
A Flexible Framework for Modeling and
Simulation of Multipurpose Wireless Networks

Vinicius Bohrer, Ramon Fernandes, César Marcon, Thais Webber,
Ricardo M. Czekster, Letícia B. Poehls, Fabiano Hessel

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga 6681, Porto Alegre, Brazil

cesar.marcon@pucrs.br

Abstract— The emergence of wireless networks has
contributed to a growing number of studies and protocols
regarding its performance and reliability requirements, among
others. Several issues have to be considered when deploying such
devices under harsh environmental conditions. These issues often
force the designer to adopt decisions that are usually difficult to
verify in real world settings. In order to mitigate such problems,
an alternative resides in the use of simulation models for both
homogeneous and heterogeneous devices. This paper describes
an event-based Wireless Network Simulator (WiNeS) for devices
operating in several topologies and configurations of networks.
WiNeS is a Java-based framework specially built to support
customized network options that offers hybrid simulation for
virtual and physical nodes in the same environment. Some of
WiNeS' features include the computation of maximum
communication distances among devices in 2D and 3D spatial
node distributions as well as pairing rules to evaluate the nodes
connectivity.

Keywords - Hybrid simulation, Event-based simulation,
Network topologies, Wireless communication.

I. INTRODUCTION
Nowadays, many proposals of wireless networks for

joining some technologies such as Bluetooth [1], Wi-Fi [2],
and Zigbee [3] on the same network have been presented.
These networks use different frequencies and communication
protocols, forming multiprotocol systems for a range of
applications. However, several problems arise: (i) how to
choose the best node disposition in the environment in order to
ensure the correct pairing between devices, and (ii) how to
identify the most efficient device type to perform a given
communication. Such issues demand alternatives to evaluate
test scenarios before the systems are deployed.

Several non-commercial open source network simulators
of general purpose, like NS-2 [4], NS-3 [5], OMNet++ [6],
GloMoSim [7], JiST/SWANS [8], are currently available to
perform modeling and simulation analysis. The simulators
present differences in terms of architectures, features and
applicability. Many of them are platform dependent and have
issues related to scalability and end user facilities [9], [10],
[11]. The main concern addressed in the present work is the
need of simulation environments able to bear heterogeneous
devices and several inner and external simulation events
(originated from virtual and physical nodes respectively, in a
controllable environment).

The Wireless Network Simulator (WiNeS) presented in
this paper is a platform independent framework written in

Java. It supports the following Models of Computation (MoCs)
[12]: Discrete Events (DE), Synchronous Reactive Events
(SRE) and Asynchronous Reactive Events (ARE). DE enables
the simulation of a series of timed events, whereas SRE are
capable of describing synchronous-reactive network elements.
In fact, the combination of both simulation models can cope
with a wide variety of situations. However, these models are
inadequate when dealing with unpredictable behaviors and
therefore WiNeS incorporates ARE as an alternative
simulation model, allowing the simulation of non-deterministic
events. Such model is advantageous for the integration of
virtual nodes with physical nodes that are very susceptible to
unpredictable behavior, from a simulation point of view.

WiNeS’ goal is to provide a flexible simulation
environment to accommodate any wireless network topology,
communication protocols and device types, while remaining
simple enough for the end user to implement such features,
without a deep understanding of the underlying simulator
architecture and its operations. Additionally, the simulation
engine is constructed to be as lean as possible, allowing nodes
scalability as well as providing facilities to heterogeneous
devices modeling with multiple communication capabilities.

The paper is organized as follows. Section II presents the
WiNeS framework and Section III describes the framework
capabilities and features in detail, instantiating simulation
scenarios. Section IV presents related simulators
characteristics in comparison with WiNeS framework. Finally,
Section V concludes our contribution with discussions about
WiNeS future improvements.

II. WINES FRAMEWORK
WiNeS framework presents the following characteristics:

(i) verification of nodes connectivity; (ii) simulation of
different network topologies; (iii) simulation of homogeneous
and heterogeneous architectures; and (iv) simulation of user-
implemented protocols in a hybrid environment with virtual
and physical nodes. The framework intends to be generic to
support a wide range of topologies, architectures, and
communication types, depending exclusively on the designer’s
implementations, while guaranteeing the enforcement of node
communication rules, i.e. based on protocols, frequencies and
geographic locations. Note that WiNeS is not readily aware of
details pertaining protocols or device types. Thus, any
additional information required for network operations should
be developed and informed by the designer. Figure 1 depicts
that WiNeS consists of a flexible simulation environment for

978-1-4799-2409-7/13$31.00 c©2013 IEEE 94

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

wireless networks. The Communication infrastructure
implements TCP/IP sockets as the message exchanging
mechanism, which allows the transmission of any type of data
between simulated devices. Each data sent from one node to
another passes through the Environment emulation, which
checks whether both devices are communicating properly.

