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Abstract 

Each new production technology of integrated circuit (IC) 
drives more transistors area reduction, implying smaller and 
denser circuits. This scenario allows integrating several 
Processing Elements (PEs) into the same IC with efficient 
communication architecture such as the scalable topologies of 
Network on Chip (NoC). However, these newer production 
technologies introduce more defects in various parts of the IC 
that have to be detected and well corrected to prevent 
malfunction of the IC. This work presents the Fault Prediction 
Module (FPM), which presents low area consumption and a 
power circuit based on thresholds enabling to detect link 
quality, i.e. operating properly, operating with fault tendency 
or with permanent fault. Additionally, we show how to tune 
the FPM threshold parameter aiming to use this circuit as a 
mechanism with comprehensive fault model. The set of 
experimental results shows the effectiveness of our proposal. 
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1. Introduction 
A Network-on-Chip (NoC) is a communication 

architecture that plays a key role in the implementation of a 
highly integrated System-on-Chip (SoC). Mesh is the most 
popular NoC topology offering simple and regular structure, 
and small wire length being suitable to the tile-based design. 
Routers and links interconnect each Processing Element (PE) 
to other PEs placed into a tile. 

Recent deep submicron technologies increase defective 
components, mainly due to process variability [1], 
electromagnetic interferences, charge injection or radiation 
[2], or even cross talk effect [3]. Therefore, it is essential to 
provide support for dynamic faults using a circuit that detects 
and corrects faults, and additionally providing statistics to a 
high-level layer (e.g. an operating system). 

This work presents the Fault Prediction Module (FPM), 
which is a circuit that distinguishes both transient and 
permanent faults, and determines if there is fault tendency on 
a link. The fault detection model is based on thresholds, 
which are triggered according to three types of transmissions: 
(i) a transmission without error, which produces an 
acknowledgement (ACK); (ii) a transmission with corrected 
errors, which also produces an acknowledgement but it is 
represented as ACKC (i.e. an ACK with error correction); 
and (iii) an unsuccessful transmission due to the quantity of 
errors that are detected but not corrected, which produces a 
negative-acknowledgment (NACK). The main challenge of 
FPM design is how the threshold parameters have to be set 

for the correct detection of fault tendency and permanent 
faults. FPM is part of the fault-tolerant mechanism of Phoenix 
NoC [4], and each input link of NoC’s router contains a FPM. 

The paper is organized as follows. Section 2 provides an 
overview of Phoenix NoC’s architecture providing the 
architectural context of FPM. Section 3 details FPM circuit 
and its overall behavior. In Section 4, we show and discuss 
experimental results. Finally, Section 5 concludes this work. 

2. Phoenix NoC’s Architecture 
Phoenix is a distributed fault-tolerant architecture 

implemented over a NoC-based MPSoC platform. It 
comprises hardware part placed on each NoC router and 
software part (i.e. OsPhoenix) placed into the operating 
system of each PE [5], which is composed of a processor-
memory pair [4]. In addition, Phoenix NoC employs a direct 
2D mesh topology consisting of routers using bidirectional 
links to connect with other routers and PEs. The NoC 
employs tables for source routing decisions, and the 
OsPhoenix implements routing algorithms to fill the Routing 
Table according to the position of PEs and faulty links. 

Figure 1 shows the Phoenix’s router architecture, which 
includes mechanisms for packet routing and fault-tolerance. 

 
Figure 1: The basic components of Phoenix’s router 
architecture. 
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The basic packet routing mechanism of Phoenix’s router 
encompasses four set of components described next: (i) four 
bidirectional ports (NORTH, SOUTH, EAST and WEST) dedicated 
to interconnect routers, and a bidirectional port (LOCAL) that 
enables the communication between the router and its local 
PE. All input links contain configurable buffers used when 
packets congest the routing path; (ii) a Crossbar Switch that 
establishes unblocking connections between input and output 
ports; (iii) a Routing Table that implements the routing 
algorithm; and (iv) a Switch Control circuit that performs 
packets routing and arbitration according to the packet header 
and to the Routing Table content. 

The fault-tolerance mechanism implemented in each 
router includes three types of circuits: (i) a fault detection and 
correction module containing a Hamming Encoder (HE), a 
Hamming Decoder (HD) and the FPM that are placed in each 
one of the bidirectional links; (ii) the Fault Monitor that  

communicates with FPM to set links status on the Fault 
Table according to a two-level fault model; and (iii) the Fault 

Control Machine, which controls the Fault Monitor and the 
FPM, and communicates via control packets with the PE and 
with the Fault Control Machine of other routers. 

