
Smart Reconfiguration Approach for
Fault-Tolerant NoC Based MPSoCs

Jarbas Silveira, Paulo Cortez,
Alan Cadore, Rafael Mota

LESC-DETI - Federal University of Ceará (UFC)
Fortaleza, Brazil

jarbas@lesc.ufc.br

César Marcon, Lucas Brahm,
Ramon Fernandes

Pontifícia Universidade Católica do Rio Grande do Sul
Porto Alegre, Brazil

cesar.marcon@pucrs.br

ABSTRACT

Newest technologies of integrated circuits fabrication allow billions

of transistors arranged in a single chip enabling to implement a

complex parallel system, which requires a high scalable and parallel

communication architecture, such as a Network-on-Chip (NoC).

These technologies are very close to physical limitations increasing

faults in manufacture and at runtime. Thus, it is essential to provide

a fault recovery mechanism for NoC operation in the presence of

faults. The preprocessing of the most probable fault scenarios and

flits retransmission capability enable to anticipate the calculation of

deadlock-free routings, reducing the time necessary to interrupt the

system in a fault occurrence and maintaining links operating with

retransmission capability. This work proposes a smart decisions

mechanism for errors on NoC links, which is composed of a

hardware part implemented into the links and routers, and a software

part implemented inside an operating system kernel of each

processor. The mechanism defines thresholds where is better to

reconfigure the NoC or to retransmit flits with errors. Experimental

results, with several NoC sizes and some error models, suggest

when is better to reconfigure the NoC and when is better to maintain

some links operating with eventual faults.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Testing, and

Fault-Tolerance

General Terms

Design, Reliability, Verification.

Keywords

Fault-tolerance; NoC; MPSoC; routing methods; reconfiguration.

1. INTRODUCTION
The evolution of VLSI semiconductor technology enables to

integrate hundreds of cores into a single circuit. This massive

integration allows implementing the entire functionality of a system

into a single chip producing a System-on-Chip (SoC). The

International Technology Roadmap for Semiconductors (ITRS)

foresees hundreds of Processing Elements (PEs) integrated into an

SoC by 2020 [1]. A Network-on-Chip (NoC) [2] plays a key role in

the communication of these highly integrated SoCs, with the two-

dimensional (2D) mesh as the most popular NoC topology, offering

a simple and regular structure for tile-based design [3].

Recent submicron technologies provide more process variability

increasing the number of defective components [4], which may

collapse a mesh communication’s structure leading to an irregular

topology [5]. Thus, static and deterministic routing algorithms

tailored to a regular NoC topology will not operate properly, thus

rendering the chip useless [3]. Likewise the works [6][7], we

employ an approach based on turn prohibition to eliminate

deadlocks in irregular NoC topologies. Additionally, each router

contains a table to implement the routing algorithm, using a

technique similar to [5], compressing the routing table according to

NoC regions for saving area and power, increasing scalability.

The design of a fault detection/correction mechanism has to

consider three types of faults: (i) the one that is detected and

corrected locally, and whose effect is not propagated to a higher

hardware/software layer (e.g., a fault corrected by a CRC circuit);

(ii) the one that is detected, but not recovered in the detected level,

requiring a higher fault correction mechanism; and (iii) the fault is

not detected at a low level, requiring a higher level of detection and

correction. According to the fault dynamicity, the fault-tolerant

mechanism may employ a strategy that tolerates some occurrence

of faults during communication, or employ a strategy that exploits

new communication scenarios to find fault-free paths.

We propose an efficient approach for dealing with dynamic faults

on NoC links based on Phoenix [8], which is a fault-tolerant

architecture comprising a 2D mesh NoC and a software layer that

controls the fault-tolerance mechanism. A fault-tolerant circuit,

placed in each inter-router link, takes smart decisions about flit

retransmission or NoC reconfiguration based on fault scenarios

preprocessing. Moreover, there are two interrelated procedures

when a fault is detected: (i) to maintain the faulty link in use; or (ii)

to reconfigure the entire communication, avoiding faulty links.

This paper is organized as follows. Section 2 presents related work

on routing mechanisms and NoC reconfiguration, and the main

contribution here. Section 3 details the hardware and the software

of Phoenix’s architecture. Section 4 describes the processing flow

of fault-tolerant scenarios. Section 5 presents the basics for flit

retransmission with smart decisions. Section 6 describes the

methodology and experimental results, while Section 7 analyzes

methods and costs of the reconfiguration or retransmission

approach. Finally, Section 8 presents our main conclusions.

