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ABSTRACT 

Newest technologies of integrated circuits fabrication allow billions 

of transistors arranged in a single chip enabling to implement a 

complex parallel system, which requires a high scalable and parallel 

communication architecture, such as a Network-on-Chip (NoC). 

These technologies are very close to physical limitations increasing 

faults in manufacture and at runtime. Thus, it is essential to provide 

a fault recovery mechanism for NoC operation in the presence of 

faults. The preprocessing of the most probable fault scenarios and 

flits retransmission capability enable to anticipate the calculation of 

deadlock-free routings, reducing the time necessary to interrupt the 

system in a fault occurrence and maintaining links operating with 

retransmission capability. This work proposes a smart decisions 

mechanism for errors on NoC links, which is composed of a 

hardware part implemented into the links and routers, and a software 

part implemented inside an operating system kernel of each 

processor. The mechanism defines thresholds where is better to 

reconfigure the NoC or to retransmit flits with errors. Experimental 

results, with several NoC sizes and some error models, suggest 

when is better to reconfigure the NoC and when is better to maintain 

some links operating with eventual faults. 

Categories and Subject Descriptors 

B.8.1 [Performance and Reliability]: Reliability, Testing, and 

Fault-Tolerance 

General Terms 

Design, Reliability, Verification. 

Keywords 

Fault-tolerance; NoC; MPSoC; routing methods; reconfiguration. 

1. INTRODUCTION 
The evolution of VLSI semiconductor technology enables to 

integrate hundreds of cores into a single circuit. This massive 

integration allows implementing the entire functionality of a system 

into a single chip producing a System-on-Chip (SoC). The 

International Technology Roadmap for Semiconductors (ITRS) 

foresees hundreds of Processing Elements (PEs) integrated into an 

SoC by 2020 [1]. A Network-on-Chip (NoC) [2] plays a key role in 

the communication of these highly integrated SoCs, with the two-

dimensional (2D) mesh as the most popular NoC topology, offering 

a simple and regular structure for tile-based design [3]. 

Recent submicron technologies provide more process variability 

increasing the number of defective components [4], which may 

collapse a mesh communication’s structure leading to an irregular 

topology [5]. Thus, static and deterministic routing algorithms 

tailored to a regular NoC topology will not operate properly, thus 

rendering the chip useless [3]. Likewise the works [6][7], we 

employ an approach based on turn prohibition to eliminate 

deadlocks in irregular NoC topologies. Additionally, each router 

contains a table to implement the routing algorithm, using a 

technique similar to [5], compressing the routing table according to 

NoC regions for saving area and power, increasing scalability. 

The design of a fault detection/correction mechanism has to 

consider three types of faults: (i) the one that is detected and 

corrected locally, and whose effect is not propagated to a higher 

hardware/software layer (e.g., a fault corrected by a CRC circuit); 

(ii) the one that is detected, but not recovered in the detected level, 

requiring a higher fault correction mechanism; and (iii) the fault is 

not detected at a low level, requiring a higher level of detection and 

correction. According to the fault dynamicity, the fault-tolerant 

mechanism may employ a strategy that tolerates some occurrence 

of faults during communication, or employ a strategy that exploits 

new communication scenarios to find fault-free paths. 

We propose an efficient approach for dealing with dynamic faults 

on NoC links based on Phoenix [8], which is a fault-tolerant 

architecture comprising a 2D mesh NoC and a software layer that 

controls the fault-tolerance mechanism. A fault-tolerant circuit, 

placed in each inter-router link, takes smart decisions about flit 

retransmission or NoC reconfiguration based on fault scenarios 

preprocessing. Moreover, there are two interrelated procedures 

when a fault is detected: (i) to maintain the faulty link in use; or (ii) 

to reconfigure the entire communication, avoiding faulty links. 

This paper is organized as follows. Section 2 presents related work 

on routing mechanisms and NoC reconfiguration, and the main 

contribution here. Section 3 details the hardware and the software 

of Phoenix’s architecture. Section 4 describes the processing flow 

of fault-tolerant scenarios. Section 5 presents the basics for flit 

retransmission with smart decisions. Section 6 describes the 

methodology and experimental results, while Section 7 analyzes 

methods and costs of the reconfiguration or retransmission 

approach. Finally, Section 8 presents our main conclusions. 

