
Journal of Systems Architecture 60 (2014) 783–795
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
MoNoC: A monitored network on chip with path adaptation mechanism
http://dx.doi.org/10.1016/j.sysarc.2014.10.002
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: cesar.marcon@pucrs.br (C. Marcon), fernando.moraes@pucrs.

br (F. Moraes), ney.calazans@pucrs.br (N. Calazans).
Edson Moreno, Thais Webber, César Marcon, Fernando Moraes ⇑, Ney Calazans
PUCRS University, Computer Science Department, Porto Alegre 90619-900, Brazil
a r t i c l e i n f o

Article history:
Received 5 November 2013
Received in revised form 6 August 2014
Accepted 6 October 2014
Available online 12 October 2014

Keywords:
NoC
Networks on chip
Monitoring
Routing methods
Adaptive control
a b s t r a c t

Complex systems on chip containing dozens of processing resources with critical communication
requirements usually rely on the use of networks on chip (NoCs) as communication infrastructure. NoCs
provide significant advantages over simpler infrastructures such as shared busses or point to point com-
munication, including higher scalability, more efficient energy management, higher bandwidth and lower
average latency. Applications running on NoCs with more than 10% of bandwidth usage attest that the
most significant portion of message latencies refers to buffered packets waiting to enter the NoC, whereas
the latency portion that depends on the packet traversing the NoC is sometimes negligible. This work pre-
sents an adaptive routing architecture, named Monitored NoC (MoNoC), which is based on a traffic mon-
itoring mechanism and the exchange of high priority control packets. This method enables to adapt paths
by choosing less congested routes. Practical experiments show that the proposed path adaptation is a fast
process, enabling to transmit packets with smaller latencies, up to 9 times smaller, by using non-
congested NoC regions.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

New technologies for manufacturing silicon chips enable to
integrate a huge amount of transistors, which allows the inclusion
of numerous modules with possibly diverse structures in the same
die, including electronic digital and analog components, optical
and even magnetic components. These features enable the con-
struction of entire systems on a chip, the so-called SoCs [1].

SoCs are widely used to meet the demand of applications with
special requirements such as low power consumption and/or high
reliability. In addition, the parallelism enabled by SoC architectures
often fulfill the increasing need for computing power required in
applications where tasks mapped into different Processing Ele-
ments (PEs) imply large amounts of communication. To meet such
communication demands, SoCs employ NoC topologies with high
bandwidth, low latency, high scalability and high-energy efficiency
[2].

Communication resources like links and buffers in overloaded
NoCs display very high utilization rates, which increases average
message latencies and affects applications’ execution time. This
performance issue motivates the proposition of adaptive
approaches. This paper presents the Monitored NoC (MoNoC), a net-
work on chip architecture with virtual channels and mechanisms
for runtime path adaptation based on resource monitoring and
workload distribution policies to minimize the overall delay of
packets. Distributed monitors provide NoC status information
using high-priority packets that flow in specialized virtual chan-
nels. The MoNoC runtime adaptive mechanism reduces the average
latency in congested scenarios, when compared to a similar NoC
without monitoring. The designer cannot neglect this gain since
the congestion inside the NoC can dramatically affect the execution
time of applications. An example of congestion arrives in hotspot
scenarios, for example, when a set of Processing Elements tries to
have access to a shared memory or a PE that interfaces with the
external world.

The rest of this article is organized as follows. Section 2 presents
related works on techniques for NoC monitoring. Section 3
explains the MoNoC, highlighting the router architecture, the
design of virtual channels, and the monitoring mechanism. Sec-
tion 4 presents the runtime routing exploration, i.e. it describes
the runtime path adaptation with methods for both adaptive and
non-adaptive protocols and path decision policies. Section 5 pre-
sents the obtained experimental results, with the corresponding
discussion. Finally, Section 6 proposes a set of conclusions of this
work.

2. Related work and proposed approach

This section presents an encompassing discussion of recent
works related to NoC monitoring. Almost all of these works adopt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.10.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.10.002
mailto:cesar.marcon@pucrs.br
mailto:fernando.moraes@pucrs.br
mailto:fernando.moraes@pucrs.br
mailto:ney.calazans@pucrs.br
http://dx.doi.org/10.1016/j.sysarc.2014.10.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


784 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
2D-mesh topology as target communication architecture, due to its
scalability, regularity and easiness of mapping in traditional planar
CMOS technologies. However, some of these works employ distinct
topologies (e.g. DMesh [3], 3D Mesh–Bus Hybrid [4] and 2D Torus
[5]) while other works claim that their monitoring method is gen-
eric enough to be employed in other tile-based topologies (e.g.
[6,7]). Although the experiments presented in this paper are based
on mesh topology, MoNoC’s monitoring mechanism is independent
of the NoC topology. The proposed mechanism requires only a set
of control packets containing communication costs according to
chosen paths between source and target PEs. Therefore, the MoNoC
monitoring mechanism can be employed to any topology.

Both centralized and distributed monitoring mechanisms are
available in the literature, but most of them adopt a distributed
approach, to fulfill scalability needs. Usually, the global view pro-
vided by centralized monitoring (e.g. [7–10]) allows better results
for small NoCs. Nevertheless, as the NoC/system size increases,
traffic load and monitoring packets latency penalize the central-
ized approach. It indeed tends to generate a hotspot region around
the PE responsible for treating the monitored packets, overloading
this PE. Aiming to minimize this problem, some works (e.g. [11])
employ a cluster based technique, which centralizes the monitor-
ing in particular clusters. Nevertheless, some works (e.g. [12,13])
blend distributed and centralized monitoring aiming to join the
scalability of distributed approaches with the global view of cen-
tralized approaches. Additionally, some research proposals (e.g.
[14,15]) employ the hierarchical monitoring concept over the dis-
tributed approach dealing with levels of granularity of the system
(e.g. application and cell), which enables to take selective decisions
concerning the use of the systems resources. MoNoC, as the major-
ity of works presented in this section (e.g. [16–30]), employs dis-
tributed monitoring based on communicating pairs of PEs, being
scalable, supporting the requirements of the large amount of mod-
ules of recent and future systems.

Routing algorithms that take decisions based on the local status
(e.g. querying neighbor routers) may be inefficient due to their par-
tial view of the traffic load. In addition, the adoption of a global
manager to deal with the monitored information is hardly scalable.
Our work adopts an original approach, which is easily scalable. For
any pair of communicating PEs, the target PE monitors the received
packets, and the source PE selects a new path from a set of pre-
computed paths containing the costs of each segment that com-
poses the path. MoNoC routing is deterministic and partially adap-
tive at the same time. During packet transmission, the source–
target path does not change, characterizing deterministic routing.
When a control packet signaling congestion is received by the
source PE, a new path is adopted. As the path taken between differ-
ent packets may change, the routing is also partially adaptive, min-
imizing the average message latency.

