
Scheduling Refinement in Abstract
RTOS Models

FABIANO HESSEL, VITOR M. DA ROSA, and CARLOS EDUARDO REIF

Pontifı́cia Universidade Católica do Rio Grande do Sul

CÉSAR MARCON

Univeridade Federal do Rio Grande do Sul

and

TATIANA GADELHA SERRA DOS SANTOS

Universidade de Santa Cruz do Sul

Scheduling decision for real-time embedded software applications has a great impact on system

performance and, therefore, is an important issue in RTOS design. Moreover, it is highly desirable to

have the system designer able to evaluate and select the right scheduling policy at high abstraction

levels, in order to allow faster exploration of the design space. In this paper, we address this problem

by introducing an abstract RTOS model, as well as a new approach to refine an unscheduled

high-level model to a high-level model with RTOS scheduling. This approach is based on SystemC

language and enables the system designer to quickly evaluate different dynamic scheduling policies

and make the optimal choice in early design stages. Furthermore, we present a case of study where

our model is used to simulate and analyze a telecom system.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:

Real-Time and Embedded Systems; B.5.2 [Register-Transfer-Level Implementation]: Design

Aids—Design

General Terms: Design

Additional Key Words and Phrases: Real-time operating systems, transaction level Modeling, RTOS

scheduling

1. INTRODUCTION

Raising the abstraction level is widely used as an alternative to enable faster ex-
ploration of the design space at early stages, in order to handle the fast-growing
complexity of real-time embedded applications.

Authors’ Addresses: Fabiano Hessel, Vitor M. Da Rosa, and Carlos Eduardo Reif, Faculdade de

Informática, Pontifı́cia Universidade Católica do RS, Av. Ipiranga 6681, Porto Alegre, RS, Brazil;

email: hessel@inf.pucrs.br; César Marcon, Universidade Federal do Rio Grande do Sul, Instituto

de Informática, Porto Alegre, RS, Brazil; email: marcon@inf.ufrgs.br; Tatiana Gadelha Serra Dos

Santos, Universidade de Santa Cruz do Sul, Departamento de Informática, Santa Cruz do Sul, RS,

Brazil; email: tatianas@unisc.br.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/0500-0342 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 342–354.

Scheduling Refinement in Abstract RTOS Models • 343

The correctness of real-time systems is determined by the combination
of the computation result and time properties. These aspects make real-
time systems different from any other, as it is not possible to analyze them
statically at compile time. A high-level model can determine the computa-
tion result correctness at the early design stage of system design. The actual
timing properties need to be checked at run-time through target-specific code
implementation.

Both the scheduling policy and the system architecture have a great impact
in the correctness of these aspects. In general, although high-level simulations
are not cycle accurate, it provides enough data to design decisions with a high
level of confidence. However, representing the scheduling behavior through a
high-level model is not trivial because of the lack of information available at
this abstraction level. As a consequence, the timing properties of the system
design changes from the high level model to implementation and the designer
has to tune-code delays or task-priority assignments at a final stage of system
design, which is both error-prone and time-consuming.

In this paper, we introduce a high-level RTOS model. The main goal is to
provide an efficient way to abstract the dynamic scheduling behavior and adjust
the scheduling policy at higher abstraction levels.

Transaction level (TL) is an emergent description level for system-level
design, which may follow different approaches [Grotker et al. 2002; Cai and
Gajski 2003]. In fact, transaction expresses communication exchanges. In other
words, transaction informs the relative order of each process communication.
Transaction level is an abstraction level, which can lend some focus to the
ordering of events. Thus, the TL modeling (TLM) is sufficient to represent
the events ordering. The clock abstraction levels and the separation from
computation and communication details make the model simpler and efficient
for fast high-level evaluation.

In order to capture the dynamic scheduling behavior at a higher level, we
propose an approach to abstract the RTOS scheduling. This approach intro-
duces a set of refinement steps to generate a TLM with RTOS scheduling from
an unscheduled TLM. This is necessary, because using a detailed RTOS is a
contra sense, as the system model is highly abstract.

This remaining of this paper is organized as follows: Section 2 presents the
related work; Section 3 describes how the scheduling refinement process is
integrated with the system design flow; Section 4 presents the abstract RTOS
model; Section 5 describes the scheduling model refinement; Experimental
results with a telecom system that consists of fifty tasks with four priority
levels are the subject of Section 6; finally, Section 7 presents conclusions and
future work.

