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Abstract— The emergence of wireless networks has 
contributed to a growing number of studies and protocols 
regarding its performance and reliability requirements, among 
others. Several issues have to be considered when deploying such 
devices under harsh environmental conditions. These issues often 
force the designer to adopt decisions that are usually difficult to 
verify in real world settings. In order to mitigate such problems, 
an alternative resides in the use of simulation models for both 
homogeneous and heterogeneous devices. This paper describes 
an event-based Wireless Network Simulator (WiNeS) for devices 
operating in several topologies and configurations of networks. 
WiNeS is a Java-based framework specially built to support 
customized network options that offers hybrid simulation for 
virtual and physical nodes in the same environment. Some of 
WiNeS' features include the computation of maximum 
communication distances among devices in 2D and 3D spatial 
node distributions as well as pairing rules to evaluate the nodes 
connectivity. 

Keywords - Hybrid simulation, Event-based simulation, 
Network topologies, Wireless communication. 

I. INTRODUCTION 
Nowadays, many proposals of wireless networks for 

joining some technologies such as Bluetooth [1], Wi-Fi [2], 
and Zigbee [3] on the same network have been presented. 
These networks use different frequencies and communication 
protocols, forming multiprotocol systems for a range of 
applications. However, several problems arise: (i) how to 
choose the best node disposition in the environment in order to 
ensure the correct pairing between devices, and (ii) how to 
identify the most efficient device type to perform a given 
communication. Such issues demand alternatives to evaluate 
test scenarios before the systems are deployed. 

Several non-commercial open source network simulators 
of general purpose, like NS-2 [4], NS-3 [5], OMNet++ [6], 
GloMoSim [7], JiST/SWANS [8], are currently available to 
perform modeling and simulation analysis.  The simulators 
present differences in terms of architectures, features and 
applicability. Many of them are platform dependent and have 
issues related to scalability and end user facilities [9], [10], 
[11]. The main concern addressed in the present work is the 
need of simulation environments able to bear heterogeneous 
devices and several inner and external simulation events 
(originated from virtual and physical nodes respectively, in a 
controllable environment). 

The Wireless Network Simulator (WiNeS) presented in 
this paper is a platform independent framework written in 

Java. It supports the following Models of Computation (MoCs) 
[12]: Discrete Events (DE), Synchronous Reactive Events 
(SRE) and Asynchronous Reactive Events (ARE). DE enables 
the simulation of a series of timed events, whereas SRE are 
capable of describing synchronous-reactive network elements. 
In fact, the combination of both simulation models can cope 
with a wide variety of situations. However, these models are 
inadequate when dealing with unpredictable behaviors and 
therefore WiNeS incorporates ARE as an alternative 
simulation model, allowing the simulation of non-deterministic 
events. Such model is advantageous for the integration of 
virtual nodes with physical nodes that are very susceptible to 
unpredictable behavior, from a simulation point of view. 

WiNeS’ goal is to provide a flexible simulation 
environment to accommodate any wireless network topology, 
communication protocols and device types, while remaining 
simple enough for the end user to implement such features, 
without a deep understanding of the underlying simulator 
architecture and its operations. Additionally, the simulation 
engine is constructed to be as lean as possible, allowing nodes 
scalability as well as providing facilities to heterogeneous 
devices modeling with multiple communication capabilities. 

The paper is organized as follows. Section II presents the 
WiNeS framework and Section III describes the framework 
capabilities and features in detail, instantiating simulation 
scenarios. Section IV presents related simulators 
characteristics in comparison with WiNeS framework. Finally, 
Section V concludes our contribution with discussions about 
WiNeS future improvements. 

II. WINES FRAMEWORK 
WiNeS framework presents the following characteristics:  

(i) verification of nodes connectivity; (ii) simulation of 
different network topologies; (iii) simulation of homogeneous 
and heterogeneous architectures; and (iv) simulation of user-
implemented protocols in a hybrid environment with virtual 
and physical nodes. The framework intends to be generic to 
support a wide range of topologies, architectures, and 
communication types, depending exclusively on the designer’s 
implementations, while guaranteeing the enforcement of node 
communication rules, i.e. based on protocols, frequencies and 
geographic locations. Note that WiNeS is not readily aware of 
details pertaining protocols or device types. Thus, any 
additional information required for network operations should 
be developed and informed by the designer. Figure 1 depicts 
that WiNeS consists of a flexible simulation environment for 
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wireless networks. The Communication infrastructure 
implements TCP/IP sockets as the message exchanging 
mechanism, which allows the transmission of any type of data 
between simulated devices. Each data sent from one node to 
another passes through the Environment emulation, which 
checks whether both devices are communicating properly. 