NoC designers currently implement monitoring mechanisms
with one of three approaches: (i) using a small-dedicated network
that operates in parallel with the data network (e.g. [4,13,22]). It is
a non-intrusive method, and without considering implementation
aspects, it seems the most efficient method. However, the extra
monitoring network requires additional circuits and wires, con-
suming area and energy, which may compromise the overall sys-
tem performance; (ii) using control packets with high priority over
the same data network (e.g. [7,8,16]). This approach reduces tempo-
rarily the data transmission rate, implying some design attention
when the approach is applied to real-time systems. On the other
hand, this method has low implementation cost, and it is efficient
when the monitoring packets are only a small part of the overall
communication; (iii) using distributed agents that detect local traffic
behavior to infer and/or predict the global system behavior (e.g.
[3,5,10]). This approach does not require a communication archi-
tecture to transmit monitoring packets, avoiding the problems
stated in the previous approaches. The drawback of this approach
is that it is only efficient for router traffic observation, or at most its
connected neighbors, since local traffic status is never broadcasted
to the distributed agents. As a result, some local decisions taken at
a given agent can neglect the overall system performance. MoNoC
adopts the second approach, i.e. employs control packets with high
priority, since it presents a good compromise between NoC area
overhead and global performance.

Finally, the evaluated proposals employ monitoring mecha-
nisms mainly to fulfill requirements such as latency minimization
(e.g. [3,4,18,20]), throughput increase (e.g. [3,4,19,25]) and energy
consumption or power dissipation reduction (e.g. [5,12,28,30]).
Some of these proposals focus on providing Quality-of-Service
(QoS) in terms of granting minimum bandwidth (e.g. [17,27]),
and others focus on fault detection and tolerance (e.g.
[6,14,15,29]), and efficient thermal distribution (e.g. [4,7]). Our
monitoring approach uses the traffic information to balance the
communication, which allows to minimize packets congestion,
and consequently reducing the average message latency.

Table 1 shows a summary of recent NoC monitoring works,
emphasizing the employed topology, the chosen monitoring type
and method, and the specific goals to achieve.
3. The MoNoC architecture

This Section details the MoNoC architecture. MoNoC relies on
hardware implementations for most of its features, requiring no
software to control its basic components. Conceptually, MoNoC is
a generic communication infrastructure (i.e. topology agnostic)
that aggregates mechanisms to monitor data traffic and policies
for efficient use of NoC resources. The main goal is to achieve fair
workload distribution. Without loss of generality, this work
assumes the use of a 2D mesh topology, given the adopted routing
algorithms employed in the implementation. Fig. 1 shows a MoNoC
implemented as a 2D mesh topology, highlighting its four basic
components: (i) Routers and Links; (ii) Intra Monitors; (iii) Inter
Monitors; (iv) Network Interfaces (NIs).

What makes MoNoC topology agnostic is its adoption of source
routing. The packet structure is illustrated in Fig. 2. The packet
header contains the path (i.e. sequence of router output ports) to
the target router and the payload size. The path to the target (Path)
field may contain any number of flits starting at 1. Each direction is
encoded in four bits as follows: 0x0? East, 0x1? West,
0x2? North, 0x3? South, and 0xF? Invalid. In the example of
Fig. 2 the first flit defines that the packet must travel two hops in
the East direction and then 2 hops in the North direction. When
an invalid code is found, this implies the packet reached its desti-
nation. The path field necessarily ends with a terminator flit (with
value 0xFFFF). This method ensures scalability, since it can be used
with any NoC size.

All experiments presented here adopt as baseline the Hermes-
SR NoC [33], which employs an arbitration scheme distributed over
the router’s output ports. If two or more input ports simulta-
neously require the same output port, one input port will have
its requisition granted, while the other one is queued to be served
later, according to the arbitration policy. The present work adopts a
first come, first served (FCFS) arbitration policy.

At design time, applications’ tasks are mapped to PEs. For each
communicating pair, the source PE statically computes a set of pos-
sible paths to the target PE. Paths are computed using deadlock-
free adaptive algorithms as the ones described in [31] or [32]).
The proposed path adaptation mechanism uses this set of paths.
The number of paths for each communicating pair is kept small
(typically four), a trade-off between path diversity and scalability.
Path diversity means that each path uses different NoCs regions,



Table 1
Summary of recent works on NoC monitoring.

Work NoC topology Monitoring Goals

Type Method

[3] Special mesh Distributed Monitoring of network congestion, by inspecting the status of router input ports Throughput increase and latency
reduction

[4] Mesh–Bus
Hybrid

Distributed Monitoring platform placed on a 3D NoC that utilizes bus arbiters to exchange
monitoring information directly with other arbiters without using NoC channels

Fault tolerance and thermal
management

[5] Torus Distributed Monitoring using counters and timers in each router channel. According to the
communication pattern, a runtime mechanism adapts the buffer size

Throughput increase, power and
latency reduction

[6] Any Distributed Monitoring by computing the minimum expected delivery time of a packet from its
current location to its final destination

Fault tolerance

[7] Several Centralized Monitoring of several types of services (e.g. DVFS – Dynamic Voltage Frequency
Scaling) through special data packets with priority levels

Power reduction and thermal
distribution

[8] Mesh Centralized Monitoring using special packets containing global traffic information Congestion avoidance and traffic
balancing

[9] Mesh Centralized Monitoring performed by two modules: (i) feedback that monitors the traffic load
across the links; and (ii) control that adjusts the routing according to the most traffic
load, in order to maximize load balancing and to reduce congestion

Load balancing and congestion
reducing

[10] Mesh centralized Non-intrusive real-time monitoring through programmable hardware units, and
dynamically configured monitoring agents integrated on network interfaces

Efficient resource management

[11] Mesh Centralized
cluster
based

Traffic monitoring managed by a cluster agent, which captures the links load, the
source–target paths inside the cluster, and the overall data loads of the IP cores

Congestion avoidance in NoC
regions

[12] Mesh Centralized/
distributed

Monitoring using local and global traffic pattern (table-driven) predictors to forecast
end-to-end traffic behavior

Thermal distribution and power
reduction

[13] mesh Centralized/
distributed

Runtime management architecture that integrates fine and coarse grain monitoring
(through a dedicated NoC), plus decision-making and reconfiguration

Performance increase and energy
minimization

[14] Mesh Hierarchical
distributed

NoC’s architecture based on a hierarchy of agents (4 monitoring levels: application,
cluster, cell and platform) providing different granularities for system optimization

Latency reduction, and fault
tolerance[15]

[16] Mesh Distributed Employs a hardware/software infrastructure for runtime observability performed with
packets sent through the regular data network in a hardly intrusive way

Bandwidth guarantee (QoS
requirement)

[17] Mesh Distributed Employs 2 monitoring ways: (i) the router status determining the NoC traffic level
based on switching activity; and (ii) the FIFO buffers status focusing on links usage

Latency reduction and throughput
increase

[18] Mesh Distributed Employs a neural network for learning network state and adapt routing decisions.
Monitoring is performed with packets sent through the regular data network

Latency reduction

[19] Mesh Distributed Monitoring of local buffers with global fault information to determine best routing
algorithm

Throughput increase, power and
latency reduction

[20] Mesh Distributed Monitoring of every node with per-destination congestion state (average delay) to all
other nodes through candidate output ports