2. RELATED WORK

Recently, several works have been focusing on automatic RTOS and code gen-
eration. Kohout et al. [2003] describes the real-time task manager (RTM) as
a processor extension that minimizes the drawbacks associated with RTOSs
by supporting, in hardware, common RTOS operations that are bottlenecks

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

344 • F. Hessel et al.

to system performance. Adomat et al. [1996] proposes an exclusive external
hardware module designed to perform RTOS functions. This model improves
performance, but it does not allow existing RTOSs to easily take advantage of
its offerings.

Wang and Malik [2003] propose a high-level abstract model and synthesizes
an operating system based on device drivers. Yi et al. [2003] propose a virtual
synchronization technique to the case where multiple software tasks are
executed under the supervision of a RTOS in a single processor. It runs
only application tasks on the ISS (instruction-set simulator) and models
the RTOS in the cosimulation backplane to achieve faster cosimulation.
Cortadella [2000] presents an approach to combine static scheduling and
dynamic scheduling in software synthesis. Tomiyama et al. [2001] describe
a technique for modeling fixed-priority preemptive multitasking systems
based on concurrency and exception-handling mechanisms provide by SpecC.
This model does not support different scheduling algorithms, and intertask
communication.

Moreover, researchers have realized the importance of dynamic behavior and
proposed to include it in system-level design models. Gauthier et al. [2001] pro-
pose a methodology for automatic generation of application-specific operating
systems and correspondent application software for a given target processor.
Desmet et al. [2000] propose a high-level model of a system-on-chip operating
system (SoCOS). It is used for modeling, simulation, and analysis of the sys-
tem, besides the implementation through gradual refinements. The focus of this
work is on task concurrency issues. However, the SoCOS requires a proprietary
simulation engine and a manual system model creation. Gonzales and Madsen
[2000] present an abstract RTOS model using master–slave timed SystemC,
which allows the modeling and analysis of behavior of a complex system that
has a RTOS application running on a multiprocessor. Gerstlauer et al. [2003]
describe an RTOS model, which is effectively a set of commonly used RTOS
services, to extend the original ability of SpecC language to handle the inter-
leaved execution behavior of dynamic schedulers. The adaptation of this model
to another SLDL language like SystemC may be a hard and complex task, be-
cause of a lack of support to model common services as preemption and true
multitask execution.

Our abstract RTOS model is similar to the Gonzales and Gerstlauer ap-
proaches. However, our approach uses SystemC language, considering TLM
specifications [Cai and Gajski 2003]. By introducing extensions in the SystemC
scheduler execution model, we have a powerful and flexible RTOS model. Our
model can be directly integrated into any SystemC-based system model and
design flow.

3. DESIGN FLOW

This section describes an embedded system design flow, starting from a TL spec-
ification, which is refined gradually to a hardware and software implementation
model, as illustrated in Figure 1. The main issue is demonstrating the design
flow for a specific application with automatic generation of an embedded RTOS.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Scheduling Refinement in Abstract RTOS Models • 345

Fig. 1. Design flow.

The system design flow starts with TL specification written in SystemC/
C/C++ and IP modules, where the designer specifies the system behavior. The
designer informs the system requirements and the architectural constraints,
like power consumption limit, real-time constraints, and number of processors
of the target architecture. After this, two partitioning steps are accomplished.
The first one determines IP components as well as hardware and software pro-
cesses. Our intention, however, is to propose a new approach for high-level
simulations and, therefore, the IP and hardware synthesis are not part of the
scope of this work. The intention of this research is to focus in the second par-
titioning step, where the designer groups the software processes into multiple
clusters. Each cluster will be mapped onto a processor in the final implemen-
tation. The result is a TLM with several clusters in parallel, each one with a
specific behavior. Abstract channels provide the communication between the
clusters.

A RTOS TL library was designed to fulfill real-time constraints. This library
helps the designer to find the best RTOS scheduling policy at high abstraction
levels considering the system requirements, such as performance and power
consumption.

Different architecture aspects are also omitted allowing faster design space
exploration, mainly regarding scheduling policy for multitasks and multipro-
cessor.