 
Figure 1. Software layers of WiNeS framework. 

Although sockets lead to a larger overhead during the 
simulation, especially when compared to straightforward and 
less resource demanding models (i.e. shared memory), their 
adoption as a message exchanging mechanism between nodes 
allows the use of hybrid simulation scenarios. Unlike shared 
memory models, the sockets can be seamlessly used to connect 
the simulation core to external nodes, such as other simulation 
instances running distributed on offsite locations, or the direct 
interaction between virtual and real world nodes in a flexible 
simulation environment. Indeed, WiNeS presents an Abstract 
node layer for node’s behavior description, which enables the 
addition of several network functionalities and protocols. 
Thus, to define the application, the framework provides: (i) a 
standard node behavior (Default nodes) based on predefined 
parameters, defining a discrete event model used for traffic 
generation and (ii) a customizable node layer (User defined 
nodes) that also can be used with default nodes as basis. The 
next Section describes the framework’s architecture. 

A. WiNeS’ Architecture 
Figure 2 shows WiNeS’ architecture composed of 3 parts: 

(i) Definitions Block; (ii) Application Layer; and (iii) Core. 

Definitions 
blockCore

Application layer
. . .Node 2

WiNeS
Node 1

Node n

 
Figure 2. Main components of the WiNeS framework. 

(i)  Definitions Block 
The Definitions Block is composed of a series of 

simulation rules containing characteristics of wireless 
technologies, such as total simulation time and parity rules for 
defining nodes communication and time/distance scales. 

Definitions can be provided to WiNeS either by an XML 
or by a Java description file using the simulator’s Java API. 
Observing Figure 3, it is possible to see that the XML file 
contains the following tags: (i) CONNECTIVITY_RULES: 
represent the set of rules specified by the designer for each 
pairing between two device types. Each rule describes the 
maximum distance between nodes to communicate on their 
frequencies. It is worth mentioning that these rules are optional 
in the simulation process, being dependent on the designer’s 

choices to consider these values as useful information to take 
actions, perform numerical evaluations, or just use them as 
reference label. (ii) TIME_SCALE: indicates how often the 
simulator should increase a unit of simulation time, e.g. every 
30 seconds the total simulation time should be incremented by 
one time unit. (iii) SIMULATION_TIME: indicates the time 
unit for the simulation run, e.g. the simulation time is set to 
20x30=600 seconds. (iv) DISTANCE_SCALE: indicates the 
actual distance that each simulation unit represents. 

<CONNECTIVITY_RULES> 
 <RULE freq="2.4GHz" Dev1="antenna" Dev2="antenna" dist="100"/> 
 <RULE freq="2.4GHz" Dev1="antenna" Dev2="WSN" dist="20"/> 
</CONNECTIVITY_RULES> 
<TIME_SCALE> 
 <UNITY unity="seconds"/> 
 <VALUE value="30"/> 
</TIME_SCALE> 
<SIMULATION_TIME>20</SIMULATION_TIME> 
<DISTANCE_SCALE> 
 <UNITY unity="km"/> 
 <VALUE value="3"/> 
</DISTANCE_SCALE>
Figure 3. Example of a XML input file for the Definitions Block. 

(ii) Application Layer 
The Application Layer is composed of nodes 

communicating with the Core via sockets. Nodes can be 
created from information provided in an XML file or in API 
methods. Figure 4 illustrates an XML file for mapping a 
heterogeneous node, containing temperature and humidity 
sensors integrated with an active RFID tag.  