2. RELATED WORK
A reconfigurable fault-tolerant NoC requires mechanisms of (i)

fault detection; (ii) fault recovery; (iii) routing computation; and (iv)

routing reconfiguration to keep the correct system operation in the

presence of faults. These mechanisms, considering only network

architectures without virtual channels, are discussed next.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from Permissions@acm.org.

SBCCI '15, August 31 - September 04, 2015, Salvador, Brazil
© 2015 ACM. ISBN 978-1-4503-3763-2/15/08…$15.00

DOI: http://dx.doi.org/10.1145/2800986.2801027

Feng et al. [9] describe a fault-tolerant NoC, including an on-line

fault diagnosis mechanism, a link-level error control scheme, and a

fault-tolerant routing algorithm on bufferless routers for both

transient and permanent faults. The fault diagnosis mechanism uses

single-error-correcting and double-error-detecting to detect

transient and permanent link faults. Meanwhile, Ying et al. [10]

propose a fault-tolerant mechanism for transient and permanent

faults based on NoC monitors and an error detection scheme at flit-

level to handle transient faults on the data links, while a dynamic

routing mechanism deals with a permanent faulty link. Yu et al. [11]

propose an error control method for co-manage transient and

permanent errors in the data link and physical layers.

According to Radetzki et al. [12], achieving time redundancy means

repeating the computation, sampling, or retransmission. At the data

link layer, three types of time redundancy are widely used, namely

multisampling and correction, hop-to-hop retransmission, and split

link transmission. Our work implements retransmission, also known

as Automatic Repeat Request (ARQ), which has been proposed and

used for decades to provide error control in communication

networks. The ARQ technique at the data link layer in NoCs is

implemented as the hop-to-hop retransmission often coupled with

an error detection and correction technique.

The routing mechanism needs resources that may be changed to

support routing reconfiguration at runtime; usually through routing

tables, which support many topologies and are easy to implement.

Several works employ techniques to reduce or minimize the size of

the routing tables, aiming to reach the scalability required for

current and future high-populated NoCs. It is a complex task and

may imply the loss of performance and/or the impossibility of

reaching all target nodes. Examples of these works are (i) Palesi et

al. [13], which uses a table compression technique for application-

specific routing, and (ii) Bolotin et al. [14] that uses table

minimization technique applying a fixed function combined with

minimal deviation tables.

Dividing the network in regions is another approach for reducing

routing table sizes. For instance, Mejia et al. [5] proposed the

Region Based Routing (RBR) approach, where each node contains

set of regions based on paths that cover all communications.

Fukushima, Fukushi and Yairi [15] propose another region based

approach based on a set of rectangular faulty regions and

corresponding deviation paths. Their approach improves the work

of Holsmark et al. [16] providing complete and deadlock-free

routing, reducing regions size and implementation complexity.

The reconfiguration process defines the computation cost of taking

dynamic routing decisions. Fick et al. [17] describe the architecture

of Vicis, which is a fault-tolerant NoC that preserves the

functionality of the system based on the inherent redundancy found

in most networks. Each router now has a Built-In Self-Test circuit

to diagnose faults and to reconfigure the hardware. Triviño et al.

[18] use virtual-regions to improve application performance that are

simultaneously running in a Chip MultiProcessor (CMP), which

results in the partitioning of the CMP in several regions through a

dynamic reconfiguration algorithm.

Our work employs a dynamic fault model encompassing three

phases: (i) fault detection and fault report; (ii) deadlock-free routing

computation; and (iii) routing reconfiguration. The main

contribution of this work is in the routing reconfiguration phase that

provides fast deadlock-free routing reconfigurations for irregular

NoC topologies. It is based on preprocessing the most probable fault

scenarios, which are computed according to the detection of link

fault tendency. Using our approach and considering a fault tendency

detected condition, we can employ more complex and time-

consuming algorithms to produce optimal solutions for large NoCs

without compromising application runtime since the routing tables

are already preprocessed. Moreover, a given set of scenarios may

encompass more than one fault situation, reducing the total amount

of scenarios. We provide two new and significant contributions: (i)

an analytic metric to choose at runtime the substitution scenario that

provides the most efficient routing; and (ii) a novel method to

reduce a large set of scenarios based on cross-correlation measure

that identifies dissimilarities in sets of irregular topologies,

minimizing the storage area for preprocessed scenarios.

3. PHOENIX’S ARCHITECTURE
Figure 1 shows the distributed fault-tolerant architecture of Phoenix

[8] on a NoC-based MPSoC that includes a hardware part (i.e.

HwPhoenix) placed on each router of the NoC and a software part

(i.e. OsPhoenix) placed on the operating system of each PE.