Latency reduction

[21] Mesh Distributed Monitoring using data packets to send traffic information (which is stored in tables
located in each router) with QoS

Latency reduction

[22] Mesh Distributed Monitoring using extra wires added to routers that indicate congested and/or faulty
links

Latency reduction and faulty links
avoidance

[23] Mesh Distributed Monitoring of network congestion, analyzing the time a flit stays on the same buffer
position

Latency and traffic saturation

[24] Mesh Distributed Monitoring of NoC status, beyond neighboring nodes, applying a congestion
propagation network solution

Latency and power dissipation
reduction

[25] Mesh Distributed Monitoring of packet switching through a dynamic programming (DP) network, which
provides on-the-fly optimal path planning

Throughput increase and faulty
links avoidance

[26] Mesh Distributed Monitoring of application’s traffic to reconfigure the network by using a dynamic
bypass circuit

Latency reduction

[27] Mesh Distributed Monitoring through NoC status packets used to provide information for adaptive
routing, coupled with adaptive buffer assignment

Bandwidth guarantee (QoS
requirement)

[28] Mesh Distributed Monitoring technique based on memory access time that employs a simple and
effective control algorithm to DVFS operation

Power saving

[29] Mesh Distributed A distributed monitoring mechanism that investigates how much the routing
algorithms impact message overhead for faulty links detection

Fault tolerance

[30] Mesh Distributed Monitoring of information provided by mechanisms placed on each router to
implement a routing algorithm that enables to deflect non-critical packets

Reduce latency and energy and
combat aging

This work Mesh Distributed Distributed monitoring using data packets to transport traffic rate and channels’
occupation status

Congestion avoidance and traffic
balancing to reduce message
latency

E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 785
enabling to find some of the non-congested NoC regions. A smaller
number of packets simultaneously seeking a new path ensure sca-
lability. It is important to mention that in real MPSoCs tasks are
mapped closer to each other. Therefore, searches for new paths
occur in different NoC regions, in this way reducing NoC resource
sharing. It is also possible to replace this static approach by a
dynamic computation of a new path when adaptation is required.
This work does not implement this last option to avoid the compu-
tational cost involved in calculating new paths at runtime.
3.1. Router architecture and virtual channels

Fig. 3 illustrates a 2D mesh MoNoC router with five input ports
and five output ports, interconnected through a crossbar switch.

The input port is responsible for receiving incoming packets,
obtaining the next direction the packet is to take, and for request-
ing its transmission to the selected output port. Remember that
due to the use of source routing no decision is needed at the router,
at least concerning routing. Since arbitration is distributed, there is



Fig. 1. Main components of MoNoC over a mesh topology: (i) Routers and Links; (ii)
Intra Monitors; (iii) Inter Monitors; (iv) Network Interfaces.

Fig. 2. Packet structure adopted in the present work.

786 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
one arbiter at each output port. This arbiter selects the incoming
port to be treated, using a FIFO that supports preemption by higher
priority packets. Preemption enables to interrupt a low priority
flow when a control packet requests a busy port.

Each MoNoC channel employs two virtual channels: (i) a data
lane, responsible for transmitting data packets; (ii) a control lane,
responsible for transporting control packets. By definition, the con-
trol lane has priority higher than the data lane. However, the prior-
ity of virtual channels also depends on the Granter negotiation with
the Regulator of the connected router, refer to Fig. 3. If the
resources used on the neighbor input port are busy, the virtual
channel priority is temporarily changed. Additionally, the control
lane serializes the requests of monitoring services, with the goal
of ensuring their arrival order.

Other techniques may replace virtual channels, such as multiple
physical channels or channel slicing, which consists in dividing a
wide data channel into multiple, narrower data channels. The goal
here is to provide the communication infrastructure with a
Output
port

Input 
port

Ea
st

North

O
ut

pu
t

po
rt

In
pu

t
po

rt

South

O
ut

pu
t

po
rt

In
pu

t
po

rt

Inputport

R
egulator

Cro
ssb

ar

sw
itc

h

cv_origControl lane

cv_compData lane

Fig. 3. Example of a 2D mesh router that uses the M
mechanism to implement differentiated services as that required
by MoNoC, which consists in monitoring and adaptation.
3.2. Intra Monitor (IAM)

The IAM is a nonintrusive circuit, responsible for monitoring the
use of each output port, and to transmit this information when
requested by a control packet. The IAM module, detailed in Fig. 4
is a piece of hardware connected to the output port.

At each clock cycle, the IAM reads the observation interface sig-
nals that correspond to the signals responsible for flow control
between routers. According to these, the IAM updates its internal
state. Fig. 5 depicts the finite state machine (FSM) used internally
in the IAM.

The FSM used in the IAM starts in the Free state and remains in
it as long as there is no packet traversing the output port. The
Transmitting state is reached when a flit is being transferred to
a neighbor router (tx " and credit_in "). The Stalled state is reached
when there is at least one flit to be transmitted, but there is no buf-
fer position available to receive this flit at the neighbor router (tx "
and credit_in ;).

The structures used to compute the transmitted rate are:

i. OTS, or Observation Time Slice, a parameterizable monitoring
window.

ii. OVS, or Observed Value Structure, which stores the number of
clock cycles that the interface remains at each state.

iii. CVS, or Current Value Structure - at the end of each OTS, the
OVS values are transferred to the CVS.

iv. AVS, or Average Value Structure, that corresponds to a
weighted average of the CVS values.

Fig. 6 shows a synthetic example of transmission state transi-
tions using these structures. The value of OTS is fixed at 1000 clock
cycles. We arbitrarily attributed Free, Transmitting, and Stalled
states during each one of the three example OTSs. OVS contains
counters, which are transferred to CVS and initialized at the end
of the OTS period. As illustrated in Fig. 6, the AVS is a weighted
average, since the most recent values have a higher weight com-
pared to older ones.

The second IAM interface, operation interface, receives and
transmits control packets. The reception of control packets may
(re)define IAM parameters, such as OTS, for example. The
W
es

t

Input 
port

Output 
port

W
es

t

Outputport

Inputport

A
rb

ite
r

O
ut

pu
tp

or
t

cv_origControl lane
cv_compData lane G

ra
nt

er

Intra monitor

oNoC architecture on each input/output port.



O
ut

pu
tp

or
t

Intra Monitor (IAM)
tx
lane tx
credit in

enable 
opera�on

commanddata 
output

Opera�on interface

data 
input

G
ra

nt
er

Data signal

Control signals

IAM Observa�on 
interface

Opera�on 
interface

Data lane

Control lane

O
bs

er
va

ti
on

in
te

rf
ac

e
Fig. 4. Block diagram and signals of an Intra Monitor of MoNoC, located at each
router’s output port.

Fig. 5. FSM used by the IAM.

E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 787
transmission of control packets injects into the NoC values stored
in the CVS and AVS structures.
3.3. Network Interface (NI)

The NI is responsible for the communication between the NoC
and a PE, which is usually a processor or a memory bank. The NI
provides an abstraction for the communication protocol used by
a communicating pair of PEs.

