th Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 19:18:54 UTC from IEEE Xplore. Restrictions apply.

The basic packet routing mechanism of Phoenix’s router
encompasses four set of components described next: (i) four
bidirectional ports (NORTH, SOUTH, EAST and WEST) dedicated
to interconnect routers, and a bidirectional port (LOCAL) that
enables the communication between the router and its local
PE. All input links contain configurable buffers used when
packets congest the routing path; (ii) a Crossbar Switch that
establishes unblocking connections between input and output
ports; (iii) a Routing Table that implements the routing
algorithm; and (iv) a Switch Control circuit that performs
packets routing and arbitration according to the packet header
and to the Routing Table content.

The fault-tolerance mechanism implemented in each
router includes three types of circuits: (i) a fault detection and
correction module containing a Hamming Encoder (HE), a
Hamming Decoder (HD) and the FPM that are placed in each
one of the bidirectional links; (ii) the Fault Monitor that

communicates with FPM to set links status on the Fault
Table according to a two-level fault model; and (iii) the Fault

Control Machine, which controls the Fault Monitor and the
FPM, and communicates via control packets with the PE and
with the Fault Control Machine of other routers.

Figure 2 depicts the two-level fault model implemented in
Phoenix’s architecture. Both levels store the operation status
of the NORTH, SOUTH, EAST and WEST links. The first level
contains two bits to inform whether the link is: (i) not
verified, (ii) operating properly, (iii) operating with fault
tendency, or (iv) with permanent fault. The second level
complements the first one, providing extra information about
the quality of link. This second level, which is physically
placed inside each FPM, has counters with the operation
status of the output link: (i) No Error (NE), (ii) Corrected
Error (CE) and (iii) Detected Error (DE). In the example of
Figure 2, the counters have different lengths in order to
implement a window of events to capture probabilities of NE,
CE and DE.

Figure 2: Two-level fault model of Phoenix: Level 1 - Fault Table; Level 2 - Link status counters (exemplified with 15-bit
length).

Phoenix implements two complementary mechanisms for
testing links quality: one static and other dynamic. Figure 3
depicts the MSC diagram of static link test, which starts with
each OsPhoenix sending a test command (TEST_LINKS)
through the router’s local port to the Fault Control Machine
that interprets this command and broadcasts a predefined test
packet to all output ports.

Figure 3: MSC diagram of the fault detection circuit.

When the input link of the neighbor router receives the
test packet, it loops back a packet with the same information.

Then, the Fault Monitor detects whether the link is faulty or
not, sets this information on the Faulty Table, and informs
this procedure to the Fault Control Machine that sends the
Faulty Table to the OsPhoenix (TR_FAULT_TAB). The static
mechanism sets only the Level 1, changing the status link
from “not verified” to “operating properly” or “with
permanent fault”.

In order to accomplish the link test, each bidirectional link
contains a HE and a HD to perform a dynamic strategy
similar to the one used in [6], which identifies fault tendencies
based on thresholds of ACKs and NACKs. The HD, placed
on the input of the buffer, receives the data and the
redundancy bits that were encoded by the HE in the adjacent
router. The HD module can correct one bit flip and detect at
most two faults in a data flit. Thus, the module informs the
communication status by the counters NE, CE and DE, which
performs the Level 2 of the fault model. The HE module
generates the redundancy bits according to the flit that will be
transmitted. FPM assumes a fault tendency or a permanent
fault on link measuring the density of ACKCs or NACKs,
respectively, in a given window of time. This fault tendency
information is propagated to the OsPhoenix that may perform

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 19:18:54 UTC from IEEE Xplore. Restrictions apply.

high-level decisions to accomplish the fault-tolerance
mechanism.

3. Fault Prediction Module (FPM) Description
FPM is a fault prediction circuit based on the architecture

and functioning of a previous circuit described in [6]. FPM
modifies the previous version inserting additional hardware to
provide analysis of fault tendency and permanent fault. Figure
4 shows the basic architecture of FPM.