MPSoC

PE (processor + memory)

Operating System

NoC

......

OsPhoenix

User application

NoC Interface

Router
HwPhoenix

PE (processor + memory)

Operating System

OsPhoenix

User application

NoC Interface

Router
HwPhoenix

HW

SW

......

Figure 1 – Phoenix distributed architecture [8].

Each PE connects through a NoC interface the local port of each

router. Each field of a Phoenix’s packet is 1-flit length, and the

number of flits in a packet is limited to 2(flit size in bits). Phoenix uses

two types of packets: (i) data packet, for the application messages;

and (ii) control packet, for the fault-tolerant mechanism. The

software and hardware layers communicate via the bidirectional

control packets transmitted through the local port of each PE.

3.1 OsPhoenix Architecture
The OsPhoenix is a software layer, which contains drivers for high-

level operation, and routines that implement the distributed fault-

tolerant mechanism. The PE’s operating system perceives this

software layer as a network driver interface, making the fault-

tolerant mechanism transparent to the system operation. Figure 2

depicts the main modules of OsPhoenix and their interaction. The

Kernel of OsPhoenix includes a Control Module (CM) for

managing the fault-tolerant mechanism and the NoC Driver that

adapt and route control and data packets.

PE’s Operating System

Kernel

NoC DriverControl Module (CM)

NoC Interface

OS Modules
Scenarios
Processing

Module (SPM)

OsPhoenix

Scenarios and
Routing Table

Memory

(SRT Memory)

Global Fault
Table (GFT)

* Dashed line encloses OsPhoenix containing the
main elements; Black arrows show how
elements are interrelated

Figure 2 – Block diagram of PE’s OS architecture.

The Global Fault Table (GFT) stores the status of all NoC links. It

is a global copy of all routers’ Fault Table (Section 3.2). The CM

writes/reads this table to synchronize information among all PEs.

The Scenarios Processing Module (SPM) calculates routing tables

according to the fault or fault tendency on links when commanded

by the CM. It uses the information provided by the GFT together

with new faults information to search for a previously computed

scenario that covers this new fault situation, in the Scenarios and

Routing Table Memory (SRT Memory). If a candidate scenario is

found, the associated Routing Table in updated at the hardware

layer. Otherwise, this module processes a new fault-tolerant

scenario and its associated RBR Table. According to our system

retransmission features, when a fault detection occurs, OsPhoenix

decides if reconfiguration is necessary.

3.2 HwPhoenix Fundamentals
Phoenix NoC is a direct 2D mesh topology consisting of m×n

routers using bidirectional links for routers and PEs interconnection.

The NoC employs routing tables for distributed routing decisions

and the OsPhoenix performs routing algorithms to fill the routing

table according to the relative position of each PE. Further, Phoenix

NoC implements wormhole switching, demanding only small

buffers for data storing. Additionally, a credit-based flow control

reduces transmission clock latency.

Figure 3 shows the Phoenix router architecture, which includes

mechanisms for packet routing and fault tolerance. The packet

routing mechanism encompasses: (i) Four bidirectional ports; (ii) a

Crossbar Switch that establishes unblocking connections between

input and output ports; (iii) a Routing Table that associates regions

of the NoC with output ports; and (iv) a Switch Control that

performs the packets routing and arbitration.

INPUT BUFFERS

FPM
...

H
E

NA EC ED

H
D

FPM
...

H
E

NA EC ED

H
D

FPM
...

H
E

NA EC ED

H
D

FPM
...

H
E

NA EC ED

H
D

...
LOCAL

control
signals

SWITCH CONTROL

CROSSBAR SWITCH

ROUTING TABLEFAULT TABLE

...

packet header

HwPhoenix

packet header

faulty link
 fault tendency

FAULT
MONITOR

EAST

WEST

NORTH

SOUTH

control
signals

FAULT
CONTROL
MACHINE

(FCM)

Figure 3 – Basic components of Phoenix router architecture.

Dashed lines bound the main components of HwPhoenix.

The NoC routing algorithm is similar to RBR [5], which groups

target addresses into regions to reduce the Routing Table size. The

fault-tolerant circuit implemented in each router includes three

types of circuits: (i) fault detection and correction module

containing a Hamming Encoder (HE), a Hamming Decoder (HD)

and a Fault Prediction Module (FPM - [24]), which are placed in

each one of the links that interconnect routers; (ii) Fault Monitor

that communicates with the FPM to set the status of the links on the

Fault Table according to a two-level fault model; and (iii) Fault

Control Machine, which controls the Fault Monitor and the FPM.