Fig. 7 presents the internal NI modules:

i. NISender and NIReceiver are modules in charge of trans-
mitting packets from the PE to the NoC and vice versa.

ii. End-to-end monitoring modules: mstMonitor, mstProbe,
slvMonitor and slvProbe. These modules correspond to
the parts of the Inter Monitor and their interconnection
appears in Fig. 1.

The IRM (Inter Monitor) is also a nonintrusive circuit, imple-
mented inside the NI. The IRM executes end-to-end transmission
1 2

Free = 600
Transmi�ing = 400
Stalled = 0

OVS

CVS

300 400

Free Trans. Stalled

Free = 800
Transmi�ng = 200
Stalled = 0

Free = 800
Trans. = 200
Stalled = 0

AVS
Free = 800
Trans. = 200
Stalled = 0

0

Fig. 6. Example of the monitoring structure computation operation, used t
rate monitoring between communicating pairs. This rate is com-
puted based on a parameterizable Monitored Time Slice (MTS),
which can differ from OTS. This module is employed only when a
monitored communication is required. Otherwise, the IRM remains
idle. When a monitored communication is established, the master
is defined as the source PE, and the slave is the target PE. The mas-
ter side employs modules mstMonitor and mstProbe, while the
slave side utilizes modules slvMonitor and slvProbe.

The main difference between IRM and IAM is that the later can
dispatch notifications about undesired situations rather than just
observe the traffic rate.

The mstMonitor receives from the master PE the requested
transmission rate, selects the path to the slave PE, and reserves
the slave monitor (slvMonitor) at the slave PE. The master PE con-
figures the mstMonitor through a configuration packet with param-
eters such as MTS and the amount of data in flits to be transmitted
during a given MTS. These parameters define a transmission rate
contract, detailed in Section 4. Once a contract is defined, the PE
can start injecting data packets in the NoC. The mstProbe monitors
the transmitted data with a dedicated communication link to the
mstMonitor.

The slvMonitor is responsible for monitoring the contract, noti-
fying the mstMonitor when the contract agreement is violated.
The mstMonitor transmit packets to configure the slvMonitor.
The slvProbe is a module used as support by the slvMonitor for
contract monitoring. It observes the received data. Both, mstProbe
and slvProbe modules contain structures similar to those of IAMs,
using the MTS as temporal reference for the monitoring window.

It is assumed in the present work that a given PE may execute
only one monitored task, which corresponds to a task with guaran-
teed services. All other tasks executing in the same PE are Best
Effort (BE) tasks. If more than one task per PE should be monitored,
additional monitors should be implemented in the NI. This restric-
tion avoids inter-task interferences in a system with QoS con-
straints [34].
4. Runtime path adaptation

Distinct communicating pairs may use multiple shared paths,
overloading communication resources and producing congestion.
To overcome such scenarios, designers normally employ two strat-
egies: (i) consider the traffic load of the entire network, to compute
an optimal distribution for every path, an action frequently carried
out at design time, since it is time-consuming; (ii) evaluate the cur-
rent network status at runtime to take routing decisions.

Runtime traffic evaluation implies the adoption of adaptive
routing algorithms and some level of knowledge about network
usage. Most partially adaptive routing algorithms [35] use the con-
gestion status of one or two hops around the current packet posi-
tion. This partial reach of network usage can be inefficient, since a
3

Time
(OTS)

Free = 400
Transmi�ing = 400
Stalled = 200

600 900

Transmi�ng Free
1000

Free = 600
Trans. = 400
Stalled = 0

Free = 400
Trans. = 400
Stalled = 200

Free = 700
Trans. = 300
Stalled = 0

Free = 550
Trans. = 350
Stalled = 100

+/2 +/2

o define transmission rates along an arbitrary set of state transitions.



Fig. 7. Network interface internal architecture with emphasis on the Inter Monitor structures.

788 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
given packet may take a locally uncongested path just to fall in a
congested region some hops ahead. In addition, adaptive routing
algorithms may induce out-of-order packet reception, which may
require special mechanisms at the PE level. MoNoC merges both
design and runtime strategies. As Section III mentioned, for each
communicating pair, the source PE computes at design time a set
of possible paths to reach the target PE. At runtime, whenever
the requested transmission rate is violated, the NoC tries to adapt
the entire path of this pair, selecting the less congested one among
the pre-computed ones.

In MoNoC, a contract refers to a transmission rate required by a
communicating pair. To keep a contract, MoNoC provides mecha-
nisms to permanently observe the communication data flow, as
well as the traffic load of each flow. It offers adaptive and non-
adaptive communication approaches. When a non-adaptive com-
munication is requested, no contract is agreed (BE behavior). On
the other hand, when an adaptive communication is requested, a
contract must be established for the communicating pair, and the
transmission rate is monitored to provide adaptability, if needed.
Fig. 8 illustrates a message chart diagram containing the set of
messages applied during the session opening stage of an adaptive
communication.

To fulfill the agreed service, the source PE requests a session
opening to the NISender. Then, the source PE transmits the follow-
ing data: (i) target PE address; (ii) MTS; (iii) rate to transmit data
during a given MTS, i. e. the Agreed Contract (AC) rate; (iv) set of
alternative paths. The NISender retransmits these data to the mst-
Monitor. The mstMonitor executes three actions:

� It sends a notification to the NISender about the session
opening, and the NISender then asks the PE to block access
by the requesting task to the NoC.

� Dispatches a setup packet to the NIReceiver containing the
parameters necessary to path adaptation.

� Enables the monitoring on the source side, releasing the
source PE.

The NIReceiver requests the monitoring of the transmission rate
by the slvMonitor. After the reception of the setup packet by the
slvMonitor, the session is opened. Note that session opening
actions at Sender and Receiver sides are thus asynchronous. Then,
every packet exchanged between source–target PEs is monitored at
both sides, to maintain the requested rate. By default, the first path
used in the communication corresponds to an XY path. The contract
can only be released by the source PE. When required, it transmits
a setup packet, releasing IRM in the target NI.
4.1. Path adaptation protocol

Adaptation of a communication path takes place if a contract
violation occurs. The slvMonitor checks the transmission rate by
counting the number of received flits after each MTS. The target
NI notifies the source NI, in case of non-compliance. The source
NI is responsible for firing the path adaptation procedure. Fig. 9
presents the path adaptation protocol. Note that this protocol is
transparent to PEs. As will be presented in Section IV.B, PEs may
not access the NoC during some clock cycles, which can slightly
affect PE performance.

The values used in the path adaptation protocol are the
following:

i. AC, the Agreed Contract rate.
ii. CRR, the Current Reception Rate, obtained from the CVS

structure of the slvProbe.
iii. AIR, the Average Injection Rate, obtained from the AVS

structure of the mstProbe.