<NODE> 
 <NODE_INFO> 
  <POSITION X="3.0" Y="5.5" Z="8.0"/> 
  <TYPE nodeType="0"/> 
 </NODE_INFO> 
 <COMPONENT_SPECIFICATION> 
  <TYPE typeDevice="sensor"/> 
  <OPERATION protocol="ZigBee" freq="2.4GHz" power="1.3"/> 
 </COMPONENT_SPECIFICATION> 
 <COMPONENT_SPECIFICATION> 
  <TYPE typeDevice="activeTag"/> 
  <OPERATION protocol="EPC Gen2" freq="5GHz" power="1"/> 
 </COMPONENT_SPECIFICATION> 
 <BEHAVIOR_SPECIFICATION> 
  <TEMPERATURE time="0" value="12.8"/> 
  <TEMPERATURE time="125" value="10.92"/> 
  <HUMIDITY time="0" value="23.8"/> 
  <HUMIDITY time="25" value="24.9"/> 
 </BEHAVIOR_SPECIFICATION> 
</NODE>

Figure 4. Example of an active RFID tag description. 

The example depicts a non-passive node located in a 3D 
position (X=3,Y=5,Z=8). It has two antennas for 
transmission/reception. Its sensor part uses Zigbee protocol at 
a frequency of 2.4GHz for communication, whereas its RFID 
part uses EPC Gen2 protocol at 5GHz. 

The node’s information is mapped within two tables: (i) 
Specification Table: recognized by the tags <NODE_INFO> and 
<COMPONENT_SPECIFICATION>. This table contains the data 
referring to the node’s general characteristics (e.g. protocol, 
frequency and position), representing its communication 
capabilities. Remark that the node specification, thus 
describing a heterogeneous device, may have more than one 
specification tag.  (ii) Behavior Table: recognized by the tag 
<BEHAVIOR_SPECIFICATION>. This table contains data related to 
the node behavior considering the simulation time units, i.e. 
the node may express all instants in which a given parameter 
changes, with a discrete event list. The nodeType information 
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obtained from the tag <NODE_INFO> indicates if the node is 
passive ('1') or non-passive ('0'). If a node is passive, it has no 
autonomy to initiate communication, and responds to stimuli 
originated from other nodes only. When creating a node, the 
designer can specify a customized Application Layer, thus 
eliminating the need of the predefined Behavior Table. 
However, it is still possible to rely on the events defined in this 
table if needed. 

Figure 5 illustrates the node’s architecture, where dashed 
arrows indicate a read access, dotted arrows illustrate 
messages exchange between node and Core, and continuous 
lines with arrows indicate the simulation flow. 

 
Figure 5. Node architecture. 

The node’s operation depends on the designer’s 
implementation. If a customized Application Layer is defined 
for a node, it behaves accordingly; otherwise the node relies on 
the following default behavioral patterns: (i)  current-time 
behavior, i.e. the node checks its Behavior Table to verify if it 
has some data to be sent to the simulation environment, based 
on the current simulation time; (ii) when the simulation Core 
forwards data from a node to other node, i.e. each time a node 
may communicate with others by sending requests to a specific 
IP address and port number. 

The Application Layer implemented by the designer may 
be coupled to the default processing system within the node. 
The framework provides an API with node functions enabling 
this layer to receive and to send packets to other nodes. 
Therefore, the node may assume the processing implemented 
by the designer, i.e. simulating protocols, network topologies, 
packet loss, or any other desired functionality, and/or rely on 
predefined behaviors described on the node’s Behavior Table. 
The Node-Core communication is performed by two threads: 
(i) Client Socket Thread and (ii) Server Socket Thread; 
connecting the elements through a socket. 

The Global Clock maintains temporal coherence in 
communicating events. This clock starts at zero and is 
sequentially incremented by a time unit, defined on 
Definitions Block. The clock can be observed by all elements 
included in the framework during the simulations. A node 
without a customized Application Layer uses only the 
Behavior Table and consequently, employs the Global Clock 
to determine the set of events that should occur during the 
simulation’s execution. 

Furthermore, there are two types of simulation: (i) virtual, 
composed of virtual nodes only and (ii) hybrid, composed of 
virtual and physical nodes. For virtual simulation, the Global 
Clock is internally defined while hybrid simulation is 
performed based on the physical node’s clock. The WiNeS 
API contains functions for defining the internal clock based on 
the external one. Internally, the simulation clock is updated 

asynchronously and periodically to avoid clock skewing. 

(iii) Core 
The Core performs all computational logic necessary for 

the communications between nodes. Figure 6 depicts the Core 
architecture composed of (i) a thread for receiving data from 
the nodes (Server Socket Thread); (ii) a set of threads 
(Processing Threads) that process all received packets and 
determine to which nodes the data should be forwarded when 
generating event logs; (iii) a thread for sending data to the 
nodes (Client Socket Thread); and (iv) a Connections Table, 
composed of simulated node information. Additionally, the 
Core, if not previously specified, automatically assigns a port 
number to the nodes. 