Figure 2 depicts the two-level fault model implemented in 
Phoenix’s architecture. Both levels store the operation status 
of the NORTH, SOUTH, EAST and WEST links. The first level 
contains two bits to inform whether the link is: (i) not 
verified, (ii) operating properly, (iii) operating with fault 
tendency, or (iv) with permanent fault. The second level 
complements the first one, providing extra information about 
the quality of link. This second level, which is physically 
placed inside each FPM, has counters with the operation 
status of the output link: (i) No Error (NE), (ii) Corrected 
Error (CE) and (iii) Detected Error (DE). In the example of 
Figure 2, the counters have different lengths in order to 
implement a window of events to capture probabilities of NE, 
CE and DE. 

 

 
Figure 2: Two-level fault model of Phoenix: Level 1 - Fault Table; Level 2 - Link status counters (exemplified with 15-bit 
length). 

Phoenix implements two complementary mechanisms for 
testing links quality: one static and other dynamic. Figure 3 
depicts the MSC diagram of static link test, which starts with 
each OsPhoenix sending a test command (TEST_LINKS) 
through the router’s local port to the Fault Control Machine 
that interprets this command and broadcasts a predefined test 
packet to all output ports. 

 
Figure 3: MSC diagram of the fault detection circuit. 

When the input link of the neighbor router receives the 
test packet, it loops back a packet with the same information. 

Then, the Fault Monitor detects whether the link is faulty or 
not, sets this information on the Faulty Table, and informs 
this procedure to the Fault Control Machine that sends the 
Faulty Table to the OsPhoenix (TR_FAULT_TAB). The static 
mechanism sets only the Level 1, changing the status link 
from “not verified” to “operating properly” or “with 
permanent fault”. 

In order to accomplish the link test, each bidirectional link 
contains a HE and a HD to perform a dynamic strategy 
similar to the one used in [6], which identifies fault tendencies 
based on thresholds of ACKs and NACKs. The HD, placed 
on the input of the buffer, receives the data and the 
redundancy bits that were encoded by the HE in the adjacent 
router. The HD module can correct one bit flip and detect at 
most two faults in a data flit. Thus, the module informs the 
communication status by the counters NE, CE and DE, which 
performs the Level 2 of the fault model. The HE module 
generates the redundancy bits according to the flit that will be 
transmitted. FPM assumes a fault tendency or a permanent 
fault on link measuring the density of ACKCs or NACKs, 
respectively, in a given window of time. This fault tendency 
information is propagated to the OsPhoenix that may perform 
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high-level decisions to accomplish the fault-tolerance 
mechanism. 

3. Fault Prediction Module (FPM) Description 
FPM is a fault prediction circuit based on the architecture 

and functioning of a previous circuit described in [6]. FPM 
modifies the previous version inserting additional hardware to 
provide analysis of fault tendency and permanent fault. Figure 
4 shows the basic architecture of FPM. 

 
Figure 4: Architecture of FPM containing its main 
components. 

Three counters and a reset circuit compose FPM. At each 
counter is associated a threshold. When the count reaches the 
threshold value, the counter fires a command signal (i.e. 
resetAll, faultTend or faultDet). 

An event on signal iNE informs to the counter NE the 
occurrence of a successful flit reception (i.e. an ACK), 
implying an increment of the counter. When the counter NE 
reaches the threshold N, the counter produces a pulse on 
signal resetAll that initializes a reset sequence zeroing all 
counters (i.e. NE = CE = DE = 0). Details of reset sequence 
are described in [6]. The threshold N logically describes an 
observation window, where FPM may verify the quantities of 
ACKCs and NACKs, and consequently FPM may infer if the 
link is operating properly, if there are some transitory faults or 
the link operating in a situation considered as permanent fault. 

An event on signal iCE informs the occurrence of a 
successful flit reception, but with the Hamming circuit 
correcting a single error (i.e. an ACKC), implying an 
increment of the counter CE. When the counter CE reaches 
the threshold M, the counter fires the command signal 
faultTend, notifying to the Fault Control Machine that the 
quantity of ACKCs received during the predefined windows 
indicates a fault tendency. Finally, an event on signal iDE 
informs the occurrence of an unsuccessful flit reception, i.e. 
the Hamming circuit detects, but does not correct, a double 
error characterizing occurrence of NACK. This event 
increments the counter DE and makes the router to require flit 
retransmission. Aiming to avoid retransmission delays, when 
the counter DE reaches the threshold P, it fires the command 
signal faultDet, notifying to the Fault Control Machine that 
the quantity of NACKs received during the observation 
windows indicates that it has to discard the link from the 
NoC’s communication paths. 