Once a contract is established, the target NI starts the monitor-
ing processes. At the end of an MTS period, the current CRR is ver-
ified against the AC. If a violation is detected (CRR < AC) the
slvMonitor stops the monitoring process and notifies the violation
to the mstMonitor (noted as Event 1 in Fig. 9). When the source NI
receives the notification, the AIR is verified against AC. If the aver-
age injection rate (AIR) is smaller than the required rate (AC), this
means that the source PE is injecting packets at lower rates
(marked as Event 2 in Fig. 9). In this case, no adaptation is required,
and the source NI notifies the target NI that the observed violation
does not represent a real violation, and that the monitoring pro-
cesses at the target PE can continue. On the other hand, if the aver-
age rate at the source PE is being respected, but at the target PE a
violation is detected, this means that the path is congested
(marked as Event 3 in Fig. 9). This situation fires the path adapta-
tion process, the source NI stops the mstMonitor and transmits a
set of control packets to the target PE, using the set of available
paths (marked as Event 4 in Fig. 9). The IAMs (Intra Monitors)
are effectively used at this step. They compute the resource utiliza-
tion of each pre-computed path. Control packets read the average
link use (AVS structure), since they abstract the history of the link
usage.

Fig. 10 presents an example of the path selection for the adapta-
tion purposes. Is this example two paths are available between the
source and target PEs. Each control packet reads the AVS structure
of each IAM in the path, computing the average and maximum



Fig. 8. Message chart diagram for session opening in MoNoC.

Fig. 9. The path adaptation protocol as seen from both source and target NIs.

E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 789
path rate. After receiving all proposed paths, the slvMonitor selects
the one with the lowest average rate. Remember the number of
paths to be received is defined during the setup process, as dis-
cussed when presenting Fig. 8. In case more than one path presents
the same average rate, the one with the lowest peak is selected. In
this example, the selected path is Route A. After the path selection,
the slvMonitor notifies the source PE the new path, and monitor-
ing is re-enabled at both sides. In addition, after path updating,
all subsequent data packets are transmitted using this new path.

The control traffic has been designed to provide very low com-
munication overhead. Control packets are sent only when adapta-
tion is required, and typically contain just 5 flits. As previously
mentioned, the number of paths to explore is small, ensuring few
added traffic due to the path selection information.

4.2. Path adaptation cost

Fig. 11 illustrates an example of the path adaptation process
and its cost, in clock cycles. Values were obtained during a MoNoC
RTL simulation running a synthetic traffic scenario. The simulation
evaluates the three main steps of the adaptation process: (i) ses-
sion opening; (ii) path adaptation and (iii) session closing.

Session opening takes 78 clock cycles, from the moment when
the source PE requests to open a session, until the moment when
monitoring is enabled at the target NI (details are available in
Fig. 8 and the accompanying discussion).

The path adaptation phase starts when the target NI detects a
reception rate smaller than the agreed rate, i.e. CCR < AC. (which
occurs at time: 2100 cycles). The source NI receives the notification
(at time 2546 cycles), and verifies that AIR < AC, characterizing a
congestion in the path (marked as Event 3 in Fig. 9). In this exam-
ple, four paths are available for path adaptation. The source NI
sends 4 control packets, using the four different paths. The target
NI receives the fourth control packets at time 2674 cycles, and
selects the third path as the one reaching the target NI with smaller
contention. The source NI receives the notification of the selected
path at time 2758 cycles. From this moment on, all data packets
are transmitted using this new path. Finally, at time 7000 cycles



Fig. 10. Path search example. Path (A) presents the lowest peak and average rate of channels occupancy.

Fig. 11. An example of path adaptation and the computation behind it, measured in
clock cycles. The numbers along the vertical lines represent the number of cycles
taken from the start of the simulation run.

790 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
the source NI sends a notification message to close the session. The
process to close the session takes 36 clock cycles.

The source PE cannot communicate with the target PE from the
reception of the path adaption request (at time 2546 cycles) up to
the path update moment (at time 2758 cycles). This represents
only 212 clock cycles. This is a remarkable result, and is a conse-
quence of using a hardware-only implementation of the path adap-
tation process. From the point of view of the PE, the impact on the
performance of a given application is insignificant, since a few hun-
dred of clock cycles represents just the equivalent of a small
amount of assembly instructions executed on a processor that
often is the core of the PE.
5. Results

This Section evaluates the area cost of MoNoC and the perfor-
mance of the path adaptation process, using as metric the latency
of applications. Section 5.1 evaluates the area consumption
overhead of the MoNoC monitoring and adaptation mechanisms,
comparing it with the Hermes SR NoC, the baseline NoC used for
this MoNoC implementation. The Hermes SR NoC is identical to
the MoNoC, except for the monitoring and adaptation mechanisms.
Section 5.2 presents the experimental setup that serves to evaluate
the latencies associated with the MoNoC operation. Section 5.3
defines the relevant latency metrics, while Sections 5.4 and 5.5
respectively evaluate the application and network latencies for
both static and dynamic traffic scenarios.

5.1. MoNoC area consumption

With the goal of evaluating the area and timing overhead of the
monitoring and adaptation mechanisms of MoNoC, a 5-port router
was synthesized targeting a Virtex 5 device, with 16-bit flit size
and buffer depth equal to 4 flits. This follows the Hermes-SR imple-
mentation [33]. The main differences of both implementations are
the virtual channels (VCs), the Intra Monitors (IAMs), and the algo-
rithms to implement monitoring and adaptation mechanisms.
Table 2 presents the area consumption results in terms of Look-
Up Tables (LUTs) and Flip-Flops (FFs).

The area of MoNoC’s router is large, mostly due to the virtual
channels, which take near 70% of the total MoNoC’s router area.
In contrast, the IAM and the mechanisms for monitoring and adap-
tation take only 30% of the total area of the MoNoC’s router. Com-
pared to the Hermes-SR router, the area overhead is large (around
3.5 times larger). However, this is justified by the hardware imple-
mentation of monitoring and adaptation mechanisms that enable
very fast detection of contract agreement violation and very fast
path adaptation. Area consumption optimization is an ongoing
work not explored in this article, since the goal here is to demon-
strate a new method to avoid congestion and its trade-offs.

5.2. Setup of experimental results

Fig. 12 shows the experimental setup used to run 216 distinct
simulations scenarios. Each scenario is a combination of NoC
adopted (5 � 5) and planned traffic scenarios. The latter arise from
the combination of a communicating pair and a disturbing traffic.
For the disturbing traffic, two axes were varied: (i) the injection
rate of the disturbing sources, and (ii) the physical usage of the
communication channels. For the injection rate, from very low to
high injection rates were employed, to evaluate the adaptation
capability of the architecture. Additionally, definition of the traffic



Table 2
Area consumption and overhead of a MoNoC router versus the Hermes-SR router, both with 5 input ports, 16-bit flits and 4-flit buffer depth.

Hardware Hermes-SR MoNoC

Total IAM VCs and input port buffer Algorithm and additional logic

Per output port All output ports Per port All ports

LUTs 1080 3810 135 675 272 2720 415
FFs 700 1310 66 330 94 940 40

Fig. 12. Setup of experimental results.

Fig. 13. The five different components that define the latency of a packet in MoNoC.