2. RELATED WORK 
A reconfigurable fault-tolerant NoC requires mechanisms of (i) 

fault detection; (ii) fault recovery; (iii) routing computation; and (iv) 

routing reconfiguration to keep the correct system operation in the 

presence of faults. These mechanisms, considering only network 

architectures without virtual channels, are discussed next. 
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Feng et al. [9] describe a fault-tolerant NoC, including an on-line 

fault diagnosis mechanism, a link-level error control scheme, and a 

fault-tolerant routing algorithm on bufferless routers for both 

transient and permanent faults. The fault diagnosis mechanism uses 

single-error-correcting and double-error-detecting to detect 

transient and permanent link faults. Meanwhile, Ying et al. [10] 

propose a fault-tolerant mechanism for transient and permanent 

faults based on NoC monitors and an error detection scheme at flit-

level to handle transient faults on the data links, while a dynamic 

routing mechanism deals with a permanent faulty link. Yu et al. [11] 

propose an error control method for co-manage transient and 

permanent errors in the data link and physical layers. 

According to Radetzki et al. [12], achieving time redundancy means 

repeating the computation, sampling, or retransmission. At the data 

link layer, three types of time redundancy are widely used, namely 

multisampling and correction, hop-to-hop retransmission, and split 

link transmission. Our work implements retransmission, also known 

as Automatic Repeat Request (ARQ), which has been proposed and 

used for decades to provide error control in communication 

networks. The ARQ technique at the data link layer in NoCs is 

implemented as the hop-to-hop retransmission often coupled with 

an error detection and correction technique. 

The routing mechanism needs resources that may be changed to 

support routing reconfiguration at runtime; usually through routing 

tables, which support many topologies and are easy to implement. 

Several works employ techniques to reduce or minimize the size of 

the routing tables, aiming to reach the scalability required for 

current and future high-populated NoCs. It is a complex task and 

may imply the loss of performance and/or the impossibility of 

reaching all target nodes. Examples of these works are (i) Palesi et 

al. [13], which uses a table compression technique for application-

specific routing, and (ii) Bolotin et al. [14] that uses table 

minimization technique applying a fixed function combined with 

minimal deviation tables. 

Dividing the network in regions is another approach for reducing 

routing table sizes. For instance, Mejia et al. [5] proposed the 

Region Based Routing (RBR) approach, where each node contains 

set of regions based on paths that cover all communications. 

Fukushima, Fukushi and Yairi [15] propose another region based 

approach based on a set of rectangular faulty regions and 

corresponding deviation paths. Their approach improves the work 

of Holsmark et al. [16] providing complete and deadlock-free 

routing, reducing regions size and implementation complexity. 

The reconfiguration process defines the computation cost of taking 

dynamic routing decisions. Fick et al. [17] describe the architecture 

of Vicis, which is a fault-tolerant NoC that preserves the 

functionality of the system based on the inherent redundancy found 

in most networks. Each router now has a Built-In Self-Test circuit 

to diagnose faults and to reconfigure the hardware. Triviño et al. 

[18] use virtual-regions to improve application performance that are 

simultaneously running in a Chip MultiProcessor (CMP), which 

results in the partitioning of the CMP in several regions through a 

dynamic reconfiguration algorithm. 

Our work employs a dynamic fault model encompassing three 

phases: (i) fault detection and fault report; (ii) deadlock-free routing 

computation; and (iii) routing reconfiguration. The main 

contribution of this work is in the routing reconfiguration phase that 

provides fast deadlock-free routing reconfigurations for irregular 

NoC topologies. It is based on preprocessing the most probable fault 

scenarios, which are computed according to the detection of link 

fault tendency. Using our approach and considering a fault tendency 

detected condition, we can employ more complex and time-

consuming algorithms to produce optimal solutions for large NoCs 

without compromising application runtime since the routing tables 

are already preprocessed. Moreover, a given set of scenarios may 

encompass more than one fault situation, reducing the total amount 

of scenarios. We provide two new and significant contributions: (i) 

an analytic metric to choose at runtime the substitution scenario that 

provides the most efficient routing; and (ii) a novel method to 

reduce a large set of scenarios based on cross-correlation measure 

that identifies dissimilarities in sets of irregular topologies, 

minimizing the storage area for preprocessed scenarios. 

3. PHOENIX’S ARCHITECTURE 
Figure 1 shows the distributed fault-tolerant architecture of Phoenix 

[8] on a NoC-based MPSoC that includes a hardware part (i.e. 

HwPhoenix) placed on each router of the NoC and a software part 

(i.e. OsPhoenix) placed on the operating system of each PE. 
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Figure 1 – Phoenix distributed architecture [8]. 