Figure 1. Software layers of WiNeS framework.

Although sockets lead to a larger overhead during the
simulation, especially when compared to straightforward and
less resource demanding models (i.e. shared memory), their
adoption as a message exchanging mechanism between nodes
allows the use of hybrid simulation scenarios. Unlike shared
memory models, the sockets can be seamlessly used to connect
the simulation core to external nodes, such as other simulation
instances running distributed on offsite locations, or the direct
interaction between virtual and real world nodes in a flexible
simulation environment. Indeed, WiNeS presents an Abstract
node layer for node’s behavior description, which enables the
addition of several network functionalities and protocols.
Thus, to define the application, the framework provides: (i) a
standard node behavior (Default nodes) based on predefined
parameters, defining a discrete event model used for traffic
generation and (ii) a customizable node layer (User defined
nodes) that also can be used with default nodes as basis. The
next Section describes the framework’s architecture.

A. WiNeS’ Architecture
Figure 2 shows WiNeS’ architecture composed of 3 parts:

(i) Definitions Block; (ii) Application Layer; and (iii) Core.

Definitions
blockCore

Application layer
. . .Node 2

WiNeS
Node 1

Node n

Figure 2. Main components of the WiNeS framework.

(i) Definitions Block
The Definitions Block is composed of a series of

simulation rules containing characteristics of wireless
technologies, such as total simulation time and parity rules for
defining nodes communication and time/distance scales.

Definitions can be provided to WiNeS either by an XML
or by a Java description file using the simulator’s Java API.
Observing Figure 3, it is possible to see that the XML file
contains the following tags: (i) CONNECTIVITY_RULES:
represent the set of rules specified by the designer for each
pairing between two device types. Each rule describes the
maximum distance between nodes to communicate on their
frequencies. It is worth mentioning that these rules are optional
in the simulation process, being dependent on the designer’s

choices to consider these values as useful information to take
actions, perform numerical evaluations, or just use them as
reference label. (ii) TIME_SCALE: indicates how often the
simulator should increase a unit of simulation time, e.g. every
30 seconds the total simulation time should be incremented by
one time unit. (iii) SIMULATION_TIME: indicates the time
unit for the simulation run, e.g. the simulation time is set to
20x30=600 seconds. (iv) DISTANCE_SCALE: indicates the
actual distance that each simulation unit represents.

<CONNECTIVITY_RULES>
 <RULE freq="2.4GHz" Dev1="antenna" Dev2="antenna" dist="100"/>
 <RULE freq="2.4GHz" Dev1="antenna" Dev2="WSN" dist="20"/>
</CONNECTIVITY_RULES>
<TIME_SCALE>
 <UNITY unity="seconds"/>
 <VALUE value="30"/>
</TIME_SCALE>
<SIMULATION_TIME>20</SIMULATION_TIME>
<DISTANCE_SCALE>
 <UNITY unity="km"/>
 <VALUE value="3"/>
</DISTANCE_SCALE>
Figure 3. Example of a XML input file for the Definitions Block.

(ii) Application Layer
The Application Layer is composed of nodes

communicating with the Core via sockets. Nodes can be
created from information provided in an XML file or in API
methods. Figure 4 illustrates an XML file for mapping a
heterogeneous node, containing temperature and humidity
sensors integrated with an active RFID tag.

<NODE>
 <NODE_INFO>
 <POSITION X="3.0" Y="5.5" Z="8.0"/>
 <TYPE nodeType="0"/>
 </NODE_INFO>
 <COMPONENT_SPECIFICATION>
 <TYPE typeDevice="sensor"/>
 <OPERATION protocol="ZigBee" freq="2.4GHz" power="1.3"/>
 </COMPONENT_SPECIFICATION>
 <COMPONENT_SPECIFICATION>
 <TYPE typeDevice="activeTag"/>
 <OPERATION protocol="EPC Gen2" freq="5GHz" power="1"/>
 </COMPONENT_SPECIFICATION>
 <BEHAVIOR_SPECIFICATION>
 <TEMPERATURE time="0" value="12.8"/>
 <TEMPERATURE time="125" value="10.92"/>
 <HUMIDITY time="0" value="23.8"/>
 <HUMIDITY time="25" value="24.9"/>
 </BEHAVIOR_SPECIFICATION>
</NODE>

Figure 4. Example of an active RFID tag description.

The example depicts a non-passive node located in a 3D
position (X=3,Y=5,Z=8). It has two antennas for
transmission/reception. Its sensor part uses Zigbee protocol at
a frequency of 2.4GHz for communication, whereas its RFID
part uses EPC Gen2 protocol at 5GHz.