The RTOS synthesis step introduces the necessary RTOS primitives in all
software processes and the scheduling process. These primitives are operating

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

346 • F. Hessel et al.

system calls that allow memory management, interruption request, interpro-
cesses communication, synchronization, and other OS features. At this point,
the interprocess communication primitives implement the abstract channels
as a device driver.

We use a profiles techniques to estimate the execution time of each process
enabling the scheduling mechanisms to preempt software process according
to the priority specified by the designer. In addition, a preliminary power es-
timation of the scheduling mechanisms can be performed. This estimation is
based on previous analysis of the scheduling algorithms and the estimation
parameter is updated by back-annotation techniques.

As discussed before, the transaction level abstracts part of the commu-
nication details, despite the possibility to evaluate the events order and
analyze whether all time constraints are achieved with the chosen scheduling
mechanism. Thus, TL clearly helps the designer to quickly search for the best
scheduling mechanism of each processor and the interprocessor communication
mechanism.

After the initial model is complete, the first simulation step is executed. The
IP and hardware elements behavior are described as test benches, allowing the
validation of the software elements. Once the application achieves all require-
ments at transaction level, the designer can refine the application description
and the selected RTOS for each processor.

The refinement of the application description from TLM to RTL is done man-
ually, generating a synthesizable description. The RTOS refinement is based
on two available libraries: one that is the equivalent to RTOS TL at register
transfer level and another that is composed by RTOS IP. The RTOS TL refine-
ment to RTOS RTL is quite natural for our design flow, since both represent
the same OS at different abstraction levels. In this case, all TL primitives are
changed to RTL primitives. On the other hand, the refinement to RTOS IP is
harder because of different approaches adopted by IP providers, implying in
a few additional manual steps. This level provides more accurate timing and
power consumption estimation.

The application and RTOS are validated by simulation and the systems re-
quirements are evaluated. If the constraints are achieved, the flow goes to the
next step, otherwise another scheduling policy or hardware/software partition
can be chosen and evaluated.

For IP, hardware and software components communication interfaces are
synthesized to hardware RTL according to the communication protocol and
the target architecture. The design flow supports interprocess communication
synthesis with shared memory, rendezvous, FIFO, and buses. Nevertheless, the
communication synthesis problem is not addressed in this work. An alternative
for this issue is discussed by Dziri et al. [2000].

A hardware/software cosimulation is the last validation step. It uses one
simulator for each processor and one simulator for hardware components. This
step is usually longer than the others, mainly because of the input simulator
vector. However, the cosimulation step is associated with an accurate power
model, which allows feedback of the achieved power value to the RTOS libraries,
improving any possible next partition.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Scheduling Refinement in Abstract RTOS Models • 347

Fig. 2. API of the RTOS model.

As the last step of the design flow, hardware and software are synthesized to
the target architecture. Our first approach considers a single FPGA as target
architecture. In this context, hardware components are synthesized using spe-
cific FPGA commercial tools. For each software cluster, all RTOS primitives are
mapped to the correspondent RTOS API, enabling the compilation of the code
into the processor instruction set. Each compiled code produces the executable
code for each processor.

4. THE RTOS MODEL

As mentioned previously, our RTOS model is implemented based on the Sys-
temC language. However, SystemC lacks support to model the dynamic real-
time behavior commonly found in embedded software. Typically, SystemC does
not provide a mechanism to preempt and resume a thread during execution
time. In order to allow the aforementioned problem, we developed some lan-
guage extensions.

The RTOS model is incorporated into the RTOS TL library and can be
parametrizable in terms of task parameters. The library provides RTOS mod-
els with different scheduling algorithms. Our RTOS model also supports both
periodic and nonperiodic real-time tasks. The RTOS model provides two major
categories of services: OS management and task management.

OS management services are responsible to the initialization of the RTOS.
The sc rtos init initializes the relevant RTOS data structures and starts the
multitasking scheduling. In addition, the sc rtos reset reinitializes the RTOS
and it is very useful for validation purposes. In order to allow the preemp-
tion and resume tasks during execution time, we introduced two primitives:
sc rtos task suspend that preempts a task and sc rtos task resume that re-
sumes a task. These primitives receive the task identification as parameter.
Figure 2 shows the interface of the RTOS model.

Task management services are responsible to make the interface between
the kernel and the system application. The main goal is to provide to the user
an easy way to describe an application as a set of tasks. In the following sections
we will discuss the task model, scheduler model, synchronization model and,
finally, the refinement of the scheduling model.