Each PE connects through a NoC interface the local port of each 

router. Each field of a Phoenix’s packet is 1-flit length, and the 

number of flits in a packet is limited to 2(flit size in bits). Phoenix uses 

two types of packets: (i) data packet, for the application messages; 

and (ii) control packet, for the fault-tolerant mechanism. The 

software and hardware layers communicate via the bidirectional 

control packets transmitted through the local port of each PE. 

3.1 OsPhoenix Architecture 
The OsPhoenix is a software layer, which contains drivers for high-

level operation, and routines that implement the distributed fault-

tolerant mechanism. The PE’s operating system perceives this 

software layer as a network driver interface, making the fault-

tolerant mechanism transparent to the system operation. Figure 2 

depicts the main modules of OsPhoenix and their interaction. The 

Kernel of OsPhoenix includes a Control Module (CM) for 

managing the fault-tolerant mechanism and the NoC Driver that 

adapt and route control and data packets. 

PE’s Operating System

Kernel

NoC DriverControl Module (CM)

NoC Interface

OS Modules
Scenarios 
Processing 

Module (SPM)

OsPhoenix

Scenarios and
Routing Table 

Memory

(SRT Memory)

Global Fault 
Table (GFT)

* Dashed line encloses OsPhoenix containing the 
main elements; Black arrows show how 
elements are interrelated  

Figure 2 – Block diagram of PE’s OS architecture. 

The Global Fault Table (GFT) stores the status of all NoC links. It 

is a global copy of all routers’ Fault Table (Section 3.2). The CM 



writes/reads this table to synchronize information among all PEs. 

The Scenarios Processing Module (SPM) calculates routing tables 

according to the fault or fault tendency on links when commanded 

by the CM. It uses the information provided by the GFT together 

with new faults information to search for a previously computed 

scenario that covers this new fault situation, in the Scenarios and 

Routing Table Memory (SRT Memory). If a candidate scenario is 

found, the associated Routing Table in updated at the hardware 

layer. Otherwise, this module processes a new fault-tolerant 

scenario and its associated RBR Table. According to our system 

retransmission features, when a fault detection occurs, OsPhoenix 

decides if reconfiguration is necessary. 

3.2 HwPhoenix Fundamentals 
Phoenix NoC is a direct 2D mesh topology consisting of m×n 

routers using bidirectional links for routers and PEs interconnection. 

The NoC employs routing tables for distributed routing decisions 

and the OsPhoenix performs routing algorithms to fill the routing 

table according to the relative position of each PE. Further, Phoenix 

NoC implements wormhole switching, demanding only small 

buffers for data storing. Additionally, a credit-based flow control 

reduces transmission clock latency. 

Figure 3 shows the Phoenix router architecture, which includes 

mechanisms for packet routing and fault tolerance. The packet 

routing mechanism encompasses: (i) Four bidirectional ports; (ii) a 

Crossbar Switch that establishes unblocking connections between 

input and output ports; (iii) a Routing Table that associates regions 

of the NoC with output ports; and (iv) a Switch Control that 

performs the packets routing and arbitration. 
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Figure 3 – Basic components of Phoenix router architecture. 

Dashed lines bound the main components of HwPhoenix. 

The NoC routing algorithm is similar to RBR [5], which groups 

target addresses into regions to reduce the Routing Table size. The 

fault-tolerant circuit implemented in each router includes three 

types of circuits: (i) fault detection and correction module 

containing a Hamming Encoder (HE), a Hamming Decoder (HD) 

and a Fault Prediction Module (FPM - [24]), which are placed in 

each one of the links that interconnect routers; (ii) Fault Monitor 

that communicates with the FPM to set the status of the links on the 

Fault Table according to a two-level fault model; and (iii) Fault 

Control Machine, which controls the Fault Monitor and the FPM. 

The adopted fault model classifies links in four situations: (i) not 

verified, (ii) faulty, (iii) operating correctly, or (iv) operating with 

fault tendency. This classification takes into account each link’s 

monitoring history. There are static and dynamic mechanisms for 

testing the links quality. The static link test starts with OsPhoenix 

sending a control packet to the HwPhoenix. The Fault Control 

Machine (FCM) interprets this command broadcasting a predefined 

test packet to all output ports, except the local one. When a neighbor 

router receives the test packet, it loops back a packet with the same 

information. Then, the Fault Monitor detects whether the link is 

faulty or not, sets this information on the Fault Table and informs 

this procedure to the FCM, which sends a control packet containing 

the Fault Table to the OsPhoenix [8]. 