The adopted fault model classifies links in four situations: (i) not

verified, (ii) faulty, (iii) operating correctly, or (iv) operating with

fault tendency. This classification takes into account each link’s

monitoring history. There are static and dynamic mechanisms for

testing the links quality. The static link test starts with OsPhoenix

sending a control packet to the HwPhoenix. The Fault Control

Machine (FCM) interprets this command broadcasting a predefined

test packet to all output ports, except the local one. When a neighbor

router receives the test packet, it loops back a packet with the same

information. Then, the Fault Monitor detects whether the link is

faulty or not, sets this information on the Fault Table and informs

this procedure to the FCM, which sends a control packet containing

the Fault Table to the OsPhoenix [8].

Each bidirectional link contains an HE and an HD to perform the

dynamic link test, which is a strategy that identifies fault tendencies

using circuits based on a threshold (similar strategy is used in [19]).

The HD receives the data plus the redundancy bits encoded by the

HE of the adjacent router. The HD module can correct one bit flip

and detect at most two faults in a data flit. Thus, the module informs

the communication status by the signals NE, EC, and ED.

Figure 4 illustrates the flit retransmission circuit placed in each data

link between routers. This circuit uses HD information to verify if

each flit was received without error, with an error that was corrected

by the HD circuit, or if a double error was detected but not corrected.

In the case of double error, the circuit of the target router requests a

flit retransmission to the source router using the retx signal,

implying a single clock of latency penalty (only if the credit signal

is enabled, the source router may send flits to the target router).

link Target routerSource router

Output port Input port

 Tx

 Data
16

 retx
 credit

HE
Buffer

HD

ControlControl

LOCAL

EAST

WEST

NORTH

SOUTH

16

B
u

ff
er

No error
or

corrected
errorcorrected

Error not

Figure 4 – Retransmission circuit.

Based on monitoring the density of errors, the FPM deduces a link

fault tendency, which is propagated to the OsPhoenix that makes

inferences to permanent errors or tendency of errors. According to

these inferences, OsPhoenix may set on the Fault Table the

bidirectional link as faulty (e.g. a permanent error) and/or may start

the preprocessing of a new routing scenario. When a link is marked

as faulty, the HE, HD and FPM modules are turned off and remain

with this status until the OsPhoenix requires a new link evaluation.

4. SCENARIOS PROCESSING AND

RETRANSMISSION FLOW
As soon as OsPhoenix is loaded, it commands the preliminary test

of links. In the case of detecting faults, OsPhoenix decides whether

to maintain a faulty link in operation, relying on the retransmission

mechanism, or to perform several steps on all PEs and routers to

establish routing configuration.

The FPM notifies the Fault Monitor whenever a faulty link or a fault

tendency is detected. If this fault is annotated in the Fault Table, the

information is not propagated. Otherwise, the Fault Monitor stores

the fault information in the Fault Table and informs this event to the

FCM that transmits this information to the CM of the local

OsPhoenix. Then, the CM commands the SPM to proceed with next

fault tolerance steps (e.g. to process a new fault coverage scenario).

Moreover, each OsPhoenix contains a timing mechanism to define

a maximum time for network stabilization, which is reached when

all OsPhoenix instances receive the same fault information. This

mechanism is used when a sequence of faulty links split the NoC

precluding the transmission of control packets to all routers [8].

When a message of fault tendency is received, the SPM verifies the

existence of some previously computed scenario that covers this

fault. If it exists, no further action is necessary. Otherwise, aiming

to enable fast routing reconfiguration, this module computes and

stores in the SRT Memory, together with the associated routing

tables, a new set of scenarios that cover this fault. However, the

amount of fault scenarios raises exponentially with the quantity of

faulty links. Aiming to deal with this complexity, OsPhoenix

preprocesses a limited set of scenarios based on a dissimilarity

method using cross-correlation of fault matrices to meet the

application requirements [20]. The preprocessing approach may be

employed to fulfill several application requirements (e.g. to reduce

power dissipation and to achieve homogeneous thermal

distribution). Nevertheless, OsPhoenix uses latency minimization

as an application requirement and employs Average Routing

Distance (ARD) as a metric for fast latency estimation.

When a faulty link notification is received, OsPhoenix decides

whether to maintain the NoC operation or trigger a routing

reconfiguration process. If the reconfiguration process is chosen,

and if the fault scenario is already preprocessed, the OsPhoenix may

perform a fast routing reconfiguration, merely updating the Routing

Table. Otherwise, the routing reconfiguration takes much longer,

requiring the computation of a new coverage scenario, which delays

the application execution.