 
Figure 6. Core architecture. 

In more detail, the Server Socket Thread component 
waits for messages sent from the application nodes. If the 
Core receives a request message from a new node in the 
network, it should: (i) verify if that information is valid and 
interpretable; (ii) add the node in the Connections Table and 
(iii) reply with a message of acknowledgment. However, if the 
information is not valid, the Core replies with an error 
message. In the case, the Core receives any other type, the 
message will be inserted into an Event queue to be treated by 
the Processing Threads component. Processing Threads get 
the first element of Event queue and send it to the 
Comparing engine, where the forwarding decision is made. 

The Connections Table comprises a list of nodes 
containing: (i) NodeID: unique identifier generated by the 
Core; (ii) IpAddress: TCP/IP network address; (iii) PortNum: 
TCP port on the network; (iv) Parameters: list of node’s 
characteristics according to <COMPONENT_SPECIFICATION>; (v) 
Timeslot: variable storing the clock time received from the last 
packet of the corresponding node, which is used to control the 
time difference between consecutive packets; and (vi) 
Coordinates (X, Y, Z) with the node’s geographic positions. 

When a node sends a packet to the Core, it automatically 
requests its inclusion. The Core then creates a new entry to the 
Connections Table and stores the new node’s IP address and 
port number, along with other relevant data provided by the 
node. After being registered in the Connection Table, the 
node becomes visible to other nodes, and capable of 
exchanging data on the simulation environment. 

B. Message Protocol 
The WiNeS package format consists of five fields. The 

packet type field specifies the message’s nature: (i) 
ENTRY_REQUEST  is used when a node requires entering in the 
simulation; (ii) ENTRY_ANSWER is used in response to an 
ENTRY_REQUEST message; (iii) EXIT_REQUEST is used when a 

96

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:50 UTC from IEEE Xplore.  Restrictions apply. 



node wants to leave the simulation; (iv) SEND_DATA is used for 
all elements of WiNeS to send generic data; and (v) 
END_SIMULATION is used by the Core to inform the nodes that 
the simulation ended, releasing all of them. ENTRY_REQUEST 
and EXIT_REQUEST allow dynamically insertion and removal of 
nodes on/from the simulation environment. 

The device type field indicates the type of node that 
originates the packet, i.e. the Core or a node identification. 

The nodeId field is the element identifier, marking the 
node that is sending the packet. If the Core is sending the 
packet, this field is set to '0'; otherwise, it is set to NodeID, 
which is the identification number of the node that originated 
the packet. The timeslot field contains the packet generation 
time, obtained from the Global Clock. The payload is a 
generic field used to store any kind of data originated from the 
device type related to the packet type. 

The payload format is categorized according to the 
following operations: (i) ENTRY_REQUEST: the node must send 
a TCP port ('0' if none), its Specification table, and its 
coordinates; (ii) ENTRY_ANSWER: the Core must confirm the 
requested port number from the node, or send the 
automatically generated port number and NodeID; (iii) 
EXIT_REQUEST: the node must send its NodeID to the Core to 
allow its exclusion from the Connections Table; and (iv) 
SEND_DATA: indicates a generic payload that depends on the 
device type field. 

C. Simulation Operation 
When the simulation starts, the mapping of all devices’ 

specifications occurs either from the supplied XML 
definitions’ file or using the parsed information originated 
from the API. Each device is then instantiated as a node, based 
on these definitions, and registered on the Connections Table 
in the Core. In this table, a specific port number is assigned for 
each registered node for later communications; note that a 
heterogeneous node is recognized as a single node by the 
simulation engine. These activities, along with other events 
that occur during simulation execution, are logged into text 
files for later analysis. The Connections Table also stores 
additional information about each connected node such as 
operating frequencies, protocols and geographical coordinates. 
The information is used by the Core to determine possible 
communications between simulated nodes. 