4.1 Task Model

The tasks are modeled to hold all necessary information to execution. Each
task is implemented as a PosixThread, allowing preemption and resume by the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

348 • F. Hessel et al.

Fig. 3. Task modeling.

scheduler. The sc task create primitive is used to characterize the execution of
the task. It defines the task parameters, such as identification, name, priority,
period, deadline, worst-case execution time (WCET), and best-case execution
time (BCET). In addition, this primitive assigns the task to the scheduler, which
assigns idle status as the initial task state.

Several others standard RTOS primitives are included in the model, like task
notify (sc task notify), task termination (sc task end), and task suspension (sc
task wait). We also introduced the sc task end cycle primitive to model periodic
tasks. This primitive notifies the scheduler that a task finished its computation
in the current cycle. Figure 3 presents a partial source code example of task
modeling. The system sys ex is initialized (line 2) and executed by 100,000 ns
(line 4). Moreover, two tasks are modeled in this example: t1 and t2 (lines 8 and
10). The task t1 is created with the following parameters: identification = id1,
name = t1, priority = 1, period = 80, WCET = 14, BCET = 8, and deadline =
30. The task t1 is assigned to the scheduler in line 9. The RTOS scheduler is
then initialized with time slice (line 13). All tasks are derived of PosixThread
class (line 16).

4.2 Scheduler Model

At the system level, we are not interested in the exact task functionality, but
rather than that, we need to be able to determine how long it takes to compute
the tasks interactions. From this point of view, the first task of the RTOS is to

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Scheduling Refinement in Abstract RTOS Models • 349

Fig. 4. Scheduling state of tasks.

determine which process runs next, i.e., the RTOS needs to decide the execution
order of the tasks. The task management, performed by the scheduler, is the
most important function in the RTOS model. Our scheduler model assumes that
all tasks are independent threads. Hierarchical tasks need to be flatted. Each
task is characterized by deadline, period, priority, WCET, and BCET. Moreover,
a task may be preempted by a higher priority task.

The scheduler model proposed in our work is similar to the one used
in Gonzales and Madsen [2001]. Thus, according to the scheduler model, tasks
may be in one of the four basic scheduling status: ready, executing, idle or pre-
empted, as depicted in Figure 4. There is at most one task executing at any
time. If there is no useful work to be done, just the scheduling task works. As
stated before, our model assumes that all tasks are in the idle state at the be-
ginning (sc task create). Each task stays as idle while it does not enter in a new
period. A task goes into the ready state when all required data is available or
when it enters in a new period, remaining ready until it is allowed to run. A
task goes into the executing state when it receives a run command from the
scheduler. As stated above, the task will receive this command only when it
has all data required, is ready to run, and the scheduler selects the task as
the next one to run. Once the task has finished its computation in the current
cycle, it sends a message to the scheduler (sc task end cycle) and goes to the
idle state. However, the task goes to the preempted state when it requests a
data that is not available (sc rtos task suspend). A task can also be preempted
by a higher priority one. In both cases, the task will remain preempted until
it receives a resume command from the scheduler (sc task resume). When a
nonperiodic task finished its execution, it sends a terminate message to the
scheduler (sc task end). In this case, the scheduler kills the task (sc rtos task
kill).

The scheduler is modeled as a SystemC thread process (sc thread) that runs
continually. When an executing task goes to idle or ready states, the scheduler
selects a new candidate to run among all ready tasks. This selection is performed
according to scheduler algorithm adopted for that model. However, if there is not
a candidate task (ready list is empty), the scheduler just waits until the next
ready task is available. For instance, our scheduler implements First-Come–
First-Served (FCFS), Round Robin, Rate Monotonic (RM), and Early Deadline
First (EDF) scheduling algorithms [Silberschatz and Galvin 2000].

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

350 • F. Hessel et al.

5. SCHEDULING MODEL REFINEMENT

From the application point of view, the major task of the RTOS is to determine
the execution order of the tasks. The scheduler handles this order and it is
usually modeled around a priority-based preemptive policy. In this part of the
work, we will use three different scheduling algorithms (Round Robin, RM, and
EDF) to illustrate how a RTOS scheduler can be modeled in TLM and how our
model can help choosing the scheduling policies at higher abstraction levels.
The input of our model is a nonhierarchical unscheduled model that is refined
into a RTOS based multitask model. This refinement process is automatically
performed by a scheduling refinement environment.