Phoenix takes into account the premise that “all PEs have the same

algorithm to generate scenarios and routing paths”. This premise

allows that each OsPhoenix has its GFT and SRT Memory, and all

instances of OsPhoenix operate independently in a distributed way,

eliminating the need for broadcast routing configurations.

5. BASICS OF RETRANSMISSION
Since the HD module may repair only single faults, but double faults

requires flit retransmission, we consider the Double Fault Error

Rate (DFER) as a metric that increases the transmission delay.

DFER is a real number in the interval [0, 1]. The amount of link

faults grows with the value of DFER; i.e.; if DFER = 0, the link is

free of double faults, while if DFER = 1, means that all

communications on the link are faulty. The smart decision process

considers the tradeoff of dealing with retransmissions (maintaining

a faulty link, i.e., DFER > 0) and issuing a global NoC routing

reconfiguration.

There are four phases encompassing a reconfiguration event: (i) TFD

(fault detection delay) – detection of a faulty link through the FPM

operation; (ii) TFP (fault propagation delay) - fault propagation to all

OsPhoenix of other PEs; (iii) TRP (routing processing delay) -

routing tables processing by all the OsPhoenix; and (iv) TRTL

(routing table loading delay) - loading the new routing tables into

each local router. Equation 1 illustrates the summation of this

reconfiguration delay (TR):

TR = TFD + TFP + TRP + TTL (1)

Equation 2 illustrates the retransmission delay AR as the reason for

the sum of the amount of communication flows Ncomm of a target

application, considering the number of flits NFi of each i-th flow; its

corresponding quantity of clock cycles employed in flit

retransmission NCT; and the sum of the DFERs of all links in the

path of a j-th communication flow (∑ 𝐷𝐹𝐸𝑅𝑗
𝐿𝑓𝑙𝑜𝑤

𝑗=1
). This

retransmission overhead is the percentage of added average latency

for a given end-to-end communication.

𝐴𝑅 =
∑ [𝑁𝐹𝑖 × 𝑁𝐶𝑇 × ∑ (𝐷𝐹𝐸𝑅𝑗)

𝐿𝑓𝑙𝑜𝑤

𝑗=1
]

𝑁𝑐𝑜𝑚𝑚
𝑖=1

𝑁𝑐𝑜𝑚𝑚
 (2)

In the event of a new fault, the OsPhoenix must perform the smart

reconfiguration process, to reconfigure the system or maintain the

failed channel in use, using the retransmission circuit. Considering

these conditions, OsPhoenix issues a reconfiguration event when TR

< AR, meaning that the average time taken for reconfiguration

should be lower than correcting double faults at a set of links,

considering communication flows.

6. METHOD AND EXPERIMENTS
The fabrication process variability of VLSI circuits increases every

scale down of new deep submicron technologies, due to phenomena

such as imprecise impurity deposition and non-uniformity in

lithography exposure field. This variability may deviate the circuit

from its nominal specification, or even prevent its partial or total

operation [21]. In other words, it is a source of static and dynamic

faults. Therefore, and without lack of generality, we choose the

variability model proposed by Hargreaves et al. [22] for generating

the fault scenarios presented here. This model takes into

consideration the effect of variability on switch-to-switch link delay

employing two variations parameters: the link delay variability σ

and the spatial correlation variability λ.

The link delay variability were set to 5% (σ = 0.05) and 18%

(σ = 0.18) to explore scenarios with 65 nm and 22 nm manufacturing

processes, respectively, as predicted by the ITRS roadmap [23].

Additionally, the experiments were produced with λ = 0.4 and

λ = 1.2, representing the high and low strength of the spatial

correlation variability, respectively. These values represent the

typical correlation induced by fabrication processes [22]. The

experiments encompass four NoC sizes (5×5, 6×6, 7×7 and 8×8).

Figure 5 shows examples of a 5×5 NoC combining link delay and

spatial correlation parameters (each link is marked with its DFER).