Figure 4: Architecture of FPM containing its main
components.

Three counters and a reset circuit compose FPM. At each
counter is associated a threshold. When the count reaches the
threshold value, the counter fires a command signal (i.e.
resetAll, faultTend or faultDet).

An event on signal iNE informs to the counter NE the
occurrence of a successful flit reception (i.e. an ACK),
implying an increment of the counter. When the counter NE
reaches the threshold N, the counter produces a pulse on
signal resetAll that initializes a reset sequence zeroing all
counters (i.e. NE = CE = DE = 0). Details of reset sequence
are described in [6]. The threshold N logically describes an
observation window, where FPM may verify the quantities of
ACKCs and NACKs, and consequently FPM may infer if the
link is operating properly, if there are some transitory faults or
the link operating in a situation considered as permanent fault.

An event on signal iCE informs the occurrence of a
successful flit reception, but with the Hamming circuit
correcting a single error (i.e. an ACKC), implying an
increment of the counter CE. When the counter CE reaches
the threshold M, the counter fires the command signal
faultTend, notifying to the Fault Control Machine that the
quantity of ACKCs received during the predefined windows
indicates a fault tendency. Finally, an event on signal iDE
informs the occurrence of an unsuccessful flit reception, i.e.
the Hamming circuit detects, but does not correct, a double
error characterizing occurrence of NACK. This event
increments the counter DE and makes the router to require flit
retransmission. Aiming to avoid retransmission delays, when
the counter DE reaches the threshold P, it fires the command
signal faultDet, notifying to the Fault Control Machine that
the quantity of NACKs received during the observation
windows indicates that it has to discard the link from the
NoC’s communication paths.

The Fault Control Machine informs to OsPhoenix any
event of faultTend and faultDet. Additionally, these events
may alter the Level 1 of the fault model according to the
following decreasing priority of status: (i) operating properly,
(ii) operating with fault tendency, (iii) with permanent fault.
Therefore, a link marked as operating properly may be set to

operating with fault tendency or with permanent fault in a
presence of faultTend or faultDet events, respectively; but a
link marked as with permanent fault only may change its
status with a high-level command provided by OsPhoenix.
Moreover, OsPhoenix sets all initial threshold values and may
dynamically change them according to faults occurrence and
high-level definitions, which are not discussed here.

It is important to notice that if the counters CE and DE do
not reach their thresholds during the observation window the
command signals faultTend and faultDet will not fire.
Therefore, all occurrences of faults are perceived as transitory
faults.
3.1 The Threshold Modeling

The use of thresholds aims to build an efficient circuit that
captures permanent faults (i.e. fault tendency and permanent
fault), discarding the transient ones. It has to consider
architectural aspects such as the size of counter, and dynamic
aspects as the definition of appropriate threshold values.
Therefore, this section describes equations that enable to
model the circuit operation. Equation 1 shows the relation of
ACKs, ACKCs and NACKs monitored by FPM during a
predefined quantity of flits (#flits). #flits = ACKs + ACKCs + NACKs (1)

Aiming to explore ACKs, ACKCs and NACKs according
to their probability of occurrence, we define Flit Ack Rate
(FAR) and Flit Error Rate (FER) as the quantities of ACKs
and ACKCs + NACKs captured inside #flits, respectively.
Moreover, Equation 2 defines τ as a parameter that enables to
capture the quantity of NACKs from the FER. Consequently,
Equation 3 describes the quantity of ACKCs as the
complementary probability defined in Equation 2. NACKs = τ × FER × #flits (2)ACKCs = (1 – τ) × FER × #flits (3)

Rewriting Equation 1 according to Equations 2 and 3 and
the FAR definition, we provide Equation 4, which represents
the probabilities of communications with and without faults. 1 = FAR + τ × FER + (1 – τ) × FER (4)

FER and τ define probabilities of errors that depend on the
technology of IC production, on the architectural design, and
on the traffic behavior. Since traffic has dynamic behavior, it
is hard to define its influence during the design time. On the
other hand, the designer may define requirements of fault
tolerance, and perform dynamic adjustment of thresholds to
fulfill these requirements. We define FERmax as the
maximum tolerated FER, and the threshold parameters are
adjusted to fire fault tendency and permanent fault events,
when this FER is reached.