E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 791
distribution occurs as a way to guarantee the occupation of a spe-
cific channel (i.e. complement and hotspot) or a dynamic occupa-
tion of the channels. Finally, the communicating pair depicts the
source and sink configurations elaborated to guarantee a better
comparison. In this axis, proposed variations were: (i) the position
of the source and the sink in MoNoC, (ii) the amount of source and
sink pairs that coexist at the NoC, and (iii) if or not the observed
values were for a pair that could adapt the communication path.
While MoNoC was completely described in VHDL, the evaluation
resources employ SystemC code. All scenarios were simulated with
a clock cycle accurate simulator, Modelsim. This produced a set of
results stored into output files during simulation. Next, an in-
house tool allows parsing the corresponding files and extracting
timing results. The next sections present and discuss the most rel-
evant results.

5.3. Latency analysis

Fig. 13 shows the five distinct parts that compose the packet’s
latency in MoNoC:

i. Packing latency, the time required to generate a packet, by
concatenating control information (e.g. header and/or tail)
and to transmit the packet through software levels.

ii. Injection latency, the time required to insert the packet onto
the source router through the network interface.



Fig. 14. Experiment with four disturbing flows concurring for the same path of a CPev.

Fig. 15. Application latencies obtained with a static traffic scenario and without path adaptation.

792 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
iii. NoC latency, time spent by the packet to traverse the NoC
until reaching the output port of the target router. Packets
competing for NoC resources (e.g. links, buffers and arbitra-
tion) affect this value directly.

iv. Reception latency, time required for the target PE to receive
the packet from the NI.

v. Unpacking latency, time required to extract the payload and
transfer it to the application.

The packing and unpacking latencies depend on the behavior of
the operating system, the memory hierarchy, and the type and
speed of the processor. Since this work focuses on the ability to
modify the path at runtime, thus reducing the packet latency, only
injection, NoC and reception latencies are considered for latency
evaluation. The sum of these three latencies is referred here as
the application latency.

5.4. Results for static traffic scenarios

Our static traffic scenario contains a set of flows that send pack-
ets during the entire simulation. A disturbing traffic is a flow that
interferes in the path of the communicating pair under evaluation
(CPev). Fig. 14 illustrates the experiment discussed in this section
with four disturbing flows applied along the path of the CPev.

The first experiment contains no path adaptation, and all of its
flows use the XY routing algorithm. Fig. 15 presents the application



Fig. 16. Network and application latencies obtained with a static traffic scenario and path adaptation. The packet ordering axis shows the behavior observed for the first 25
packets of the application ordered according to their transmission start time.

Fig. 17. Experiment with dynamic interference traffic concurring with the com-
munication path of the CPev.

E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 793
latency of the CPev for a sequence of packets. In all, the simulation
shows the transmission of 250 packets over the NoC. Packets are
numbered in ascending order of their injection start time. This
accounts for the X-axis in the plot of Fig. 15, which reproduces
the latency seen by the Slave PE as it receives packets from the
Master PE of the CPev. Each curve corresponds to one simulation
with a given injection rate of disturbing flows, according to the
channel transmission capacity (i.e. from 10% to 20%; from 20% to
30%; from 30% to 40%; and from 40% to 50%). Even when the dis-
turbing traffic acts with a small injection rate (from 10% to 20%),
congestion leads to application latencies up to 4000 clock cycles.
For a disturbing traffic with higher injection rates, latencies can
end up in more than 20,000 clock cycles.

The second experiment shows the effect of using path adapta-
tion in the CPev. Fig. 16 details the network and application laten-
cies achieved for a disturbing traffic with an injection rate from
10% to 20%. Other curves are omitted, because these resulted in
very similar behavior. The figure shows the first 25 packets of
the synthetic application, which are again ordered according to
their transmission start time. The disturbing traffic is active during
the whole simulation.

The effect in the latency was expected, since any packet sent by
the CPev that does not use the initial XY routing finds non-con-
gested links. Relevant data to analyze include:

� The Peak Latency – Defines the biggest latency a packet suf-
fers inside the network, specifically due to the adaptation
process. The adaptation process sends packets with higher
priority in the network, causing this peak, and induces a
momentary increase in contention for some data packets.
According to the discussion of Section IV.B, the network
latency increases less than 300 clock cycles. The impact
on the application latency is naturally higher, due to the
packet buffering process at the NI.

� The Reaction Time – defines how long it takes to restore the
latency to its minimum or close to minimum values, when
the cause of the congestion disappears. In this simple
experiment we associate the notion of time to the number
of transmitted packets. Here, once congestion is detected,
after less than 10 packets network latencies restore its ref-
erence values, and after 19 packets the network latency
achieves near-minimum values.

This first experiment demonstrates the effectiveness of the path
adaptation approach. It changes the path in a short time, restoring
latencies to their minimal values.
5.5. Results for dynamic traffic scenarios

These experiments apply the MoNoC path adaptation when
traffic flow changes at runtime. Fig. 17 shows the scenario used
in these experiments, which employs a CPev and several disturbing
flows, varying: (i) the transmission rate of the disturbing traffic, (ii)
the amount of transmitted packets.

Fig. 18 presents the application latency with and without adap-
tation, using a disturbing traffic with an injection rate from 20% to
30% of the channel transmission bandwidth. Note that this is a
typical injection rate that makes 2D mesh networks saturate
[36]. The disturbing flows start after the 100th packet transmitted



Fig. 18. Application and NoC latencies results for a dynamic traffic scenario. The disturbing traffic changes every time the Source PE sends one hundred packets to the Target
PE. The disturbing traffic has an injection rate that varies from 20% to 30% of the channel transmission capacity. Packets are ordered according to their transmission start time.

794 E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795
by the source PE. At the target NI, the MTS was defined to send
notification packets after receiving 50 packets.

Without adaptation, the application latency grows to up to
12,000 clock cycles. When applying path adaptation, we can
observe three peaks in the application latency, corresponding to
the moments when path adaptation is executed. The highest appli-
cation latency observed was 1300 clock cycles.

This second scenario demonstrates the benefits of the hardware
implementation, which leads to very small reaction times. This
enables to restore the small latencies even with disturbing flows
appear very close to each other in time.

It was observed that the use of the proposed path adaptation
mechanism leads to better results for higher injection rates in
the disturbing traffic. There is another experiment not depicted
on the plots discussed in this section. It demonstrated that if the
MTS parameter is below 30 received packets, a large number of
path adaptations occur, reducing the overall performance of the
approach. This last experiment displays a tradeoff that NoC design-
ers can explore, and which depends on the application, on the dis-
turbing traffic characteristics as well as on the NoC topology.

6. Conclusions

This paper presented a mechanism for changing paths a NoC
uses at runtime to reduce congestion. The mechanism relies on
traffic monitoring schemes and protocols. The runtime adaptive
routing mechanism was implemented inside MoNoC – a NoC
aggregating distributed traffic monitoring and deemed to obtain
QoS without recourse to inflexible schemes like circuit switching.
MoNoC uses virtual channels to distribute the communication net-
work status, with high priority control packets, but with low com-
munication volume and only in specific moments, that do not
compromise bandwidth or NoC latency.