The node’s information is mapped within two tables: (i)
Specification Table: recognized by the tags <NODE_INFO> and
<COMPONENT_SPECIFICATION>. This table contains the data
referring to the node’s general characteristics (e.g. protocol,
frequency and position), representing its communication
capabilities. Remark that the node specification, thus
describing a heterogeneous device, may have more than one
specification tag. (ii) Behavior Table: recognized by the tag
<BEHAVIOR_SPECIFICATION>. This table contains data related to
the node behavior considering the simulation time units, i.e.
the node may express all instants in which a given parameter
changes, with a discrete event list. The nodeType information

95

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

obtained from the tag <NODE_INFO> indicates if the node is
passive ('1') or non-passive ('0'). If a node is passive, it has no
autonomy to initiate communication, and responds to stimuli
originated from other nodes only. When creating a node, the
designer can specify a customized Application Layer, thus
eliminating the need of the predefined Behavior Table.
However, it is still possible to rely on the events defined in this
table if needed.

Figure 5 illustrates the node’s architecture, where dashed
arrows indicate a read access, dotted arrows illustrate
messages exchange between node and Core, and continuous
lines with arrows indicate the simulation flow.

Figure 5. Node architecture.

The node’s operation depends on the designer’s
implementation. If a customized Application Layer is defined
for a node, it behaves accordingly; otherwise the node relies on
the following default behavioral patterns: (i) current-time
behavior, i.e. the node checks its Behavior Table to verify if it
has some data to be sent to the simulation environment, based
on the current simulation time; (ii) when the simulation Core
forwards data from a node to other node, i.e. each time a node
may communicate with others by sending requests to a specific
IP address and port number.

The Application Layer implemented by the designer may
be coupled to the default processing system within the node.
The framework provides an API with node functions enabling
this layer to receive and to send packets to other nodes.
Therefore, the node may assume the processing implemented
by the designer, i.e. simulating protocols, network topologies,
packet loss, or any other desired functionality, and/or rely on
predefined behaviors described on the node’s Behavior Table.
The Node-Core communication is performed by two threads:
(i) Client Socket Thread and (ii) Server Socket Thread;
connecting the elements through a socket.

The Global Clock maintains temporal coherence in
communicating events. This clock starts at zero and is
sequentially incremented by a time unit, defined on
Definitions Block. The clock can be observed by all elements
included in the framework during the simulations. A node
without a customized Application Layer uses only the
Behavior Table and consequently, employs the Global Clock
to determine the set of events that should occur during the
simulation’s execution.

Furthermore, there are two types of simulation: (i) virtual,
composed of virtual nodes only and (ii) hybrid, composed of
virtual and physical nodes. For virtual simulation, the Global
Clock is internally defined while hybrid simulation is
performed based on the physical node’s clock. The WiNeS
API contains functions for defining the internal clock based on
the external one. Internally, the simulation clock is updated

asynchronously and periodically to avoid clock skewing.

(iii) Core
The Core performs all computational logic necessary for

the communications between nodes. Figure 6 depicts the Core
architecture composed of (i) a thread for receiving data from
the nodes (Server Socket Thread); (ii) a set of threads
(Processing Threads) that process all received packets and
determine to which nodes the data should be forwarded when
generating event logs; (iii) a thread for sending data to the
nodes (Client Socket Thread); and (iv) a Connections Table,
composed of simulated node information. Additionally, the
Core, if not previously specified, automatically assigns a port
number to the nodes.

Figure 6. Core architecture.

In more detail, the Server Socket Thread component
waits for messages sent from the application nodes. If the
Core receives a request message from a new node in the
network, it should: (i) verify if that information is valid and
interpretable; (ii) add the node in the Connections Table and
(iii) reply with a message of acknowledgment. However, if the
information is not valid, the Core replies with an error
message. In the case, the Core receives any other type, the
message will be inserted into an Event queue to be treated by
the Processing Threads component. Processing Threads get
the first element of Event queue and send it to the
Comparing engine, where the forwarding decision is made.

The Connections Table comprises a list of nodes
containing: (i) NodeID: unique identifier generated by the
Core; (ii) IpAddress: TCP/IP network address; (iii) PortNum:
TCP port on the network; (iv) Parameters: list of node’s
characteristics according to <COMPONENT_SPECIFICATION>; (v)
Timeslot: variable storing the clock time received from the last
packet of the corresponding node, which is used to control the
time difference between consecutive packets; and (vi)
Coordinates (X, Y, Z) with the node’s geographic positions.

When a node sends a packet to the Core, it automatically
requests its inclusion. The Core then creates a new entry to the
Connections Table and stores the new node’s IP address and
port number, along with other relevant data provided by the
node. After being registered in the Connection Table, the
node becomes visible to other nodes, and capable of
exchanging data on the simulation environment.

B. Message Protocol
The WiNeS package format consists of five fields. The

packet type field specifies the message’s nature: (i)
ENTRY_REQUEST is used when a node requires entering in the
simulation; (ii) ENTRY_ANSWER is used in response to an
ENTRY_REQUEST message; (iii) EXIT_REQUEST is used when a

96

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

node wants to leave the simulation; (iv) SEND_DATA is used for
all elements of WiNeS to send generic data; and (v)
END_SIMULATION is used by the Core to inform the nodes that
the simulation ended, releasing all of them. ENTRY_REQUEST
and EXIT_REQUEST allow dynamically insertion and removal of
nodes on/from the simulation environment.