Each bidirectional link contains an HE and an HD to perform the 

dynamic link test, which is a strategy that identifies fault tendencies 

using circuits based on a threshold (similar strategy is used in [19]). 

The HD receives the data plus the redundancy bits encoded by the 

HE of the adjacent router. The HD module can correct one bit flip 

and detect at most two faults in a data flit. Thus, the module informs 

the communication status by the signals NE, EC, and ED. 

Figure 4 illustrates the flit retransmission circuit placed in each data 

link between routers. This circuit uses HD information to verify if 

each flit was received without error, with an error that was corrected 

by the HD circuit, or if a double error was detected but not corrected. 

In the case of double error, the circuit of the target router requests a 

flit retransmission to the source router using the retx signal, 

implying a single clock of latency penalty (only if the credit signal 

is enabled, the source router may send flits to the target router). 
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Figure 4 – Retransmission circuit. 

Based on monitoring the density of errors, the FPM deduces a link 

fault tendency, which is propagated to the OsPhoenix that makes 

inferences to permanent errors or tendency of errors. According to 

these inferences, OsPhoenix may set on the Fault Table the 

bidirectional link as faulty (e.g. a permanent error) and/or may start 

the preprocessing of a new routing scenario. When a link is marked 

as faulty, the HE, HD and FPM modules are turned off and remain 

with this status until the OsPhoenix requires a new link evaluation. 

4. SCENARIOS PROCESSING AND 

RETRANSMISSION FLOW 
As soon as OsPhoenix is loaded, it commands the preliminary test 

of links. In the case of detecting faults, OsPhoenix decides whether 

to maintain a faulty link in operation, relying on the retransmission 

mechanism, or to perform several steps on all PEs and routers to 

establish routing configuration. 

The FPM notifies the Fault Monitor whenever a faulty link or a fault 

tendency is detected. If this fault is annotated in the Fault Table, the 

information is not propagated. Otherwise, the Fault Monitor stores 

the fault information in the Fault Table and informs this event to the 

FCM that transmits this information to the CM of the local 

OsPhoenix. Then, the CM commands the SPM to proceed with next 



fault tolerance steps (e.g. to process a new fault coverage scenario). 

Moreover, each OsPhoenix contains a timing mechanism to define 

a maximum time for network stabilization, which is reached when 

all OsPhoenix instances receive the same fault information. This 

mechanism is used when a sequence of faulty links split the NoC 

precluding the transmission of control packets to all routers [8]. 

When a message of fault tendency is received, the SPM verifies the 

existence of some previously computed scenario that covers this 

fault. If it exists, no further action is necessary. Otherwise, aiming 

to enable fast routing reconfiguration, this module computes and 

stores in the SRT Memory, together with the associated routing 

tables, a new set of scenarios that cover this fault. However, the 

amount of fault scenarios raises exponentially with the quantity of 

faulty links. Aiming to deal with this complexity, OsPhoenix 

preprocesses a limited set of scenarios based on a dissimilarity 

method using cross-correlation of fault matrices to meet the 

application requirements [20]. The preprocessing approach may be 

employed to fulfill several application requirements (e.g. to reduce 

power dissipation and to achieve homogeneous thermal 

distribution). Nevertheless, OsPhoenix uses latency minimization 

as an application requirement and employs Average Routing 

Distance (ARD) as a metric for fast latency estimation. 

When a faulty link notification is received, OsPhoenix decides 

whether to maintain the NoC operation or trigger a routing 

reconfiguration process. If the reconfiguration process is chosen, 

and if the fault scenario is already preprocessed, the OsPhoenix may 

perform a fast routing reconfiguration, merely updating the Routing 

Table. Otherwise, the routing reconfiguration takes much longer, 

requiring the computation of a new coverage scenario, which delays 

the application execution. 

Phoenix takes into account the premise that “all PEs have the same 

algorithm to generate scenarios and routing paths”. This premise 

allows that each OsPhoenix has its GFT and SRT Memory, and all 

instances of OsPhoenix operate independently in a distributed way, 

eliminating the need for broadcast routing configurations. 

5. BASICS OF RETRANSMISSION 
Since the HD module may repair only single faults, but double faults 

requires flit retransmission, we consider the Double Fault Error 

Rate (DFER) as a metric that increases the transmission delay. 

DFER is a real number in the interval [0, 1]. The amount of link 

faults grows with the value of DFER; i.e.; if DFER = 0, the link is 

free of double faults, while if DFER = 1, means that all 

communications on the link are faulty. The smart decision process 

considers the tradeoff of dealing with retransmissions (maintaining 

a faulty link, i.e., DFER > 0) and issuing a global NoC routing 

reconfiguration. 