0.020.120.050.130.03

0.12

0.02 0.01 0.030.10

0 0.03 0.010.06

0.11 0.03 0.02 0.04

0.02

0.11 0.22 0.04 0.08

0.07

0.06 0.03 0.12 0.03

0.10 0.05 0.020.08

0.08 0.14 0 0.12

0.06 0.12 0 0.07

T1_A16 (σ=0.05, λ=1.2)

0.110.110.050.130.08

0.04

0.12 0.14 0.020.26

0.03 0.05 0.060.02

0.01 0.09 0.07 0

1

0.03 0.29 0.28 0.02

0.08

0.07 0.01 0.16 0.05

0.02 0.09 0.150.08

0.04 0.05 0.00 0.10

0.03 0.02 0.06 0.03

T2_A08 (σ=0.18, λ=1.2)

0.070.070.000.300.03

0.05

0.06 0.16 0.110.03

1 0.28 10.24

1 0.02 0.01 0.02

0.11

0.17 0.02 0.04 0.11

0.02

0.07 1 0.11 0.09

0.01 0.08 0.070.09

0.08 0.13 0.04 0.18

0.14 0.02 0.05 0.05

T3_A13 (σ=0.05, λ=0.4)

0.160.1010.160.11

0.11

0.19 1 0.000.09

0.18 0.25 0.020.18

0.01 0.13 1 0.16

0.14

0.03 0.13 1 0.01

0.08

0.07 0.10 0.10 0.03

0.09 0.23 0.040.10

0.02 0.06 0.33 1

0.01 0 0.01 0.03

T4_A11 (σ=0.18, λ=0.4)
Figure 5 – 5×5 Mesh NoC example of DFER rates on links.

To explore the randomness of the variability model, we generated

25 times each one of these scenarios, resulting in 400 irregular NoC

topologies. Figure 6 shows how simulation scenarios are composed

and applied to achieve the experimental results. For each scenario,

an in-house tool performs the following steps: (i) segmentation of

the NoC using the segment routing algorithm [5] to generate a

restriction file. This file contains all the forbidden directions that

avoid deadlock situations; and (ii) computation of minimal paths

using the restriction file information, which allows generating the

set of virtual regions for the RBR approach.

Design time

400

Simulation results

NoC
segmentation

Paths and regions
computation

RTL simulation

Set of regions

Restriction files

Injection rate
(5%, 10%, 15%, 20%,30%,40%,50%,60%)

Link delay
(s=0.05 and s=0.18)

2

4
X

NoC sizes
(5×5, 6×6, 7×7, 8×8)

Random scenarios

X

4

400

2

25

Spatial correlation
(l=0.4 and l=1.2)

X

100

NoC topologies

Traffic type
All-to-all

Figure 6 – Setup of experimental results.

We performed the experiments over NoCs described in VHDL RTL

using eight injection rates (5%, 10%, 15%, 20%, 30%, 40%, 50%

and 60%) of a synthetic traffic composed of 100 packet with 50 flits

long. Additionally, all experiments are synthetic with all-to-all

uniform traffic distribution.

7. EXPERIMENTAL RESULTS
The first set of experiments evaluates AR that depends on the NoC

size and on the DFER of each channel - that varies based on the fault

distribution, as described in Section 6. Figure 7 presents the results

for four sizes of NoCs (5×5, 6×6, 7×7 and 8×8) and average results

acquired from 50 samples with each fault distribution configuration

([σ=0.05, λ=1.2], [σ=0.18, λ=1.2], [σ=0.05, λ=0.4] and [σ=0.18,

λ=0.4]), for 10% of traffic injection rate.

Figure 7 – Average retransmission delay (AR) for 10% of

traffic injection rate and 4 NoC sizes.

The experiments show that the AR does not depend on the traffic

injection rate, since the retransmission delay is computed according

to a static quantity of packets. Besides, it is observed that the NoC

size together with the fault distribution model affect AR a lot. As the

fault distributions become more aggressive, the DFER increases,

causing the increase of AR - i.e., more network latency. Each router

determines the DFER values of its entire links at runtime by

checking the fault tables generated by the FPM, as described in [24],

since the single and double fault events are registered in each Fault

Table. This dynamic information is propagated to OsPhoenix that

verifies if it is necessary to reconfigure the NoC.

The second set of experiments calculates the same simulation

results in design time by evaluating all the communication paths,

while considering the fault rates generated by the fault distribution

model; but now considering eight injection rates. Figure 8 illustrates

the comparison between the estimated and measured results.

Figure 8 – Comparison of average latency measured and

estimated with eight injection rates and four NoC sizes.

We notice that latency increases with more aggressive fault

distribution configurations, where REF is a non-double faults

scenario. This latency increase is explainable since more double-

faults increases retransmission delay increasing the over latency.