The device type field indicates the type of node that
originates the packet, i.e. the Core or a node identification.

The nodeId field is the element identifier, marking the
node that is sending the packet. If the Core is sending the
packet, this field is set to '0'; otherwise, it is set to NodeID,
which is the identification number of the node that originated
the packet. The timeslot field contains the packet generation
time, obtained from the Global Clock. The payload is a
generic field used to store any kind of data originated from the
device type related to the packet type.

The payload format is categorized according to the
following operations: (i) ENTRY_REQUEST: the node must send
a TCP port ('0' if none), its Specification table, and its
coordinates; (ii) ENTRY_ANSWER: the Core must confirm the
requested port number from the node, or send the
automatically generated port number and NodeID; (iii)
EXIT_REQUEST: the node must send its NodeID to the Core to
allow its exclusion from the Connections Table; and (iv)
SEND_DATA: indicates a generic payload that depends on the
device type field.

C. Simulation Operation
When the simulation starts, the mapping of all devices’

specifications occurs either from the supplied XML
definitions’ file or using the parsed information originated
from the API. Each device is then instantiated as a node, based
on these definitions, and registered on the Connections Table
in the Core. In this table, a specific port number is assigned for
each registered node for later communications; note that a
heterogeneous node is recognized as a single node by the
simulation engine. These activities, along with other events
that occur during simulation execution, are logged into text
files for later analysis. The Connections Table also stores
additional information about each connected node such as
operating frequencies, protocols and geographical coordinates.
The information is used by the Core to determine possible
communications between simulated nodes.

Figure 7 depicts the basic simulation flow. When a device
intends to join the network, it should send an
ENTRY_REQUEST message with information for its
Specifications Table to the Core. Afterwards the node waits for
an ENTRY_ANSWER response from the Core. Meanwhile,
the Core allocates resources for node communication,
generates a unique NodeID, and updates the Connections
Table. Then, the Core sends the response to the node, with an
ENTRY_ANSWER message, informing the attributed NodeID
and TCP port number, and the node is able to send and receive
messages. At any time, the Core is awaiting data. When any
packet, with the exception of ENTRY_REQUEST, is received
by the Core the packet is placed in the Event queue to be
processed by the Processing Threads (Figure 6).

Figure 7. Message chart diagram for the Core operation.

Parallel to any procedure, the Core always checks if the
Event queue still contains events. If there is anything to be
processed, the Core removes the event from the queue, and
processes it in the Comparing engine. During simulation, a log
of every communication is generated and when the simulation
time ran out, the Core generates a final log entry with general
statistics, e.g. the data exchanged in the simulation.

D. Comparing engine
The Event queue contains all SEND_DATA messages

originated from the nodes. The Comparing engine processes
and analyses each message at a time, defining which node has
the technological capacity (i.e. devices with compatible
frequencies and protocols) and geographic location to receive
each message. The Comparing engine, aware of this message,
processes the following steps: (i) unpack the SEND_DATA
message to recognize the NodeID, the global clock, and
payload; (ii) find the corresponding node (e.g. N1) in the
Connections Table and get its Specification Table data using
its NodeID, (iii) look at all the nodes in the Connections Table.
For each different node in the table (e.g. N2), the engine
compares the specifications with N1 and evaluates if both
nodes are within communication range. For each successful
comparison, the Core generates a packet with the same
payload received from N1, forwarding the message to N2. For
a comparison to succeed, the nodes must: (i) use the same
communication protocols; (ii) operate at the same frequency;
(iii) have a distance between them smaller than or equal to the
maximum distance informed in the Definitions.

Finally, when the simulation ends, the Core sends an
EXIT_REQUEST for all nodes, and WiNeS finalizes all open
sockets and threads, exiting the simulation.

III. MODELING EXAMPLES
Some tests were performed to demonstrate WiNeS

functionalities for virtual and hybrid networks simulation.

A. Heterogeneous nodes
Figure 8 presents a star topology with: seven passive RFID

tags, a wireless sensor node, and a central node. The central
node represents a heterogeneous sensor/RFID reader with the
ability to communicate with RFID tags and sensors. This
example demonstrates that WiNeS describes and simulates
message exchanges between heterogeneous nodes. For this
application, a wireless sensor node (NodeID=100 and 3D
coordinates (0,1,0) requires the values contained in the passive

97

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

tags. A heterogeneous node located at the central position,
which is able to communicate with all nodes, accomplishes the
data acquisition. It is important to note that even if all nodes
are within communication range, the simulation engine ensures
that the wireless sensor is unable to directly read passive tags,
because (i) the sensor node is not intended to be a reader, and
(ii) the node respects the hierarchy defined by star topology.