FPM employs the counters NE, CE and DE to compute
the quantity of ACKs, ACKCs and NACKs, respectively; and
it employs N, M and P to define thresholds that enable to
capture FERmax. The idea is to define an observation
window based on the count of ACKs. During this observation
window, it may capture fault tendency, or permanent fault, if
counters CE, or DE reach M or P, respectively. On the other
hand, if the counter NE reaches N, before firing fault

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 19:18:54 UTC from IEEE Xplore. Restrictions apply.

tendency or permanent fault events, means that eventual
faults are considered transitory, and so they are discarded.
Thus, the counters are reset and a new observation window
starts. Figure 5 exemplifies a faultTend event based on the
concept of observation window.

Figure 5: Example of fault tendency detection. The figure
takes account only N and M thresholds. The input iCE
represents instants of single fault events, which are computed
by counter CE.

The procedure illustrated in Figure 5 shows that
faultTend, resetAll, and even faultDet (not shown in the
figure) are implemented as threshold relations, and the
equations 5, 6 and 7 describe how the thresholds N, M and P
are adjusted. N = #flits (5)M = (1- τ) × FERmax (6)P = τ × FERmax (7)
4. Simulation Results

This work comprises two analyses: (i) the circuit behavior
depending on the thresholds value and the size of observation
window (defined by the quantity of flits passing through the
monitored link); and (ii) the area and power consumption of
FPM compared with a similar circuit presented in [6].
4.1 Threshold Settings for FPM

For faults occurrence evaluation, the signals are generated
in SystemC and injected in the links during NoC simulation.
All experiments employed 10% for double/simple error ratio.

In a first set of experimental analysis, we perform
simulations observing a window variation from 150 to 40
flits, with 10,000 flits transmitted, considering counter NE
with 8-bit length, and a FERmax of 20% (i.e. the FER used to
define M and P, according to equations discussed in Section
3.1). The real FER varies from 5% to 50%. The main purpose
of this simulation is to observe the FPM behavior, according
to FERmax and τ parameters and sizes of observation
windows, which depend on threshold N. Therefore, one can
choose the values that better fit the target application. All
results of this section are average values from 20 simulations.
The confidence intervals are insignificant and kept hidden to
provide cleaner figures.

Figure 6 shows that when the size of the observation
window decreases, the FPM triggers less events of fault
tendency. When the real FER is close to FERmax (i.e. the
expected FER rate), the module can be well-adjusted, i.e.
using the N setup to well-adjust the sensibility level of the
FPM. When the real FER increases, it becomes impossible to
set the adjust level as we can notice from 50% FER rate. This
can be explained considering that higher values of N enables

to capture more errors. Consequently, FPM becomes more
sensitive.

0

10

20

30

40

50

60

70

80

90

40 50 60 70 80 90 100 110 120 130 140 150

Ev
en

ts
 o

f f
au

lt
 te

nd
en

cy

Observation window

FER 10% FER 20%
FER 30% FER 40%
FER 50%

Figure 6: Occurrence of fault tendency events according to
the size of the observation window (FERmax = 20%).

Figure 7 depicts that the behavior of FPM is similar to
permanent fault events. For high FER rates, FPM detects
much more events whereas the module is well-adjusted to
20% FER rate.

0

10
20
30

40
50
60

70
80
90

100
110

120
130

40 50 60 70 80 90 100 110 120 130 140 150

Ev
en

ts
 o

f p
er

m
an

en
t f

au
lt

Obervation window

FER 10% FER 20% FER 30%
FER 40% FER 50%

Figure 7: Permanent fault detection depending on the size of
the observation window (FERmax = 20%).