We measure the average error near 10%, which is due to the

adaptability of the RBR routing mechanism. As there may exist

more than one routing possibility, different choices yield disparate

results. More aggressive fault distributions also result in greater

variation, since the samples have faults packet more closely

resulting in more complex segmentation configurations, creating

more alternative routing options. Even though our decisions are

47.6

63.0
65.8

81.5

51.2

59.3

66.7

78.1

50.7

60.9

55.4

76.5

53.1

68.5

60.0

76.7

45

50

55

60

65

70

75

80

85

5×5 6×6 7×7 8×8

C
lo

ck
 c

yc
le

Noc Size

[σ=0.05, λ=1.2] [σ=0.18, λ=1.2]

[σ=0.05, λ=0.4] [σ=0.18, λ=0.4]

0

2000

4000

6000

8000

10000

12000

14000

5% 10% 15% 20% 30% 40% 50% 60%

A
ve

ra
ge

 L
at

e
n

cy
 (

cl
o

ck
 c

yc
le

s)

Injection rate

NoC 5x5

0

3000

6000

9000

12000

15000

18000

21000

5% 10% 15% 20% 30% 40% 50% 60%
A

ve
ra

ge
 L

at
e

n
cy

(c
lo

ck
 c

yc
le

s)

Injection rate

NoC 6x6

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

5% 10% 15% 20% 30% 40% 50% 60%

A
ve

ra
ge

 L
at

e
n

cy
 (

cl
o

ck
 c

yc
le

s)

Injection rate

NoC 7x7

0

6000

12000

18000

24000

30000

36000

42000

5% 10% 15% 20% 30% 40% 50% 60%

A
ve

ra
ge

 L
at

e
n

cy
 (

cl
o

ck
 c

yc
le

s)

Injection rate

NoC 8x8

coherent, estimating the AR at runtime is not viable since there is no

way for the network to map every path taken for every source-

destination pair. Thus, it is necessary to assume an average value

that represents traffic type and distribution, for the AR estimation.

The third set of experiments explores the over latency metric that

represents the extra latency caused by retransmission delay, due to

the additional cycles from retransmission circuit. Figure 9 shows the

percentage of additional latency, which is defined as the value

increase considering the same network topology without double

errors (i.e., REF), in percentage.

Figure 9 – Additional latency for uniform traffic in 5×5, 6×6,

7×7 and 8×8 NoCs for all 4-fault distributions.

Before and after the saturation point all curves have similar behavior

and values, with less than 70% of additional latency for almost all

injection rates. However, between 5% and 10% of traffic injection

rate starts a saturation process, where the extra latency increases

severely. This fact can be explained due to the chaotic nature that

the traffic present during the network saturation process. Thus, for

analysis and decisions taken during the operation of Phoenix, we

consider the additional latency values before the saturation point.

8. CONCLUSIONS
This work proposes a smart reconfiguration approach for irregular

NoC topologies using Phoenix’s architecture. The software of

Phoenix is a small part of the operating system kernel called

OsPhoenix that take decisions as soon as a fault prediction monitor,

placed on each link of each router, detects a fault tendency. The

hardware of Phoenix is a fault-tolerant mesh NoC, which employs

region-based routing mechanism. The NoC possesses a fault

prediction module with Hamming encoding, enabling simple error

correction and the detection and retransmission of double errors.

Using this mechanism, the OsPhoenix may decide to maintain some

links operating with error correction or reconfigure the NoC’s

routing tables to avoid these links.

Retransmitting data in faulty links inserts additional latency,

reducing network performance. However, careful evaluation is

necessary for issuing a global NoC reconfiguration to avoid faulty

links, because it also affects the application performance, once the

average distance of routing tends to increase with the reduction of

operating links.

It is our understanding that retransmission’s impact is too severe.

The retransmission of data generates around of 70% of additional

latency (considering the fault model used), whereas the latency due

to the replacement of preprocessed scenarios is between 4% and

20%. Thus, in situations where fault distributions are too aggressive,

the best approach is to stop the network operation to issue a

reconfiguration. We also intend to evaluate scenarios with lower

fault rates for determining, at runtime, whether a retransmission or

reconfiguration is the most appropriate approach.

9. REFERENCES
[1] International Technology Roadmap for Semiconductors (ITRS). ITRS 2013

Edition. Available in: www.itrs.net/reports.html.

[2] R. Marculescu et al. Outstanding Research Problems in NoC Design:

System, Microarchitecture, and Circuit Perspectives. TCAD, v.28, n.1,

pp.3-21, Jan. 2009.

[3] S. Rodrigo et al. Cost Efficient On-Chip Routing Implementations for CMP

and MPSoC Systems. TCAD, v.30, n.4, pp.534-547, Apr. 2011.

[4] E. Ioannidis et al. Evolution of Low Frequency Noise and Noise Variability

through CMOS Bulk Technology Nodes from 0.5 μm down to 20 nm.