5.1 RTOS-Kernel Model Instantiation

The refinement process starts just after the instantiation of each processing ele-
ment (PE). As discussed before, these PEs are initially arranged in an unsched-
uled model. From this one, a RTOS model interface is selected in the RTOS TL
library and a run-time environment is created for each PE, taking into account
the designer choices regarding the scheduler policy. Hence, the run-time envi-
ronment initializes the internal data structures for the RTOS and implements
the application programming interface (API), which manages the interactions
between the application and the RTOS kernel. After this step, the scheduling
refinement environment creates a RTOS main task for each existing task on
the model. Those main tasks are the only ones available for the RTOS model to
schedule at system start time, as they wrap around the top-level task behavior.

5.2 Task Creation

The main function of the task creation step is to translate all behavior tasks in
the specification into RTOS-based ones. This is the most important and time-
consuming step of the scheduling refinement. Initially, each task behavior in-
side the PE is checked to see whether it is not a hierarchical task. If such
behavior is observed, the task is flatted, and a new one is created. The same
approach is used when the task behavior contains parallel processes.

The second step will insert the sc task create primitive into the task behavior
for the creation itself. This primitive activates the task and assigns ready to the
scheduler. Finally, the sc task end or sc task end cycle (for periodic tasks) are
inserted in the main body of the task. These primitives allow the RTOS model
to control the tasks. In order to allow preemption and resume by the scheduler,
each task is implemented as a PosixThread in SystemC.

5.3 Synchronization Model

The RTOS synchronization model provides services to synchronize concurrent
and cooperative tasks, supporting mechanisms that handle inter- and intrapro-
cessor synchronization problems. Our model implements two main primitives:
sc task wait and sc task notify.

The sc task wait primitive causes current task to wait until another task
invokes the sc task notify primitive or the end of a given time slice. When one

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Scheduling Refinement in Abstract RTOS Models • 351

of these events happens, the task goes to the idle state. The task is then in-
serted into a wait task list, becoming disabled for scheduling purposes. The
sc task notify call wakes up a single task that is waiting for data synchroniza-
tion.

When tasks execute input/output operations, such as send/receive, they need
to notify the RTOS scheduler. We implemented this notification by using these
same two primitives. An abstract receive operation is implemented on lower lev-
els as a receive function aggregated to a sc task wait call, meaning that the task
is waiting for input data. Similarly, an abstract send operation is implemented
on lower abstraction levels as a send function aggregated to a sc task notify
call. Furthermore, the sc task notify allows the scheduler to wake up the tasks
that are waiting for the sent data.

5.4 Preemption and Synchronizations Refinement

Typically, in high level simulations, wait statements are used to model delays,
allowing timing advances in those simulations. In our approach, however, the
preemption refinement will replace the wait statements used to model the de-
lays into the corresponding RTOS calls. Hence, the sc task wait is used, and it
implements a wrapper around the wait statement that allows the RTOS kernel
to reschedule and switch tasks.

An important issue is relative to the occurrence of an external interruption.
In this event, the execution of a given task can stop, changing the pre-scheduled
tasks order. The preemption modeling, in this case, is extremely relevant to
assure the accuracy of the model in terms of response time results. Thus, the
RTOS kernel uses the sc rtos task suspend and sc task resume primitives to
model interrupt preemptions. The accuracy of the preemption results is limited
by the granularity of the task delay at the high-level models.

In our proposed approach, the synchronization refinement also replaces the
high-level synchronization primitives with RTOS services. This is necessary in
order to keep the internal task state of the RTOS model updated. When a given
task executes input/output operations, it needs to notify the RTOS scheduler.
In this case, an abstract input/output operation wraps the SLDL primitives.
The sc task notify allows the scheduler model to wake up the tasks that are
waiting for receive/send data.

6. CASE STUDY

The telecommunication industry has been growing fast in the last few years,
especially with the recent development of new technologies such as VOIP (voice
over IP), QoS (quality of service), wireless devices and so on. Thus, several
products already in the market have to be updated in order to aggregate these
different new features. One of the most popular systems in this market place
is the digital private branch exchange (PBX). PBX systems are known as a
soft real-time system [Wolf 2000] and, therefore, an application for using our
proposed approach.