0

5

10

15

20

25

30

35

40

45

50

100 120 140 160 180 200 220 240 260

Ev
en

ts
 o

f f
au

lt
 T

en
de

nc
y

Observation window

FER 40% FER 50%
FER 60% FER 40% (free adjust)

Figure 8: FPM with window size saturation and with free
adjust of threshold settings.

Now, we are going to address the saturation problem for
FPM (as the threshold counters are hardwired setup in project
phase, the FPM can became insensible depending on relation
between FERmax and real FER). Let suppose the length of

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 19:18:54 UTC from IEEE Xplore. Restrictions apply.

counter NE are hardwired to 8 bits, thus, the maximum
counter size for N is 256. If the FERmax is adjusted to value
0.5, and the real FER is 0.4, the size of the observation
window N becomes more sensible, once the value was
saturated (refer to Figure 8). To address this problem we can
use another rules to set M and P values. Herein, instead of
using the equations of Section 3.1, we freely adjust M and P.
In Figure 8, one can notice that the free adjust of M and P to a
factor 2 activates the FPM again, even with a 40% FER rate
(lower than FERmax, used for tuning setup phase).
4.2 Area and Power Analyzes

Table I presents the area and power reports of FPM and
the circuit from previous work [6] in a standard cell
implementation (UMC 90 nm library - very high-density
400,000 cell/mm², with decoupling capacity to limit glitches).
FPM is more complex than the genuine one (logical cell,
wires, registers, counter) thus it requires higher area and
increased power.

According to detailed values in Table I, the genuine
circuit size is about 5500 µm² and for the FPM is about
7570 µm². We conclude that the increasing of power
consumption is about 60%, and the area used increases
around 35%. The genuine circuit allows only detecting
transient or non-transient faults. Our circuit permits to
anticipate the tendency of these faults, although spending
more resources.

Table I: Power and Area table.
Requirement Original FPM

Po
w

er

(µ
W

) Internal 37.7 48.1

Switching 12.4 34.3
Total 58.1 82.4

A
re

a

 cells µm² cells µm²
Combinational 1136 2840 1576 3940
Non-combinational 1082 2705 1453 3633
Buffer/Inv 25 63 24 60
Total 2213 5608 3053 7633

5. Conclusion
The FPM circuit demonstrates to be a good solution to

prevent potential faults during a transmission into a NoC,
mainly considering its flexibility and potential on the
parameterization of window size and threshold values. Our
proposed circuit does not use a lot of extra area and power
when compared with the genuine circuit presented in [6],
mostly regarding the additional functionalities provided by
FPM. The detection of fault tendency allows anticipating the
transmissions behavior.

As future works, we intend to analyze the FPM behavior
under different faults distribution, as Poisson or exponential.

6. Acknowledgements
This work is partially funded by FAPERGS (Docfix SPI

n.2843-25.51/12-3 and PqG 12/1777-4) and CNPq-Brasil
(process number 132778/2014-9).

7. References
[1] Ioannidis E. et al. “Evolution of Low Frequency Noise

and Noise Variability through CMOS Bulk Technology
Nodes from 0.5 μm down to 20 nm”. Solid-State
Electronics, v. 95, pp. 28-31, May 2014.

[2] Benini L.; Micheli G. “Networks on chips: a new SoC
paradigm”. Computer, v. 35, n. 1, Jan. 2002.

[3] Cuviello M.; Dey S.; Bai X.; Zhao Y. “Fault Modeling
and Simulation for Crosstalk in System-on-Chip
Interconnects”. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 297-333, 1999.

[4] Marcon C. et al. “Phoenix NoC: A distributed fault
tolerant architecture”. International Conference on
Computer Design (ICCD), pp. 7-12, 2013.

[5] Aguiar, A. et al. “Hellfire: A design framework for
critical embedded systems' applications”. International
Symposium on Quality Electronic Design (ISQED),
pp. 730-737, 2010.

[6] Dai L. et al. “Monitoring circuit based on threshold for
fault-tolerant NoC”. Electronics Letters, v. 36, n. 14,
July 2010.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 19:18:54 UTC from IEEE Xplore. Restrictions apply.