Figure 7 depicts the basic simulation flow. When a device 
intends to join the network, it should send an 
ENTRY_REQUEST message with information for its 
Specifications Table to the Core. Afterwards the node waits for 
an ENTRY_ANSWER response from the Core. Meanwhile, 
the Core allocates resources for node communication, 
generates a unique NodeID, and updates the Connections 
Table. Then, the Core sends the response to the node, with an 
ENTRY_ANSWER message, informing the attributed NodeID 
and TCP port number, and the node is able to send and receive 
messages. At any time, the Core is awaiting data. When any 
packet, with the exception of ENTRY_REQUEST, is received 
by the Core the packet is placed in the Event queue to be 
processed by the Processing Threads (Figure 6). 

 
Figure 7. Message chart diagram for the Core operation. 

Parallel to any procedure, the Core always checks if the 
Event queue still contains events. If there is anything to be 
processed, the Core removes the event from the queue, and 
processes it in the Comparing engine. During simulation, a log 
of every communication is generated and when the simulation 
time ran out, the Core generates a final log entry with general 
statistics, e.g. the data exchanged in the simulation. 

D. Comparing engine 
The Event queue contains all SEND_DATA messages 

originated from the nodes. The Comparing engine processes 
and analyses each message at a time, defining which node has 
the technological capacity (i.e. devices with compatible 
frequencies and protocols) and geographic location to receive 
each message. The Comparing engine, aware of this message, 
processes the following steps: (i) unpack the SEND_DATA 
message to recognize the NodeID, the global clock, and 
payload; (ii) find the corresponding node (e.g. N1) in the 
Connections Table and get its Specification Table data using 
its NodeID, (iii) look at all the nodes in the Connections Table. 
For each different node in the table (e.g. N2), the engine 
compares the specifications with N1 and evaluates if both 
nodes are within communication range. For each successful 
comparison, the Core generates a packet with the same 
payload received from N1, forwarding the message to N2. For 
a comparison to succeed, the nodes must: (i) use the same 
communication protocols; (ii) operate at the same frequency; 
(iii) have a distance between them smaller than or equal to the 
maximum distance informed in the Definitions. 

Finally, when the simulation ends, the Core sends an 
EXIT_REQUEST for all nodes, and WiNeS finalizes all open 
sockets and threads, exiting the simulation. 

III. MODELING EXAMPLES 
Some tests were performed to demonstrate WiNeS 

functionalities for virtual and hybrid networks simulation. 

A. Heterogeneous nodes 
Figure 8 presents a star topology with: seven passive RFID 

tags, a wireless sensor node, and a central node. The central 
node represents a heterogeneous sensor/RFID reader with the 
ability to communicate with RFID tags and sensors. This 
example demonstrates that WiNeS describes and simulates 
message exchanges between heterogeneous nodes. For this 
application, a wireless sensor node (NodeID=100 and 3D 
coordinates (0,1,0) requires the values contained in the passive 
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tags. A heterogeneous node located at the central position, 
which is able to communicate with all nodes, accomplishes the 
data acquisition. It is important to note that even if all nodes 
are within communication range, the simulation engine ensures 
that the wireless sensor is unable to directly read passive tags, 
because (i) the sensor node is not intended to be a reader, and 
(ii) the node respects the hierarchy defined by star topology. 