The product model used in this case study is the Digitel XT-130, widely used
in commercial environments. The main issue is that all system was ad hoc

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

352 • F. Hessel et al.

Table I. Code Size Comparison (in Bytes)

AMS186ES DSP

C/C++ 457,976 16,356

Assembly 22,233 27,453

Scheduling Algorithm 7,456 2,489

Table II. AMS Simulation Analysis

Simulation Model Simulation Time

TL simulation 30 min

RTL simulation 11 h 43 min

Cosimulation 185 h 5 min

designed to support the real-time requirements. Hence, a monolithic system
was generated, where application and OS are strongly coupled. Moreover, it
would be necessary to use an OS that supports the current as well as the new
required features, in order to aggregate the later with few efforts. Systems like
this, however, are generally found only when developed with modular designs.
A swap between a monolithic to a modular design can imply functionality re-
duction, mainly in real-time functions. As consequence, more time is required
to evaluate the system, reducing the industry profits and possibly resulting
market losses.

As an alternative, we propose our approach to enable the fast evaluation
of different dynamic scheduling policies, allowing the designer to select the
optimal scheduler policy at the early design stages.

The PBX is a complex system composed by more than fifty processes, with
four priority levels. Around 20% of these processes have real-time requirements.
Since the most part of the code is developed in C/C++ and assembly, we pro-
posed a partitioning where system processes are divided as follows: 92% soft-
ware elements, 6% assembly routines (treated in our design flow as IP compo-
nents), and 2% hardware elements. The hardware parts are mapped into Altera
FLEX-10KE FPGA. The software elements are mapped into PEs, as described
in Section 4. IP modules and software parts are mapped into AM186ES (AMD
80186) microprocessor and ADSP2185M (Analog Devices) DSP.

For each processor, a custom RTOS kernel was generated at the highest ab-
straction level, using our approach. The abstract RTOS and the system descrip-
tion was refined and targeted to the final architecture. The abstract channels
are refined (communication synthesis step) into shared memory protocol for
processors communication, and handshake protocol for FPGA and micropro-
cessor communication. There is no communication between FPGA and DSP
processes.

Table I depicts the code size (in bytes) achieved for RTOS and the rest of
application for both processors.

The PBX model was exercised by test-bench vectors extracted from real
PBX operations during high activity (ten minutes of operation time). The three
AM186ES simulations, illustrated in Table II, show the advantages achieved
by high description levels.

It is clear that the TL model takes only a small fraction of the simulation
time, when compared to the RTL and cosimulation ones. One may observe that

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Scheduling Refinement in Abstract RTOS Models • 353

Table III. AMS186ES Scheduling Analysis

Scheduling Algorithm Context Switches RTL Constraints Fail

Early Deadline First 6,315 558

Rate Monotonic 6,280 14,850

the TL model does not have the same level of detail as the RTL model and,
therefore, is not highly accurate. However, global results are always coherent
with RTL level simulation. Besides, the time saved using our approach makes
it very attractive, especially when the designer needs a fast answer to make a
design decision.

Furthermore, we used profile techniques, with the test-bench vectors, to es-
timate the WCET and the BCET of each process. These times are the entry
of each process in TL simulation. Therefore, WCET, BCET, and the execution
period replace the process behavior, allowing faster simulation with reasonable
accuracy, as confirmed by RTL simulation. For TL and RTL simulation, the rest
of the system is considered as test bench. On the other hand, the cosimulation
considers the joint operation of three simulators (two C/C++ simulators and
one VHDL simulator). For these experiments, we used two different scheduling
policies: EDF and RM.

Table III shows the number of context switches achieved by each scheduling
policy as well as the number of RTL constraints fail. The later means the num-
ber of times that the real-time processes that did not achieve their deadline
in TL simulation and, therefore, must be as low as possible. The number of
context switches is similar in both scheduling algorithms, with less than 1%
of difference between EDF and RM. However, EDF algorithm is remarkably
better, when comparing the number of RTL constrains that fail. In this case,
the early deadline First algorithm generated only 3% of the total number of
failings produced by Rate Monotonic.