There are four phases encompassing a reconfiguration event: (i) TFD 

(fault detection delay) – detection of a faulty link through the FPM 

operation; (ii) TFP (fault propagation delay) - fault propagation to all 

OsPhoenix of other PEs; (iii) TRP (routing processing delay) - 

routing tables processing by all the OsPhoenix; and (iv) TRTL 

(routing table loading delay) - loading the new routing tables into 

each local router. Equation 1 illustrates the summation of this 

reconfiguration delay (TR): 

TR = TFD + TFP + TRP + TTL (1) 

Equation 2 illustrates the retransmission delay AR as the reason for 

the sum of the amount of communication flows Ncomm of a target 

application, considering the number of flits NFi of each i-th flow; its 

corresponding quantity of clock cycles employed in flit 

retransmission NCT; and the sum of the DFERs of all links in the 

path of a j-th communication flow (∑ 𝐷𝐹𝐸𝑅𝑗
𝐿𝑓𝑙𝑜𝑤

𝑗=1
). This 

retransmission overhead is the percentage of added average latency 

for a given end-to-end communication. 

𝐴𝑅 =  
∑ [𝑁𝐹𝑖 × 𝑁𝐶𝑇 × ∑ (𝐷𝐹𝐸𝑅𝑗)

𝐿𝑓𝑙𝑜𝑤

𝑗=1
]

𝑁𝑐𝑜𝑚𝑚
𝑖=1

𝑁𝑐𝑜𝑚𝑚
 (2) 

In the event of a new fault, the OsPhoenix must perform the smart 

reconfiguration process, to reconfigure the system or maintain the 

failed channel in use, using the retransmission circuit. Considering 

these conditions, OsPhoenix issues a reconfiguration event when TR 

< AR, meaning that the average time taken for reconfiguration 

should be lower than correcting double faults at a set of links, 

considering communication flows. 

6. METHOD AND EXPERIMENTS 
The fabrication process variability of VLSI circuits increases every 

scale down of new deep submicron technologies, due to phenomena 

such as imprecise impurity deposition and non-uniformity in 

lithography exposure field. This variability may deviate the circuit 

from its nominal specification, or even prevent its partial or total 

operation [21]. In other words, it is a source of static and dynamic 

faults. Therefore, and without lack of generality, we choose the 

variability model proposed by Hargreaves et al. [22] for generating 

the fault scenarios presented here. This model takes into 

consideration the effect of variability on switch-to-switch link delay 

employing two variations parameters: the link delay variability σ 

and the spatial correlation variability λ. 

The link delay variability were set to 5% (σ = 0.05) and 18% 

(σ = 0.18) to explore scenarios with 65 nm and 22 nm manufacturing 

processes, respectively, as predicted by the ITRS roadmap [23]. 

Additionally, the experiments were produced with λ = 0.4 and 

λ = 1.2, representing the high and low strength of the spatial 

correlation variability, respectively. These values represent the 

typical correlation induced by fabrication processes [22]. The 

experiments encompass four NoC sizes (5×5, 6×6, 7×7 and 8×8). 

Figure 5 shows examples of a 5×5 NoC combining link delay and 

spatial correlation parameters (each link is marked with its DFER). 
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Figure 5 – 5×5 Mesh NoC example of DFER rates on links. 



To explore the randomness of the variability model, we generated 

25 times each one of these scenarios, resulting in 400 irregular NoC 

topologies. Figure 6 shows how simulation scenarios are composed 

and applied to achieve the experimental results. For each scenario, 

an in-house tool performs the following steps: (i) segmentation of 

the NoC using the segment routing algorithm [5] to generate a 

restriction file. This file contains all the forbidden directions that 

avoid deadlock situations; and (ii) computation of minimal paths 

using the restriction file information, which allows generating the 

set of virtual regions for the RBR approach. 
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Figure 6 – Setup of experimental results. 

We performed the experiments over NoCs described in VHDL RTL 

using eight injection rates (5%, 10%, 15%, 20%, 30%, 40%, 50% 

and 60%) of a synthetic traffic composed of 100 packet with 50 flits 

long. Additionally, all experiments are synthetic with all-to-all 

uniform traffic distribution. 

