
An Implementation of a Distributed Fault-
Tolerant Mechanism for 2D Mesh NoCs

César Marcon1, Alexandre Amory1, Thais Webber2, Felipe T. Bortolon1, Thomas Volpato1, Jader Munareto1
1Faculty of Informatics / 2Faculty of Electrical Engineering

Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Av. Ipiranga 6681, Porto Alegre, Brazil

cesar.marcon@pucrs.br

Abstract—Advances in design integration have enabled the
integration of large Multiprocessor Systems-on-Chip (MPSoC).
Such systems are prone to the execution of complex applications
if high degree of parallelism is employed on the communication
infrastructure. Network-on-Chip (NoC) has emerged as a new
communication paradigm for large MPSoCs with advantages
such as the increase of reliability on components interactions.
However, device’s integration may convey few shortcomings
during MPSoC manufacturing and operation, for instance, the
vulnerability to faults. This paper describes Phoenix, which is a
direct mesh NoC with fault detection scheme. The proposed
architecture explores a fault-tolerant mechanism, which is
implemented in a distributed manner as a fault monitor on
processors and routers. Results demonstrate that Phoenix can be
scalable in view of the stabilization time regarding to faults
incidence, allowing MPSoC operation even with the occurrence
of a large number of faults.

Keywords - Fault tolerance, MPSoC, NoC.

I. INTRODUCTION
Deep submicron technologies have enabled the integration

of billions of transistors for the construction of complete
systems over on a single chip, called Systems-on-Chip (SoCs).
With the advantages of these technologies, some drawbacks
are found such as the occurrence of faults originated in the
complex manufacturing process, or after manufacture during
system execution.

SoCs can be often implemented with several Processing
Elements (PEs) operating in parallel to cope with application
requirements and guarantee high data throughput. These SoCs
are usually called Multiprocessor SoC (MPSoC), whose
architecture also requires an efficient communication approach
such as Network-on-Chip (NoC) that are typically designed to
meet performance requirements [1]. The parallelism of NoC
communications allows redundant communication between
resources. In case of path failure, alternative routes can take
place; though the consequence is a reduction on the parallelism
with a probable latency increase despite application
functionalities may appear normal for end-user.

One challenge in applying fault tolerance on MPSoCs is
the research of fault detection mechanisms for improvement in
recovering, and sometimes, prevention from these faults.
During MPSoC operation, several faults can occur and the
application of a fault-tolerant NoC is indicated to reduce the
probability of application stall. The efficient design of
monitoring mechanisms may determine whether the system is

able to withstand several detected faults as well as the delay
imposed when recovering the system.

This paper describes the design of Phoenix, a fault-tolerant
2D mesh NoC that implements mechanisms for detecting
faults and disseminate this information to all PEs. Phoenix
presents source routing tables to fulfill this objective,
supporting detection of manufacturing faults and faults
occurred during system execution. Following sections address
(i) the NoC architecture, (ii) the mechanism for detecting faults
through link analysis during idle periods, and (iii) the
distributed algorithm to report faults. The routing algorithm is
not addressed in this work.

The paper is organized as follows. Section II presents some
related works. Section III describes the Phoenix architecture.
Section IV presents the fault-tolerant mechanisms
implemented on Phoenix. Section V discusses experimental
results in terms of stabilization times for faults report on varied
NoC sizes as well as the implementation of Phoenix
mechanisms. Finally, in Section VI we conclude our
contribution.

II. RELATED WORKS
Fault-tolerant methods for NoCs can be classified in two

categories in terms of redundancy: (i) the methods based on
extra redundancy to the NoC, which include spare wires, spare
routers and backup NoC paths [2]; (ii) the methods where extra
logic is not used to increase the NoC redundancy, but to
exploit the natural path redundancy existing in most network
topologies. For instance, for a single pair of communicating
points, a mesh network typically have multiple possible paths
(excluding path restrictions caused by a given routing
algorithm). However, a single fault is sufficient to crash an
entire system without proper methods for NoC fault detection,
diagnose, and recover. Thus, multiple paths are still not
sufficient to build resilient systems. In addition, NoCs are
commonly used in MPSoCs due to their superior performance
in terms of bandwidth and scalability. The use of NoC-based
MPSoCs for fault-tolerant applications provides a large
research opportunity since the fault-tolerant methods can be
implemented in hardware, software, or a combination of both.
Next, we present related works that are summarized and
compared on Table I and on Table II.