Figure 8. Heterogeneous nodes in a star topology

Each node has two types of address: (i) physical address,
which is an XYZ Cartesian coordinate to place the node on the
environment; and (ii) logical address, which is the ID used by
WiNeS to communicate all nodes within the system. Thus, the
simulation scenario instantiation is guided by the following
specifications: (i) creation of three types of devices (wireless
sensor, RFID/sensor reader and RFID tag) on the Application
Layer; (ii) the wireless sensor node (NodeID=100) requires the
reading of all values contained in the RFID tags; (iii) the
RFID/sensor reader node operates on two different frequencies
(heterogeneous component specification); and (iv) the seven
passive RFID tags have different high level identifications (ID)
and they cannot start any communication alone; all of them
wait for reader’s requests. Figure 9 shows the Java
specification.
public class Star {
 public static void main(String[] args) {
 // Simulation parameters
 SimulatorSpecification specs = new SimulatorSpecification(15,
 TIMESCALE.SECONDS, DISTANCE.KILOMETER, "");
 specs.addRule("2.4GHz", "sensor", "sensor", 2);
 specs.addRule("433KHz", "reader", "passiveTag", 2);
 WiNeS sim = new WiNeS(6000, specs, LOG);
 // Sensor node
 NodeSpecification sensorSpecification = new NodeSpecification();
 sensorSpecification.setCoordinates(0.0, 1.0, 0.0);
 sensorSpecification.setNodeType(0);
 sensorSpecification.addComponent("sensor", "ZigBee", "2.4GHz", "1");
 sensorSpecification.addBehavior("EVENT", "3", "DATA");
 sensorSpecification.addBehavior("EVENT", "11", "DATA");
 // Sensor node / reader
 NodeSpecification sensorReaderSpecification = new NodeSpecification()
 sensorReaderSpecification.setCoordinates(0.0, 0.0, 0.0);
 sensorReaderSpecification.setNodeType(0);
 sensorReaderSpecification.addComponent("sensor","ZigBee","2.4GHz","1"
 sensorReaderSpecification.addComponent("reader","ZigBee","433Khz","1"
 // Nodes insertion
 sim.addNode(sensorSpecification, new Sensor());
 sim.addNode(sensorReaderSpecification, new SensorReader());
 // Passive nodes
 for(int y = -1; y < 2; y++) {
 for(int x = -1; x < 2; x++) {
 if((y == 0 && x == 0) || (y == 1 && x == 0))
 continue;
 NodeSpecification tag = new NodeSpecification();
 tag.setCoordinates(x, y, 0.0);
 tag.setNodeType(1);
 tag.addComponent("passiveTag", "ZigBee", "433KHz", "1");
 tag.addBehavior("DATA", "0", "5");
 tag.addBehavior("DATA", "5", "8");
 tag.addBehavior("DATA", "10", "9.3");
 sim.addNode(tag, new PassiveTag());
 }
 }
 sim.start();
 }
}

Figure 9. Example of heterogeneous system specification on WiNeS.

Figure 10 illustrates the network traffic related to RFID
tags reading data in a star topology. When an information
request packet is received from the wireless sensor
(REQUEST_DATA message), the central node (NodeID=101)
forwards the message as a new type of package, which is
understandable only for the RFID tags. The reverse process
also occurs; the packets originated from RFID tags are
transformed into messages recognizable by the wireless sensor.
The RFID tags reply to the central node’s message
REQUEST_DATA with a DATA message (which contains their
ID), while the central node forwards DATA to the wireless
sensor node. Remark that the nodes are also definable as either
static or mobile. In both cases the initial coordinates must be
informed in the Application Layer. During the simulation
mobile node coordinates are updated by the Core according to
the predefined mobility function.

Source:100 Target:101 Packet: [REQUEST_DATA 102]
Source:101 Target:102 Packet: [Node:100 REQUEST_DATA]
Source:102 Target:101 Packet: [DATA 100 ID=334.332.789]
Source:101 Target:100 Packet: [DATA ID=334.332.789 Node:102]
Source:100 Target:101 Packet: [REQUEST_DATA 103]
Source:101 Target:103 Packet: [Node:100 REQUEST_DATA]
Source:103 Target:101 Packet: [DATA 100 ID=334.332.790]
Source:101 Target:100 Packet: [DATA ID=334.332.790 Node:103]
…
Source:100 Target:101 Packet: [REQUEST_DATA 108]
Source:101 Target:108 Packet: [Node:100 REQUEST_DATA]
Source:108 Target:101 Packet: [DATA 100 ID=334.332.795]
Source:101 Target:100 Packet: [DATA ID=334.332.795 Node:108]

Figure 10. Example of event log for testing star topology.