 
Figure 8. Heterogeneous nodes in a star topology 

Each node has two types of address: (i) physical address, 
which is an XYZ Cartesian coordinate to place the node on the 
environment; and (ii) logical address, which is the ID used by 
WiNeS to communicate all nodes within the system. Thus, the 
simulation scenario instantiation is guided by the following 
specifications: (i) creation of three types of devices (wireless 
sensor, RFID/sensor reader and RFID tag) on the Application 
Layer; (ii) the wireless sensor node (NodeID=100) requires the 
reading of all values contained in the RFID tags; (iii) the 
RFID/sensor reader node operates on two different frequencies 
(heterogeneous component specification); and (iv) the seven 
passive RFID tags have different high level identifications (ID) 
and they cannot start any communication alone; all of them 
wait for reader’s requests. Figure 9 shows the Java 
specification. 
public class Star { 
    public static void main(String[] args) {         
   // Simulation parameters 
        SimulatorSpecification specs = new SimulatorSpecification(15,  
                TIMESCALE.SECONDS, DISTANCE.KILOMETER, ""); 
        specs.addRule("2.4GHz", "sensor", "sensor", 2); 
        specs.addRule("433KHz", "reader", "passiveTag", 2); 
        WiNeS sim = new WiNeS(6000, specs, LOG);      
   // Sensor node 
        NodeSpecification sensorSpecification = new NodeSpecification(); 
        sensorSpecification.setCoordinates(0.0, 1.0, 0.0); 
        sensorSpecification.setNodeType(0); 
        sensorSpecification.addComponent("sensor", "ZigBee", "2.4GHz", "1");
        sensorSpecification.addBehavior("EVENT", "3", "DATA"); 
        sensorSpecification.addBehavior("EVENT", "11", "DATA");       
   // Sensor node / reader 
        NodeSpecification sensorReaderSpecification = new NodeSpecification()
        sensorReaderSpecification.setCoordinates(0.0, 0.0, 0.0); 
        sensorReaderSpecification.setNodeType(0); 
        sensorReaderSpecification.addComponent("sensor","ZigBee","2.4GHz","1"
        sensorReaderSpecification.addComponent("reader","ZigBee","433Khz","1"
   // Nodes insertion 
        sim.addNode(sensorSpecification, new Sensor()); 
        sim.addNode(sensorReaderSpecification, new SensorReader()); 
          // Passive nodes 
        for(int y = -1; y < 2; y++) { 
            for(int x = -1; x < 2; x++) { 
                if((y == 0 && x == 0) || (y == 1 && x == 0)) 
                    continue; 
                NodeSpecification tag = new NodeSpecification(); 
                tag.setCoordinates(x, y, 0.0); 
                tag.setNodeType(1); 
                tag.addComponent("passiveTag", "ZigBee", "433KHz", "1"); 
                tag.addBehavior("DATA", "0", "5"); 
                tag.addBehavior("DATA", "5", "8"); 
                tag.addBehavior("DATA", "10", "9.3"); 
                sim.addNode(tag, new PassiveTag()); 
            } 
        }         
        sim.start(); 
    } 
}  

Figure 9. Example of heterogeneous system specification on WiNeS. 

Figure 10 illustrates the network traffic related to RFID 
tags reading data in a star topology. When an information 
request packet is received from the wireless sensor 
(REQUEST_DATA message), the central node (NodeID=101) 
forwards the message as a new type of package, which is 
understandable only for the RFID tags. The reverse process 
also occurs; the packets originated from RFID tags are 
transformed into messages recognizable by the wireless sensor. 
The RFID tags reply to the central node’s message 
REQUEST_DATA with a DATA message (which contains their 
ID), while the central node forwards DATA to the wireless 
sensor node. Remark that the nodes are also definable as either 
static or mobile. In both cases the initial coordinates must be 
informed in the Application Layer. During the simulation 
mobile node coordinates are updated by the Core according to 
the predefined mobility function. 

Source:100 Target:101 Packet: [REQUEST_DATA 102] 
Source:101 Target:102 Packet: [Node:100 REQUEST_DATA] 
Source:102 Target:101 Packet: [DATA 100 ID=334.332.789] 
Source:101 Target:100 Packet: [DATA ID=334.332.789 Node:102] 
Source:100 Target:101 Packet: [REQUEST_DATA 103] 
Source:101 Target:103 Packet: [Node:100 REQUEST_DATA] 
Source:103 Target:101 Packet: [DATA 100 ID=334.332.790] 
Source:101 Target:100 Packet: [DATA ID=334.332.790 Node:103] 
… 
Source:100 Target:101 Packet: [REQUEST_DATA 108] 
Source:101 Target:108 Packet: [Node:100 REQUEST_DATA] 
Source:108 Target:101 Packet: [DATA 100 ID=334.332.795] 
Source:101 Target:100 Packet: [DATA ID=334.332.795 Node:108]

Figure 10. Example of event log for testing star topology. 

B. Heterogeneous topology 
Figure 11 illustrates an example of multiple mesh networks 

linked by a ring network, i.e. an example of heterogeneous 
WSN (Wireless Sensor Network). The ellipses are the RFD 
nodes (Reduced Function Device of IEEE.802.15.4 protocol) 
composing the lowest network level. The rectangular nodes 
represent the mesh nodes coordinators called FFD (Full 
Function Device) that link all WSNs, establishing a highest 
level in a ring topology. 