The Fault Control Machine informs to OsPhoenix any 
event of faultTend and faultDet. Additionally, these events 
may alter the Level 1 of the fault model according to the 
following decreasing priority of status: (i) operating properly, 
(ii) operating with fault tendency, (iii) with permanent fault. 
Therefore, a link marked as operating properly may be set to 

operating with fault tendency or with permanent fault in a 
presence of faultTend or faultDet events, respectively; but a 
link marked as with permanent fault only may change its 
status with a high-level command provided by OsPhoenix. 
Moreover, OsPhoenix sets all initial threshold values and may 
dynamically change them according to faults occurrence and 
high-level definitions, which are not discussed here. 

It is important to notice that if the counters CE and DE do 
not reach their thresholds during the observation window the 
command signals faultTend and faultDet will not fire. 
Therefore, all occurrences of faults are perceived as transitory 
faults. 
3.1 The Threshold Modeling 

The use of thresholds aims to build an efficient circuit that 
captures permanent faults (i.e. fault tendency and permanent 
fault), discarding the transient ones. It has to consider 
architectural aspects such as the size of counter, and dynamic 
aspects as the definition of appropriate threshold values. 
Therefore, this section describes equations that enable to 
model the circuit operation. Equation 1 shows the relation of 
ACKs, ACKCs and NACKs monitored by FPM during a 
predefined quantity of flits (#flits). #flits = ACKs + ACKCs + NACKs (1)

Aiming to explore ACKs, ACKCs and NACKs according 
to their probability of occurrence, we define Flit Ack Rate 
(FAR) and Flit Error Rate (FER) as the quantities of ACKs 
and ACKCs + NACKs captured inside #flits, respectively. 
Moreover, Equation 2 defines τ as a parameter that enables to 
capture the quantity of NACKs from the FER. Consequently, 
Equation 3 describes the quantity of ACKCs as the 
complementary probability defined in Equation 2. NACKs = τ × FER × #flits (2)ACKCs = (1 – τ) × FER × #flits (3)

Rewriting Equation 1 according to Equations 2 and 3 and 
the FAR definition, we provide Equation 4, which represents 
the probabilities of communications with and without faults. 1 = FAR + τ × FER + (1 – τ) × FER (4)

FER and τ define probabilities of errors that depend on the 
technology of IC production, on the architectural design, and 
on the traffic behavior. Since traffic has dynamic behavior, it 
is hard to define its influence during the design time. On the 
other hand, the designer may define requirements of fault 
tolerance, and perform dynamic adjustment of thresholds to 
fulfill these requirements. We define FERmax as the 
maximum tolerated FER, and the threshold parameters are 
adjusted to fire fault tendency and permanent fault events, 
when this FER is reached. 

FPM employs the counters NE, CE and DE to compute 
the quantity of ACKs, ACKCs and NACKs, respectively; and 
it employs N, M and P to define thresholds that enable to 
capture FERmax. The idea is to define an observation 
window based on the count of ACKs. During this observation 
window, it may capture fault tendency, or permanent fault, if 
counters CE, or DE reach M or P, respectively. On the other 
hand, if the counter NE reaches N, before firing fault 
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tendency or permanent fault events, means that eventual 
faults are considered transitory, and so they are discarded. 
Thus, the counters are reset and a new observation window 
starts. Figure 5 exemplifies a faultTend event based on the 
concept of observation window. 

 
Figure 5: Example of fault tendency detection. The figure 
takes account only N and M thresholds. The input iCE 
represents instants of single fault events, which are computed 
by counter CE. 

The procedure illustrated in Figure 5 shows that 
faultTend, resetAll, and even faultDet (not shown in the 
figure) are implemented as threshold relations, and the 
equations 5, 6 and 7 describe how the thresholds N, M and P 
are adjusted. N = #flits (5)M = (1- τ) × FERmax (6)P = τ × FERmax (7)
4. Simulation Results 

This work comprises two analyses: (i) the circuit behavior 
depending on the thresholds value and the size of observation 
window (defined by the quantity of flits passing through the 
monitored link); and (ii) the area and power consumption of 
FPM compared with a similar circuit presented in [6]. 
4.1 Threshold Settings for FPM 

For faults occurrence evaluation, the signals are generated 
in SystemC and injected in the links during NoC simulation. 
All experiments employed 10% for double/simple error ratio. 