B. Heterogeneous topology
Figure 11 illustrates an example of multiple mesh networks

linked by a ring network, i.e. an example of heterogeneous
WSN (Wireless Sensor Network). The ellipses are the RFD
nodes (Reduced Function Device of IEEE.802.15.4 protocol)
composing the lowest network level. The rectangular nodes
represent the mesh nodes coordinators called FFD (Full
Function Device) that link all WSNs, establishing a highest
level in a ring topology.

This example shows the simulator’s capability to enable
the node definition with functionalities in hybrid topologies.
On top of the IEEE.802.15.4 protocol there is, for example, a
hierarchical protocol enabling node communication. Each
network level has a node coordinator that receives packets on
the mesh, and forwards them to the next ring coordinator. The
mesh routing algorithm is XY; thus, the message goes
primarily moving horizontally left and then vertically upward
to reach the coordinator. Each node has a hierarchical
addressing with XY coordinates for internal mesh routing, and
an ID for inter mesh routing throughout the ring topology.

Since all nodes have similar information, it is sufficient to
create user defined nodes classes, such as GridNode, that
extends the Abstract node layer of WiNeS, and thereby
becoming an Application Layer. Above the GridNode class,
the RFD and FFD class are added. Therefore, the classes RFD
and FFD are aware of their hierarchical addresses.

The Default node layer, together with the GridNode, was
used for traffic generation. The classes RFD and FFD
implement routing, while the Default node layer initializes the
packets generation. After the simulation’s execution, the node
communications can be analyzed in a log file. In this method,

98

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

the date and local time of the machine, the sim
and the message itself are stored.

100
0,0

100
1,0

100
0,1

100
2,0

100
1,1

100
2,1

100
1,2

100
0,2

100
2,2

101
0,0

101
1,0

101
0,1

101
2,0

101
1,1

101
2,1

101
1,2

101
0,2

101
2,2

10
0,0

10
0,1

10
0,2

103
0,0

103
0,1

103
0,2

104
0,0

104
1,0

104
0,1

104
2,0

104
1,1

104
2,1

104
1,2

104
0,2

104
2,2

105
0,0

105
1,0

105
0,1

105
2,0

105
1,1

105
2,1

105
1,2

105
0,2

105
2,2

Figure 11. WSN with heterogeneous topo

As an example, Figure 12 presents a
simulation log, which could be used to an
communication with the exchanged message
the message: (<102, 1, 1> 5ºC <100, 2, 2> 10:42) me
the node <100, 2, 2> (i.e. ID=100, X=2,Y=2)
temperature and tries to send this information
1, 1> (i.e. ID=102, X=1,Y=1). The message o
<100, 2, 2> is transmitted through the node
routing, aiming to reach the coordinator node
Then, this message arrives in the ring topolog
FFD nodes 100, 101 and 102. When the mess
<102, 0, 0> it starts an XY routing protocol on
until it reaches the target node.

<100, 2, 2> sent <100, 1, 2> (<102, 1, 1> 5ºC <100, 2,
<100, 1, 2> sent <100, 0, 2> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 2> sent <100, 0, 1> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 1> sent <100, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 0> sent <101, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<101, 0, 0> sent <102, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<102, 0, 0> sent <102, 1, 0> (<102, 1, 1> 5ºC <100, 2,
<102, 1, 0> sent <102, 1, 1> (<102, 1, 1> 5ºC <100, 2,

Figure 12. Example of event log for heterogeneo

C. Hybrid simulation scenario
This section explains the capability of W

simulations integrating physical nodes (Nod
nodes (NodeV). Specific APIs for network com
node definition are able to create the hybr
Figure 13 demonstrates the additional
(Physical) to provide this hybrid vision. T
corresponds to the Application layer from Figu

Figure 13. Hybrid simulation with virtual and ph

In this hybrid model one can include the m
to stimulate the virtual or physical network
events. The WiNeS framework provides an
ARE behaviors. Suppose a wired network, fo
industrial environment, where a wireless g
more coverage to the environment. WiN
emulation of these gateways functioning wit

mulation timeslot,

02
0

102
1,0

02
1

102
2,0

102
1,1

102
2,1

102
1,2

02
2

102
2,2

3
0

103
1,0

3
1

103
2,0

103
1,1

103
2,1

103
1,2

3
2

103
2,2

ology.

a fragment of a
nalyze the nodes
s path. Note that
eans that at 10:42
 detected 5ºC of

n to the node <102,
originated at node
es following XY

(FFD <100, 0, 0>).
gy and passes by
sage reaches FFD
n the target mesh

, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
, 2> 10:42)
ous topology.

WiNeS to perform
deP) with virtual
mmunication and
rid environment.

software layer
The Virtual layer
ure 2.

hysical nodes.

modeling of ARE
with unforeseen
API to represent

for example in an
gateway can add
NeS allows the
thout necessarily

having all physical nodes in the p
means that one is capable of creating
able to connect physical nodes and
simulation environment. The most
read is the Global Clock followed by
remaining specifications and custom

Designers interested in pursuing
flexible framework to introduce th
communicate physical and virtual n
synchronization based on Global C
messages from both types of nodes.