This example shows the simulator’s capability to enable 
the node definition with functionalities in hybrid topologies. 
On top of the IEEE.802.15.4 protocol there is, for example, a 
hierarchical protocol enabling node communication. Each 
network level has a node coordinator that receives packets on 
the mesh, and forwards them to the next ring coordinator. The 
mesh routing algorithm is XY; thus, the message goes 
primarily moving horizontally left and then vertically upward 
to reach the coordinator. Each node has a hierarchical 
addressing with XY coordinates for internal mesh routing, and 
an ID for inter mesh routing throughout the ring topology. 

Since all nodes have similar information, it is sufficient to 
create user defined nodes classes, such as GridNode, that 
extends the Abstract node layer of WiNeS, and thereby 
becoming an Application Layer. Above the GridNode class, 
the RFD and FFD class are added. Therefore, the classes RFD 
and FFD are aware of their hierarchical addresses. 

The Default node layer, together with the GridNode, was 
used for traffic generation. The classes RFD and FFD 
implement routing, while the Default node layer initializes the 
packets generation. After the simulation’s execution, the node 
communications can be analyzed in a log file. In this method, 
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the date and local time of the machine, the sim
and the message itself are stored. 

100
0,0

100
1,0

100
0,1

100
2,0

100
1,1

100
2,1

100
1,2

100
0,2

100
2,2

101
0,0

101
1,0

101
0,1

101
2,0

101
1,1

101
2,1

101
1,2

101
0,2

101
2,2

10
0,0

10
0,1

10
0,2

103
0,0

103
0,1

103
0,2

104
0,0

104
1,0

104
0,1

104
2,0

104
1,1

104
2,1

104
1,2

104
0,2

104
2,2

105
0,0

105
1,0

105
0,1

105
2,0

105
1,1

105
2,1

105
1,2

105
0,2

105
2,2

Figure 11. WSN with heterogeneous topo

As an example, Figure 12 presents a
simulation log, which could be used to an
communication with the exchanged message
the message: (<102, 1, 1> 5ºC <100, 2, 2> 10:42) me
the node <100, 2, 2> (i.e. ID=100, X=2,Y=2) 
temperature and tries to send this information
1, 1> (i.e. ID=102, X=1,Y=1). The message o
<100, 2, 2> is transmitted through the node
routing, aiming to reach the coordinator node 
Then, this message arrives in the ring topolog
FFD nodes 100, 101 and 102. When the mess
<102, 0, 0> it starts an XY routing protocol on
until it reaches the target node. 

<100, 2, 2> sent <100, 1, 2> (<102, 1, 1> 5ºC <100, 2,
<100, 1, 2> sent <100, 0, 2> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 2> sent <100, 0, 1> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 1> sent <100, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<100, 0, 0> sent <101, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<101, 0, 0> sent <102, 0, 0> (<102, 1, 1> 5ºC <100, 2,
<102, 0, 0> sent <102, 1, 0> (<102, 1, 1> 5ºC <100, 2,
<102, 1, 0> sent <102, 1, 1> (<102, 1, 1> 5ºC <100, 2,

Figure 12. Example of event log for heterogeneo

C. Hybrid simulation scenario 
This section explains the capability of W
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IV. RELATED 
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their support related to network to
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programming language, explorati
performance optimization [5], [10], 

Simple simulators usually in
different network topologies, deplo
traffic between the simulated no
simulators are capable of simulati
thereby provide the development f
simulation environments. WiNeS 
simple network simulator with a fe
for example, being a development fr

Currently, there are open source 
[6], [7] and [8]. Moreover, there a
emulators and test beds available i
multitude of purposes [11]. Howev
selection of the well-known netwo
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Table 1 displays an overview o
network simulators, along with W
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V. CONCLU

The technological trend of form
networks creates a need to design
main goal is saving time for the
while allowing the evaluation of per
the design phase. Nevertheless, 
developed to be a simulation syst
enabling flexible scenarios design 
modeling examples showed possibil
by WiNeS, highlighting that 
mechanisms to verify node com
simulation. Moreover, the heteroge
example shows that WiNeS is able 
trends such as the combined use of w

However, WiNeS is susceptible 
to its flexibility in modeling wir
design approaches. The following d
(i) The operating system is able to a
number of open sockets; (ii) the num
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network scenario with a thousand n

physical environment. This 
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d synchronize them within 
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y the implementation of the 
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Clock and ways to interpret 
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3,000 threads to simulate these nodes, 1,000 client sockets, and 
1,000 server sockets. (iii) The overall simulation performance 
dependents on the nodes’ operation complexity.  