At the application level, a developer can define a required rate,
and a set of possible paths between each communicating pair. All
adaptation executed at lower levels, at the network interfaces
and at the NoC. Therefore, there is neither a performance impact
at the operating system level nor at the application level. This
approach is an alternative to methods requiring software monitor-
ing, and results in a short reaction times.

Experiments explored static and dynamic traffic scenarios. In
both scenario types, MoNoC could ensure a change to optimal
routes under the point of view of minimum latency, as soon as it
detected a violation in the agreed/contracted rate. Typically, after
few packets the requested minimum latency is restored.

This approach can be extended to include considerations
related to fault tolerance and dynamic path computation. The
target PE can receive a corrupted or incomplete packet. In this case,
a request for new paths may be sent to the source PE. The present
implementation targets static mapping scenarios. However, in a
dynamic workload scenario, when path adaptation is requested,
the operating system can compute new paths at runtime.

Acknowledgment

The authors acknowledge the support of research agencies
grants as follows. CNPq under grants 472126/2013-0, 302625/
2012-7, 310864/2011-9, 552699/2011-0, 141247/2005-3; CAPES
under grant 708/11; FAPERGS under grants 11/1445-0, 12/1777-4
and Docfix SPI 2843-25.51/12-3. This article is an extension of a
paper presented at the ISCAS 2014 Conference.

References

[1] J. Henkel, Closing the SoC design gap, Computer 36 (9 (September)) (2003)
119–121.

[2] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer 35
(1 (January)) (2002) 70–78.

[3] C. Wang, W.-H. Hu, N. Bagherzadeh, Congestion-aware network-on-chip router
architecture, in: Proceeding of the International Symposium on Computer
Architecture and Digital Systems (CADS), pp. 137–144, 2010.

[4] A.-M. Rahmani, K. Vaddina, K. Latif, P. Liljeberg, J. Plosila, H. Tenhunen, High-
performance and fault–tolerant 3D NoC-bus hybrid architecture using ARB-
NET based adaptive monitoring platform, IEEE Trans. Comput. 63 (3 (March))
(2014) 734–747.

[5] D. Matos, C. Concatto, A. Kologeski, L. Carro, F. Kastensmidt, A. Susin, M. Kreutz,
Monitor–adapter coupling for NoC performance tuning, in: International
Conference on Embedded Computer Systems (SAMOS), pp. 193–199, 2010.

[6] R. Radetzki, Fault–tolerant differential Q routing in arbitrary NoC topologies,
in: IFIP International Conference on Embedded and Ubiquitous Computing
(EUC), pp. 33–40, 2011.

[7] J. Zhao, S. Madduri, R. Vadlamani, W. Burleson, R. Tessier, A dedicated
monitoring infrastructure for multicore processors, IEEE Trans. VLSI Syst. 19 (6
(June)) (2011) 1011–1022.

[8] M. Yazdi, M. Modarressi, H. Sarbazi-Azad, a load-balanced routing scheme for
NoC-based systems-on-chip, in: Workshop on Hardware and Software
Implementation and Control of Distributed MEMS, pp. 72–77, 2010.

[9] R. Manevich, I. Cidon, A. Kolodny, I. Walter, S. Wimer, A cost effective
centralized adaptive routing for networks-on-chip, in: Euromicro Conference
on Digital System Design (DSD), pp. 39–46, 2011.

[10] G. Kornaros, D. Pnevmatikatos, Real-time monitoring of multicore SoCs
through specialized hardware agents on NoC network interfaces, in:
International Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), pp. 248–255, 2012.

[11] P. Gorski, D. Timmermann, Centralized traffic monitoring for online-resizable
clusters in networks-on-chip, in: International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8, 2013.

[12] Y. Huang, K. Chou, C.-T. King, S.-Y. Tseng, NTPT: On the end-to-end traffic
prediction in the on-chip networks, in: Design Automation Conference (DAC),
pp. 449–452, 2010.

[13] L. Guang, E. Nigussie, J. Plosila, J. Isoaho, H. Tenhunen, Coarse and fine-grained
monitoring and reconfiguration for energy-efficient NoCs, in: International
Symposium on System on Chip (SoC), pp. 1–7, 2012.

http://refhub.elsevier.com/S1383-7621(14)00130-1/h0005
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0005
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0010
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0010
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0020
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0020
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0020
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0020
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0035
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0035
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0035


E. Moreno et al. / Journal of Systems Architecture 60 (2014) 783–795 795
[14] A. Yin, L. Guang, P. Liljeberg, P. Rantala, E. Nigussie, J. Isoaho, H. Tenhunen,
Hierarchical agent based NoC with dynamic online services, in: IEEE Conference
on Industrial Electronics and Applications (ICIEA), pp. 434–439, 2009.

[15] L. Guang, E. Nigussie, P. Rantala, J. Isoaho, H. Tenhunen, Hierarchical agent
monitoring design approach towards self-aware parallel systems-on-chip.
ACM Transactions on Embedded Computing Systems (TECS), vol. 9, no. 3, pp.
25:1–25:24, February, 2010.

[16] M. Al Faruque, T. Ebi, J. Henkel, ROAdNoC: runtime observability for an
adaptive network on chip architecture, in: IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 543–548, 2008.

[17] V. Rantala, T. Lehtonen, P. Liljeberg, J. Plosila, Distributed traffic monitoring
methods for adaptive network-on-chip, in: NORCHIP, pp. 233–236, 2008.

[18] T. Ebi, M. Al Faruque, J. Henkel, NeuroNoC: neural network inspired runtime
adaptation for an on-chip communication architecture, in: IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 223–230, 2010.

[19] A. Mehranzadeh, A. Khademzadeh, A. Mehran, FADyAD – fault and congestion
aware routing algorithm based on DyAD algorithm, in: International
Symposium on Telecommunications (IST), pp. 274–279, 2010.

[20] R. Ramanujam, B. Lin, Destination-based adaptive routing on 2D mesh
networks, in: Symposium on Architectures for Networking and
Communications Systems (ANCS), pp. 1–12, 2010.

[21] L. Tedesco, T. Rosa, F. Moraes, A message-level monitoring protocol for QoS flows
in NoCs, in: International Symposium on System on Chip (SoC), pp. 84–88, 2010.

[22] P. Lotfi-Kamran, A. Rahmani, M. Daneshtalab, A. Afzali-Kusha, Z. Navabi, EDXY
– a low cost congestion-aware routing algorithm for network-on-chips, J. Syst.
Architect. 56 (7 (July)) (2010) 256–264.

[23] J. Jose, J. Shankar, K. Mahathi, D. Kumar, M. Mutyam, BOFAR: buffer occupancy
factor based adaptive router for mesh NoCs, in: International Workshop on
Network on Chip Architectures (NoCArc), pp. 23–28, 2011.

[24] S. Ma, N. Jerger, Z. Wang, DBAR: an efficient routing algorithm to support
multiple concurrent applications in networks-on-chip, in: International
Symposium on Computer Architecture (ISCA), pp. 413–424, 2011.