IV. RELATED

Simulators can be classified by a
their support related to network to
scalability, development platform
programming language, explorati
performance optimization [5], [10],

Simple simulators usually in
different network topologies, deplo
traffic between the simulated no
simulators are capable of simulati
thereby provide the development f
simulation environments. WiNeS
simple network simulator with a fe
for example, being a development fr

Currently, there are open source
[6], [7] and [8]. Moreover, there a
emulators and test beds available i
multitude of purposes [11]. Howev
selection of the well-known netwo
highlighting their purposes and avai

Table 1 displays an overview o
network simulators, along with W
scalability is not shown comparativ
that it is an important issue to analyz

V. CONCLU

The technological trend of form
networks creates a need to design
main goal is saving time for the
while allowing the evaluation of per
the design phase. Nevertheless,
developed to be a simulation syst
enabling flexible scenarios design
modeling examples showed possibil
by WiNeS, highlighting that
mechanisms to verify node com
simulation. Moreover, the heteroge
example shows that WiNeS is able
trends such as the combined use of w

However, WiNeS is susceptible
to its flexibility in modeling wir
design approaches. The following d
(i) The operating system is able to a
number of open sockets; (ii) the num
threads is limited; It is importan
network scenario with a thousand n

physical environment. This
g a simulation environment
d synchronize them within
t important component to
y the implementation of the

mized APIs.
g this direction are given a
eir own Java code able to

nodes, providing node clock
Clock and ways to interpret

WORKS
a variety of aspects, such as
opologies and node types,
, model of computation,
on of current trends in
among others.

nvolve the simulation of
oyment scenarios and data
des only, while complex
ng network protocols and
framework for customized
framework aims to be a

ew complex characteristics,
ramework.
simulators such as [4], [5],

are many other simulators,
in the literature covering a

ver, in the following only a
rk simulators is described,
lable features.
of the key features of five

WiNeS itself. Remark that
vely, but we acknowledge
ze in further experiments.

USION
ing heterogeneous wireless
n flexible simulators. The

ese networks’ deployment,
rformance and costs during

WiNeS framework was
tem for wireless networks
within a simple API. The
lities and features provided
the framework contains

mmunication rules during
eneous elements simulation

to simulate new emerging
wireless technologies.
to some disadvantages due

reless networks and some
downsides were identified:
ccommodate only a limited
mber of efficiently handled

nt to remember that in a
nodes, the framework faces

99

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

3,000 threads to simulate these nodes, 1,000 client sockets, and
1,000 server sockets. (iii) The overall simulation performance
dependents on the nodes’ operation complexity.

To counterweight the indicated problems, WiNeS presents
the following advantages: (i) The project was developed in
Java, which is multiplatform. (ii) It allows defining simulation
scenarios with a high degree of flexibility, including
predefined templates for nodes description, with
heterogeneous characteristics. (iii) It allows the inclusion of
new modules in Java, and (iv) the simulation of wired
networks, if necessary, only ignoring environmental settings
such as the distance verification between communicating
nodes, since connection is already established through wire.
Comparing WiNeS with major simulators, we conclude that all
tools intend to facilitate the creation of communication
network topologies, exploiting different levels in protocols
modeling, allowing a flexible scalability. The designer should
rely on the most appropriate simulator for their specific
applications and evaluations, taking into consideration relevant
aspects such as the simulator’s scalability and its provided
libraries. A robust simulator with a wide range of devices
readily available could shorten deployment times; however, if
scalability is lacking, this could become a key determinant in
choosing the most appropriate simulator.

ACKNOWLEDGMENT
This work is partially funded by FAPERGS Docfix (SPI

n.2843-25.51/12-3) and PqG 12/1777-4. Financial support also
granted by CAPES AEX 5967-13/9, CNPQ and FAPESP to
the INCT-SEC (National Institute of Science and Technology
Embedded Critical Systems Brazil), processes 573963/2008-8
and 08/57870-9.

REFERENCES
[1] Y.-S. Chen; Y.-W. Lin; C.-Y. Chang. An overlapping communication

protocol using improved time-slot leasing for Bluetooth WPANs.
Journal of Network and Computer Applications, v. 32, n. 1, pp. 273-
292, Jan. 2009.

[2] Institute of Electrical and Electronics Engineers, Inc. Std. 802.11 IEEE -
1999 ed.: Wireless LAN Medium Access Control (MAC) and Physical
Layer (LHY) Specification, IEEE Press, 90p, 1999.

[3] S. Farahani. ZigBee and IEEE 802.15.4 Protocol Layers. ZigBee
Wireless Networks and Transceivers, Chapter 3, pp. 33-135, 2008.