To counterweight the indicated problems, WiNeS presents 
the following advantages: (i) The project was developed in 
Java, which is multiplatform. (ii) It allows defining simulation 
scenarios with a high degree of flexibility, including 
predefined templates for nodes description, with 
heterogeneous characteristics. (iii) It allows the inclusion of 
new modules in Java, and (iv) the simulation of wired 
networks, if necessary, only ignoring environmental settings 
such as the distance verification between communicating 
nodes, since connection is already established through wire. 
Comparing WiNeS with major simulators, we conclude that all 
tools intend to facilitate the creation of communication 
network topologies, exploiting different levels in protocols 
modeling, allowing a flexible scalability. The designer should 
rely on the most appropriate simulator for their specific 
applications and evaluations, taking into consideration relevant 
aspects such as the simulator’s scalability and its provided 
libraries. A robust simulator with a wide range of devices 
readily available could shorten deployment times; however, if 
scalability is lacking, this could become a key determinant in 
choosing the most appropriate simulator. 
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Table 1. Some networks simulators characteristics and comparisons. 

Simulator MoC NC; SC; PT; PR General Characteristics 

ns-2 DE 

NC: Wired/Wireless; SC: Limited (nodes are
objects, thus when instantiating it creates a
large number of dependencies to be checked –
memory usage and simulation runtime); PT: 
Linux, FreeBSD, Mac OS; PR: C++, OTcl. 

Event scheduler runs independently from the simulation control system, facilitating the 
customization of different events; predefined simulation components; Scripts in OTcl
configure simulation environment, initialize event scheduler and trigger data traffic sources; 
numerous protocols models and traffic generators available; lacks of available customized 
wireless network models. The experiments show that ns-2 scale up to 3 thousand nodes. 

ns-3 DE 
NC: Wired/Wireless; SC: Limited (Higher if
using virtualization); PT: Linux, FreeBSD,
Mac OS; PR: C++, Python. 

Models with no compatibility with ns-2; pre-implemented devices; customized wireless 
networks; support the integration of actual implementation codes providing standard APIs. 

OMNet++ DE NC: Wired/Wireless; SC: Limited; PT:
Windows, Mac OS, Linux; PR: C++. 

General purpose DES framework not specific for network simulation; kernel library for
creating new modules; provides Internet protocol models; facilitates the simulation of ad hoc 
networks and wireless sensor networks; supports the specification of variable parameters in 
the network description, such as number of nodes can be dynamic. 

GloMoSim Parallel
DE 

NC: Wireless; SC: High (parallel simulation, 
node and layer aggregations); PT: Windows,
Linux; PR: PARSEC (extension of C). 

Focuses on mobile wireless devices, providing two mobility models; 2D plane; aims at very 
large network models; layered approach as OSI model; communication based on nodes
distance; simulates only IEEE 802.11 protocol; packet collision analysis; simple APIs. 

JiST/ 
SWANS DE 

NC: Wireless; SC: High (claims to scale 
networks of wireless networks with better
performance than ns-2 and GloMoSim); PT: 
Any platform; PR: Java. 

Embeds simulation engine on the bytecodes; lacks of enough protocol models; provides ad
hoc network simulator; allows writing simulation on a known programming language; objects
communicate by passing messages (represented by object method invocation); simulation
events are method invocations; - eliminates the need of explicit event simulation event queue.

WiNeS 
DE 
SRE 
ARE 

NC: Wired/Wireless; SC: High; PT: Any 
platform; PR: Java. 

Uses XML to describe simulation environment (e.g. nodes, parameters), allows writing 
simulation on a known programming language; shares a few similarities with ns-2 such as the 
event scheduler that maintains synchronized the simulated devices with the simulation clock,
and each device has access to the event scheduler; is very similar to the internal architecture 
of GloMoSim, using the same concept of a network with many nodes running in parallel; 
enables physical nodes within simulation core control, thus allowing hybrid simulation 
environment. Experimental results show that WiNeS supports up to 10 thousand nodes 
simulation, each node transmitting around of 100 packets simultaneously. 

Legend: MoC – Model of Computation; DE – Discrete Event; SRE – Synchronous Reactive; ARE - asynchronous Reactive; Network connections type (NC); 
Scalability (SC); Platform (PT) and Programming language (PR). 
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