Thus, considering context switching, real-time deadline, and the low algo-
rithm complexity, we chose EDF as the scheduler policy for AM186ES opera-
tion. The majority of DSP tasks are time slices scheduled by a timer interrupt.
The total size of AM186ES RTOS is three times larger than the ADSP2185M,
because of other additional features, like memory management.

The final delay in the real implementation was higher compared with TL
specification. This difference is because of inaccuracies of execution time es-
timated in the high-level model. As discussed before, these inaccuracies are
expected in such high level of abstraction and the small amount of time re-
quired to development and simulation makes them entirely acceptable. More-
over, when compared to the large complexity required for the implementation
of the PBX system, the scheduling refinement environment enables early and
efficient evaluation of the dynamic scheduling policies, and enables a fast ex-
ploration of the design space.

7. CONCLUSIONS AND FUTURE WORK

This paper addressed the issue of high-level RTOS model simulation. We
proposed a new approach to quickly evaluate different scheduling policies,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

354 • F. Hessel et al.

providing a way to abstract the dynamic scheduling behavior and adjust each
one of them at higher abstraction levels. Moreover, we presented a schedul-
ing environment that refines an unscheduled TLM into TLM with RTOS
scheduling.

Our main contribution in the design flow is primarily the automation of
the scheduling refinement process that facilitates a fast evaluation of different
scheduling policies at high abstraction levels. The environment is written for
SystemC, but it can be applied to any C/C++ design flows. Experiments showed
the usefulness of this approach in a telecom system design.

Future work includes implementing the RTOS interfaces for commercial
real-time operational systems and techniques to handle resource allocation
problems.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from CNPq/CAPES agencies
for R&D and UNISC in the form of scholarships and grants.

REFERENCES

ADOMAT, J., FURUNÄS, J., LINDH, L., AND STÄRNER, J. 1996. Real-time kernel in hardware rtu: A step

towards deterministic and high performance real-time systems. In 8th Euromicro Workshop on
Real-Time Systems. L’Aquila. 164–168.

CAI, L. AND GAJSKI, D. 2003. Transaction level modeling: An overview. In CODES+ISSS. New

Port Beach. 19–24.

CORTADELLA, J. 2000. Task generation and compile time scheduling for mixed data-control em-

bedded software. In Design Automation Conference.

DESMET, D., VERKEST, D., AND DEMAN, H. 2000. Operating system based software generation for

system-on-chip. In Design Automation Conference.

DZIRI, M., SAMET, F., WAGNER, F., CESARIO, W., AND JERRAYA, A. 2000. Combining architecture explo-

ration and a path to implementation to build a complete soc design flow from system specification

to rtl. In ASP-DAC. Kitakyushu. 219–224.

GAUTHIER, L., YOO, S., AND JERRAYA, A. 2001. Automatic generation and targeting of application-

specific operating systems and embedded system software. IEEE Transaction on CAD.

GERSTLAUER, A., YU, H., AND GAJSKI, D. 2003. Rtos modeling for system level design. In DATE.

GONZALES, M. AND MADSEN, J. 2000. Abstract rtos modeling for multiprocessor system-on-chip. In

International Symposium on SoC.

GONZALES, M. AND MADSEN, J. 2001. Abstract rtos modeling in systemc. Tech. rep., Denmark.

GROTKER, T., LIAO, S., MARTIN, G., AND SWAN, S. 2002. System Design with SystemC. Kluwer Aca-

demic Publ., Boston, MA.

KOHOUT, P., GANESH, B., AND JACOB, B. 2003. Hardware support for real-time operating systems.

In CODES+ISSS. New Port Beach. 45–51.

SILBERSCHATZ, A. AND GALVIN, P. 2000. Operating System Concepts. Wiley, New York.

TOMIYAMA, H., CAO, Y., AND MURAKAMI, K. 2001. Modeling fixed-priority preemptive multi-task

systems in specc. In SASIMI.
WANG, S. AND MALIK, S. 2003. Synthesizing operating system based device drivers in embedded

systems. In CODES+ISSS. New Port Beach. 37–44.

WOLF, W. 2000. Computer as Components: Principles of Embedded Computing Systems Design.

Morgan Kaufmann.

YI, Y., KIM, D., AND HA, S. 2003. Virtual synchronization technique with os modeling for fast and

time-accurate cosimulation. In CODES+ISSS. New Port Beach. 1–6.

Received January 2005; accepted June 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