7. EXPERIMENTAL RESULTS 
The first set of experiments evaluates AR that depends on the NoC 

size and on the DFER of each channel - that varies based on the fault 

distribution, as described in Section 6. Figure 7 presents the results 

for four sizes of NoCs (5×5, 6×6, 7×7 and 8×8) and average results 

acquired from 50 samples with each fault distribution configuration 

([σ=0.05, λ=1.2], [σ=0.18, λ=1.2], [σ=0.05, λ=0.4] and [σ=0.18, 

λ=0.4]), for 10% of traffic injection rate. 

 
Figure 7 – Average retransmission delay (AR) for 10% of 

traffic injection rate and 4 NoC sizes. 

The experiments show that the AR does not depend on the traffic 

injection rate, since the retransmission delay is computed according 

to a static quantity of packets. Besides, it is observed that the NoC 

size together with the fault distribution model affect AR a lot. As the 

fault distributions become more aggressive, the DFER increases, 

causing the increase of AR - i.e., more network latency. Each router 

determines the DFER values of its entire links at runtime by 

checking the fault tables generated by the FPM, as described in [24], 

since the single and double fault events are registered in each Fault 

Table. This dynamic information is propagated to OsPhoenix that 

verifies if it is necessary to reconfigure the NoC. 

The second set of experiments calculates the same simulation 

results in design time by evaluating all the communication paths, 

while considering the fault rates generated by the fault distribution 

model; but now considering eight injection rates. Figure 8 illustrates 

the comparison between the estimated and measured results. 

 

 

 

 

 
Figure 8 – Comparison of average latency measured and 

estimated with eight injection rates and four NoC sizes. 

We notice that latency increases with more aggressive fault 

distribution configurations, where REF is a non-double faults 

scenario. This latency increase is explainable since more double-

faults increases retransmission delay increasing the over latency. 

We measure the average error near 10%, which is due to the 

adaptability of the RBR routing mechanism. As there may exist 

more than one routing possibility, different choices yield disparate 

results. More aggressive fault distributions also result in greater 

variation, since the samples have faults packet more closely 

resulting in more complex segmentation configurations, creating 

more alternative routing options. Even though our decisions are 
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coherent, estimating the AR at runtime is not viable since there is no 

way for the network to map every path taken for every source-

destination pair. Thus, it is necessary to assume an average value 

that represents traffic type and distribution, for the AR estimation. 

The third set of experiments explores the over latency metric that 

represents the extra latency caused by retransmission delay, due to 

the additional cycles from retransmission circuit. Figure 9 shows the 

percentage of additional latency, which is defined as the value 

increase considering the same network topology without double 

errors (i.e., REF), in percentage. 

 

  

  
Figure 9 – Additional latency for uniform traffic in 5×5, 6×6, 

7×7 and 8×8 NoCs for all 4-fault distributions. 

Before and after the saturation point all curves have similar behavior 

and values, with less than 70% of additional latency for almost all 

injection rates. However, between 5% and 10% of traffic injection 

rate starts a saturation process, where the extra latency increases 

severely. This fact can be explained due to the chaotic nature that 

the traffic present during the network saturation process. Thus, for 

analysis and decisions taken during the operation of Phoenix, we 

consider the additional latency values before the saturation point. 

8. CONCLUSIONS 
This work proposes a smart reconfiguration approach for irregular 

NoC topologies using Phoenix’s architecture. The software of 

Phoenix is a small part of the operating system kernel called 

OsPhoenix that take decisions as soon as a fault prediction monitor, 

placed on each link of each router, detects a fault tendency. The 

hardware of Phoenix is a fault-tolerant mesh NoC, which employs 

region-based routing mechanism. The NoC possesses a fault 

prediction module with Hamming encoding, enabling simple error 

correction and the detection and retransmission of double errors. 

Using this mechanism, the OsPhoenix may decide to maintain some 

links operating with error correction or reconfigure the NoC’s 

routing tables to avoid these links. 

Retransmitting data in faulty links inserts additional latency, 

reducing network performance. However, careful evaluation is 

necessary for issuing a global NoC reconfiguration to avoid faulty 

links, because it also affects the application performance, once the 

average distance of routing tends to increase with the reduction of 

operating links. 

It is our understanding that retransmission’s impact is too severe. 

The retransmission of data generates around of 70% of additional 

latency (considering the fault model used), whereas the latency due 

to the replacement of preprocessed scenarios is between 4% and 

20%. Thus, in situations where fault distributions are too aggressive, 

the best approach is to stop the network operation to issue a 

reconfiguration. We also intend to evaluate scenarios with lower 

fault rates for determining, at runtime, whether a retransmission or 

reconfiguration is the most appropriate approach. 
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