In a first set of experimental analysis, we perform 
simulations observing a window variation from 150 to 40 
flits, with 10,000 flits transmitted, considering counter NE 
with 8-bit length, and a FERmax of 20% (i.e. the FER used to 
define M and P, according to equations discussed in Section 
3.1). The real FER varies from 5% to 50%. The main purpose 
of this simulation is to observe the FPM behavior, according 
to FERmax and τ parameters and sizes of observation 
windows, which depend on threshold N. Therefore, one can 
choose the values that better fit the target application. All 
results of this section are average values from 20 simulations. 
The confidence intervals are insignificant and kept hidden to 
provide cleaner figures. 

Figure 6 shows that when the size of the observation 
window decreases, the FPM triggers less events of fault 
tendency. When the real FER is close to FERmax (i.e. the 
expected FER rate), the module can be well-adjusted, i.e. 
using the N setup to well-adjust the sensibility level of the 
FPM. When the real FER increases, it becomes impossible to 
set the adjust level as we can notice from 50% FER rate. This 
can be explained considering that higher values of N enables 

to capture more errors. Consequently, FPM becomes more 
sensitive. 
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Figure 6: Occurrence of fault tendency events according to 
the size of the observation window (FERmax = 20%). 

Figure 7 depicts that the behavior of FPM is similar to 
permanent fault events. For high FER rates, FPM detects 
much more events whereas the module is well-adjusted to 
20% FER rate. 
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Figure 7: Permanent fault detection depending on the size of 
the observation window (FERmax = 20%). 
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Figure 8: FPM with window size saturation and with free 
adjust of threshold settings. 

Now, we are going to address the saturation problem for 
FPM (as the threshold counters are hardwired setup in project 
phase, the FPM can became insensible depending on relation 
between FERmax and real FER). Let suppose the length of 
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counter NE are hardwired to 8 bits, thus, the maximum 
counter size for N is 256. If the FERmax is adjusted to value 
0.5, and the real FER is 0.4, the size of the observation 
window N becomes more sensible, once the value was 
saturated (refer to Figure 8). To address this problem we can 
use another rules to set M and P values. Herein, instead of 
using the equations of Section 3.1, we freely adjust M and P. 
In Figure 8, one can notice that the free adjust of M and P to a 
factor 2 activates the FPM again, even with a 40% FER rate 
(lower than FERmax, used for tuning setup phase). 
4.2 Area and Power Analyzes 

Table I presents the area and power reports of FPM and 
the circuit from previous work [6] in a standard cell 
implementation (UMC 90 nm library - very high-density 
400,000 cell/mm², with decoupling capacity to limit glitches). 
FPM is more complex than the genuine one (logical cell, 
wires, registers, counter) thus it requires higher area and 
increased power. 

According to detailed values in Table I, the genuine 
circuit size is about 5500 µm² and for the FPM is about 
7570 µm². We conclude that the increasing of power 
consumption is about 60%, and the area used increases 
around 35%. The genuine circuit allows only detecting 
transient or non-transient faults. Our circuit permits to 
anticipate the tendency of these faults, although spending 
more resources. 

Table I: Power and Area table. 
Requirement Original FPM

Po
w

er
 

(µ
W

) Internal 37.7 48.1

Switching 12.4 34.3
Total 58.1 82.4

A
re

a 

 cells µm² cells µm²
Combinational 1136 2840 1576 3940
Non-combinational 1082 2705 1453 3633
Buffer/Inv 25 63 24 60
Total 2213 5608 3053 7633

5. Conclusion 
The FPM circuit demonstrates to be a good solution to 

prevent potential faults during a transmission into a NoC, 
mainly considering its flexibility and potential on the 
parameterization of window size and threshold values. Our 
proposed circuit does not use a lot of extra area and power 
when compared with the genuine circuit presented in [6], 
mostly regarding the additional functionalities provided by 
FPM. The detection of fault tendency allows anticipating the 
transmissions behavior. 

As future works, we intend to analyze the FPM behavior 
under different faults distribution, as Poisson or exponential. 
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