[4] NS-2. The Network Simulator ns-2: Documentation. Captured on
www.isi.edu/nsnam/ns/ns-documentation, Sep. 2012.

[5] NS-3. ns-3 Network Simulator. Captured on www.nsnam.org/ns-3-
15/documentation, Sep. 2012.

[6] J. Chen et al. The Development of a Realistic Simulation Framework
with OMNeT++. Conference on Future Generation Communication and
Networking, pp. 497-500, 2008.

[7] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla.
GloMoSim: A Scalable Network Simulation Environment. UCLA
Computer Science Department Technical Report, Vol. 990027, 1999.

[8] R. Barr, Z. J. Haas, R. van Renesse. JiST: Embedding Simulation Time
into a Virtual Machine. 5th EUROSIM Congress on Modeling and
Simulation, pp.1-16, 2004.

[9] E. Weingartner, H. vom Lehn; K. Wehrle. A Performance Comparison
of Recent Network Simulators. IEEE International Conference on
Communications, ICC '09, pp.1-5, 2009.

[10] J. Font et al. Analysis of source code metrics from ns-2 and ns-3
network simulators. Simulation Modelling Practice and Theory, v. 19,
n. 5, pp. 1330-1346, May 2011.

[11] M. Imran, A. Md Said, H. Hasbullah. A Survey of Simulators,
Emulators and Testbeds for Wireless Sensor Networks. International
Symposium in Information Technology, pp. 897-902, 2010.

[12] Edwards, S. ; Lavagno, L. ; Lee, E.A. ; Sangiovanni-Vincentelli, A.
Design of embedded systems: formal models, validation, and synthesis.
Proceedings of the IEEE, v. 85, n. 3, pp. 366-390, Mar. 1997.

Table 1. Some networks simulators characteristics and comparisons.

Simulator MoC NC; SC; PT; PR General Characteristics

ns-2 DE

NC: Wired/Wireless; SC: Limited (nodes are
objects, thus when instantiating it creates a
large number of dependencies to be checked –
memory usage and simulation runtime); PT:
Linux, FreeBSD, Mac OS; PR: C++, OTcl.

Event scheduler runs independently from the simulation control system, facilitating the
customization of different events; predefined simulation components; Scripts in OTcl
configure simulation environment, initialize event scheduler and trigger data traffic sources;
numerous protocols models and traffic generators available; lacks of available customized
wireless network models. The experiments show that ns-2 scale up to 3 thousand nodes.

ns-3 DE
NC: Wired/Wireless; SC: Limited (Higher if
using virtualization); PT: Linux, FreeBSD,
Mac OS; PR: C++, Python.

Models with no compatibility with ns-2; pre-implemented devices; customized wireless
networks; support the integration of actual implementation codes providing standard APIs.

OMNet++ DE NC: Wired/Wireless; SC: Limited; PT:
Windows, Mac OS, Linux; PR: C++.

General purpose DES framework not specific for network simulation; kernel library for
creating new modules; provides Internet protocol models; facilitates the simulation of ad hoc
networks and wireless sensor networks; supports the specification of variable parameters in
the network description, such as number of nodes can be dynamic.

GloMoSim Parallel
DE

NC: Wireless; SC: High (parallel simulation,
node and layer aggregations); PT: Windows,
Linux; PR: PARSEC (extension of C).

Focuses on mobile wireless devices, providing two mobility models; 2D plane; aims at very
large network models; layered approach as OSI model; communication based on nodes
distance; simulates only IEEE 802.11 protocol; packet collision analysis; simple APIs.

JiST/
SWANS DE

NC: Wireless; SC: High (claims to scale
networks of wireless networks with better
performance than ns-2 and GloMoSim); PT:
Any platform; PR: Java.

Embeds simulation engine on the bytecodes; lacks of enough protocol models; provides ad
hoc network simulator; allows writing simulation on a known programming language; objects
communicate by passing messages (represented by object method invocation); simulation
events are method invocations; - eliminates the need of explicit event simulation event queue.

WiNeS
DE
SRE
ARE

NC: Wired/Wireless; SC: High; PT: Any
platform; PR: Java.

Uses XML to describe simulation environment (e.g. nodes, parameters), allows writing
simulation on a known programming language; shares a few similarities with ns-2 such as the
event scheduler that maintains synchronized the simulated devices with the simulation clock,
and each device has access to the event scheduler; is very similar to the internal architecture
of GloMoSim, using the same concept of a network with many nodes running in parallel;
enables physical nodes within simulation core control, thus allowing hybrid simulation
environment. Experimental results show that WiNeS supports up to 10 thousand nodes
simulation, each node transmitting around of 100 packets simultaneously.

Legend: MoC – Model of Computation; DE – Discrete Event; SRE – Synchronous Reactive; ARE - asynchronous Reactive; Network connections type (NC);
Scalability (SC); Platform (PT) and Programming language (PR).

100

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