[25] T. Mak, K. Lam, P. Cheung, W. Luk, Adaptive routing in network-on-chips using
a dynamic programming network, IEEE Trans. Ind. Electr. 58 (8 (August))
(2011) 3701–3716.

[26] L.-W. Wu, W.-X. Tang, Y. Hsu, A novel architecture and routing algorithm for
dynamic reconfigurable network-on-chip, in: International Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 177–182, 2011.

[27] M. AlFaruque, T. Ebi, J. Henkel, AdNoC: runtime adaptive network-on-chip
architecture, IEEE Trans. VLSI Syst 20 (2 (February)) (2012) 257–269.

[28] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, U. Ogras, In-network
monitoring and control policy for DVFS of CMP networks-on-chip and last
level caches, in: International Symposium on Networks on Chip (NoCS), pp.
43–50, 2012.

[29] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, Impact of message based fault
detectors on applications messages in a network on chip, in: Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pp. 470–477, 2013.

[30] D. Ancajas, K. Chakraborty, S. Roy, Proactive aging management in heterogeneous
NoCs through a criticality-driven routing approach, in: Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1032–1037, 2013.

[31] C. Glass, L. Ni, The turn model for adaptive routing, J. ACM 41 (5 (September))
(1994) 874–902.

[32] S. Hu, S. Yat-sen X. Lin, A symmetric odd-even routing model in network-on-
chip, in: IEEE/ACIS International Conference on Computer and Information
Science (ICIS), pp. 457–462, 2012.

[33] E. Moreno, C. Marcon, N. Calazans, F. Moraes, Arbitration and routing impact
on NoC design, in: IEEE International Symposium on Rapid System Prototyping
(RSP), pp. 193–198, 2011.

[34] E. Carara, G. Almeida, G. Sassatelli, F. Moraes, Achieving composability in NoC-
based MPSoCs through QoS management at software level, in: Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6, 2011.

[35] G. Ascia, V. Catania, M. Palesi, D. Patti, Implementation and analysis of a new
selection strategy for adaptive routing in networks-on-chip, IEEE Trans.
Comput. 57 (6 (June)) (2008) 809–820.

[36] W. Dally, B. Towles, Principles and practice of Interconnection Networks,
Elsevier, 2004. 550p.

Edson Ifarraguirre Moreno received the M.Sc. degree
(2004) and Ph.D. degree (2010) in Computer Science
from the Pontifical Catholic University of Rio Grande do
Sul (PUCRS). He is currently an associate professor at the
same University, and IC designer at CEITEC. From 2006
to 2007, he made a PHD internship at TIMA (Grenoble,
France). His main research interests include Multipro-
cessor Systems on Chip (MPSoC), electronic system level
design (ESL), and networks on chip networks (NoCs).
Thais Christina Webber dos Santos received the M.Sc.
degree (2003) and Ph.D. degree (2009) in Computer
Science from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS). She is currently member of
embedded systems research group working on hw/sw
design projects, performance evaluation through mod-
eling and simulation techniques. Since 2011 she has
been working on the analysis of parallel and distributed
systems, modeling applications in the context of several
areas such as software engineering, hardware design
and wireless sensor networks.
César Augusto Missio Marcon Ph.D. is an Associate
Professor at the School of Computer Science, Catholic
University (PUCRS), Brazil, since 1995. He received his
Ph.D. in Computer Science from Federal University of
Rio Grande do Sul, Brazil, in 2005. He is the author and
co-author of papers published covering a broad range of
scientific topics within the disciplines of Computer
Architecture and Digital Systems. His research interests
are in the areas of embedded systems on the telecom
domain, computer architecture, intra-chip communica-

tion architectures, partitioning and mapping application tasks, software & hardware
testing, fault tolerance, parallel processing, real-time operating systems. At PUCRS,
he is works at Embedded Systems Group (GSE) and at Hardware Design Assistance

Group (GAPH). Since 2003 Prof. Marcon coordinated 7 research projects. Currently,
he participates in 5 research projects and he works as advisor for MsC. and Ph.D.
graduate students.

Fernando Gehm Moraes received the Electrical Engi-
neering and M.Sc. degrees from the Universidade Fed-
eral do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
in 1987 and 1990, respectively. In 1994 he received the
Ph.D. degree from the Laboratoire d ´ Informatique,
Robotique et Microélectronique de Montpellier (LIR-
MM), France. He is currently at PUCRS, where he has
been an Associate Professor from 1996 to 2002, and Full
Professor since 2002. From 1998 to 2000 he joined the
LIRMM as an Invited Professor for 3 months each year.
He has authored and co-authored 22 peer refereed
journal articles in the field of VLSI design, comprising

the development of networks on chip and telecommunication circuits. One of these
articles, ‘‘HERMES: an Infrastructure for Low Area Overhead Packet-switching
Networks on Chip’’, is cited by more than 350 other papers. He has also authored

and co-authored more than 180 conference papers on these topics. He has co-
advised 3 MSc, advised 22 MsC, advised 4 PhD and co-advised 3 PhD works. His
primary research interests include Microelectronics, FPGAs, reconfigurable archi-
tectures, NoCs (networks on chip) and MPSoCs (multiprocessor system on chip).
SBC, SBMICRO and IEEE Senior Member.

Ney Laert Vilar Calazans holds a PhD degree in Applied
Sciences, Electricity Group, from the Université Catho-
lique de Louvain, Belgium (1993). He also holds a
Bachelor degree in Electrical Engineering from the
Universidade Federal do Rio Grande do Sul (1985) and a
Master of Sciences degree in Computer Science from the
same University (1988). He is a Full Professor at the
Pontifícia Universidade Católica do Rio Grande do Sul,
having worked at the PUCRS since 1986, and holds a
Research Productivity scholarship (Level 1D) from the
Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq). Professor Calazans published more

than 150 papers in journals and conferences. He also published 6 book chapters and
1 book. He already advised 3 Ph.D. thesis and 21 MSc dissertations, as well as more
than 60 undergraduate students in research and end of term works. His main

research interests include non-synchronous circuits and systems, networks on chip,
multiprocessor systems on chip, embedded systems and telecommunication
applications.

http://refhub.elsevier.com/S1383-7621(14)00130-1/h0110
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0110
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0110
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0125
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0125
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0125
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0185
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0185
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0155
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0155
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0175
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0175
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0175
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0190
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0190
http://refhub.elsevier.com/S1383-7621(14)00130-1/h0190

	MoNoC: A monitored network on chip with path adaptation mechanism
	1 Introduction
	2 Related work and proposed approach
	3 The MoNoC architecture
	3.1 Router architecture and virtual channels
	3.2 Intra Monitor (IAM)
	3.3 Network Interface (NI)

	4 Runtime path adaptation
	4.1 Path adaptation protocol
	4.2 Path adaptation cost

	5 Results
	5.1 MoNoC area consumption
	5.2 Setup of experimental results
	5.3 Latency analysis
	5.4 Results for static traffic scenarios
	5.5 Results for dynamic traffic scenarios

	6 Conclusions
	Acknowledgment
	References