Solid-State Electronics, v.95, pp.28-31, May 2014.

[5] A. Mejia et al. Region-Based Routing: A Mechanism to Support Efficient

Routing Algorithms in NoCs. IEEE Transactions on VLSI Systems, v.17,

n.3, pp.356-369, Mar. 2009.

[6] K. Aisopos et al. ARIADNE: Agnostic Reconfiguration in a Disconnected

Network Environment. PACT, pp.298-309, Oct. 2011.

[7] A. DeOrio et al. A Reliable Routing Architecture and Algorithm for NoCs.

TCAD, v.31, n.5, May 2012.

[8] C. Marcon et al. Phoenix NoC: A distributed fault tolerant architecture.

ICCD, pp.7-12, 2013.

[9] C. Feng et al. Addressing Transient and Permanent Faults in NoC with

Efficient Fault-Tolerant Deflection Router. IEEE Transactions on VLSI

Systems, v.21, n.6, pp.1053-1066, Jun. 2013.

[10] Z. Ying et al. Fault-tolerant schemes for NoC with a network monitor.

ISCIT, pp.1083-1086, 2010.

[11] Q. Yu, P. Ampadu, A Dual-Layer Method for Transient and Permanent

Error Co-Management in NoC Links. IEEE Transactions on Circuits and

Systems II: Express Briefs, v.58, n.1, pp.36-40, Jan. 2011

[12] M. Radetzki et al. Methods for fault tolerance in networks-on-chip. ACM

Computing Surveys. v.46, n.1, pp.8:1-8:38, 2013.

[13] M. Palesi, S. Kumar, R. Holsmark. A Method for Router Table

Compression for Application Specific Routing in Mesh Topology NoC

Architectures. SAMOS, pp.373-384, 2006.

[14] E. Bolotin et al. Routing Table Minimization for Irregular Mesh NoCs.

Design, DATE, pp, 16-20, 2007.

[15] Y. Fukushima, M. Fukushi, I. Yairi, A Region-Based Fault-Tolerant

Routing Algorithm for 2D Irregular Mesh Network-on-Chip, Journal of

Electronic Testing, v.29, n.3, pp.415-429, May 2013.

[16] R. Holsmark, M. Palesi, S. Kumar. Deadlock-Free Routing Algorithms for

Irregular Mesh Topology NoC Systems with Rectangular Regions. JSA,

v.54, n.3-4, pp.427-440, Mar.-Apr. 2008.

[17] D. Fick et al. Vicis: A Reliable Network for Unreliable Silicon. DAC,

pp.812-817, 2009.

[18] F. Triviño et al. Network-on-Chip Virtualization in Chip-Multiprocessor

Systems. JSA, v.58, n.3-4, pp.126-139, Mar. 2012.

[19] L. Dai et al. Monitoring Circuit Based on Threshold for Fault-tolerant NoC.

Electronics Letters, v.46, n.14, pp.984-985, 2010.

[20] J. Silveira et al. Preprocessing of Scenarios for Fast and Efficient Routing

Reconfiguration in Fault-Tolerant NoCs. PDP, pp.404-411, 2015.

[21] M. Shintani et al. A Variability-Aware Adaptive Test Flow for Test Quality

Improvement. TCAD, v.33, n.7, pp.1056-1066, Jul. 2014.

[22] B. Hargreaves, H. Hult, S. Reda. Within-die Process Variations: How

accurately can they be statistically modeled? ASP-DAC, pp.524-530, 2008.

[23] International Technology Roadmap for Semiconductors (ITRS). ITRS 2007

Edition. Available in: www.itrs.net/reports.html.

[24] J. Silveira et al. A fault prediction module for a fault tolerant NoC operation.

ISQED, pp.284-288, 2015.

0%

40%

80%

120%

160%

200%

240%

280%

320%

5% 10% 15% 20% 30% 40% 50% 60%

O
ve

r
la

te
n

cy

Injection rate

NoC 5x5

0%

40%

80%

120%

160%

200%

240%

280%

320%

5% 10% 15% 20% 30% 40% 50% 60%

O
ve

r
la

te
n

cy

Injection rate

NoC 6x6

0%

50%

100%

150%

200%

250%

300%

350%

5% 10% 15% 20% 30% 40% 50% 60%

O
ve

r
la

te
n

cy

Injection rate

NoC 7x7

0%

30%

60%

90%

120%

150%

180%

210%

240%

270%

5% 10% 15% 20% 30% 40% 50% 60%

O
ve

r
la

te
n

cy

Injection rate

NoC 8x8