Vicis [3] uses the inherent redundancy of most networks to
keep the system functionality with lower hardware overhead
compared to approaches based on triple modular redundancy

978-1-4799-2409-7/13$31.00 c©2013 IEEE

24

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

(TMR). Each router has Built-In Self-Test to diagnose faults
and to reconfigure the hardware bypassing defective regions.
The method is entirely implemented in hardware, presenting
low area overhead with greater fault tolerance than TMR
methods.

TABLE I - RELATED WORK SUMMARY (PART I).

Work Fault
location Implementation Base approach

[3] router hardware bypass, BIST, ECC
[4] link hardware routing table
[5] router hardware turn-based routing algorithm
[6] router both path search, 2 NoCs
[7] router hardware routing table

This link both routing table

TABLE II - RELATED WORK SUMMARY (PART II).

Work Fault duration Means to
dependability Quantity of faults

[3] permanent diagnose,
reconfiguration 50% of routers

[4] permanent reconfiguration 10% of the links
[5] permanent reconfiguration 1 faulty router

[6] permanent,
partially transient reconfiguration large

[7] permanent reconfiguration -

This permanent,
partially transient

detection,
reconfiguration large

Fick et al. [4] present a routing algorithm, which

configures the network to avoid the fault components
maintaining the correct functionality. Most fault-tolerant
routing algorithms circumvent the faulty region with
restrictions that might cause healthy router to be disabled, i.e.
reducing the network performance. The proposed method,
based on routing tables and no virtual channel can support
10% of faulty links.

Zhang et al. [5] propose a method to avoid deadlock, which
uses two networks and each node is connected to two routers.
When a single link is declared faulty, the adjacent routers are
entirely disabled. The authors adopted a turn-based fault-
tolerant approach to avoid cycles. They proved that the
approach is deadlock free for any one-faulty-router.

Wachter et al. [6] propose the use of a second dedicated
network to find a fault-free path between two nodes. The
routers have a configuration register that can switch on/off
each router port in case of faults. The faulty ports, which are
turned-off, are not able to propagate the search for path. This
way, just a fault-free path is able to propagate (like a
broadcast) the searches for fault-free paths. This approach
enables to find any path regardless the number of faulty ports,
as long as there is at least one healthy path. The broadcast
propagation style ensures that it can be used in any network
topology.

Feng et al. [7] proposed a routing algorithm to reconfigure
the routing table in the presence of faults. An optimized
hierarchical approach is also proposed, reducing the number of
table entries. Still, the number of required data in the routing
table is large. Thus, this approach is viable only for small to
medium networks.

III. PHOENIX ARCHITECTURE
Figure 1 illustrates the fault-tolerant mesh NoC

architecture of Phoenix implemented in hardware and
software, employing routing tables for source routing decisions
and fault-tolerant distributed mechanisms. OsPhoenix is the
software part, which is a communication device placed inside
each PE’s operating system. OsPhoenix performs routing
algorithms to fill the routing table according to the PE position
and the faulty links.

Figure 1 - The Phoenix router architecture.

A. NoC Topology
The routers and PEs connections implemented by

bidirectional links define NoC physical topology. Phoenix is a
direct 2D mesh NoC topology, consisting of m×n routers
interconnecting PEs placed along with them.

B. Router Interface
Figure 2 shows a bidirectional link between two routers.

The output ports are composed of the following signals: (i)
clockTx that synchronizes data transmission; (ii) tx that
controls the data availability; (iii) dataOut, which is a bus
containing data to be sent; and (iv) creditIn, which is a control
signal that indicates the buffer availability. In addition, the
input ports are composed of the following signals: (i) clockRx;
(ii) rx; (iii) dataIn; and (iv) creditOut, which are the
counterpart of the output port signals, respectively. Therefore,
each bidirectional link has 6 control signals and 2×flit1 data
signals.

Figure 2 – Example of bidirectional link between routers.

1 The flit size of Phoenix is equal to the phit size.

25

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

C. Router Switching and Flow Control
Phoenix NoC implements wormhole switching method,

which implies dividing packets into flits needing small buffers
for data storing. The flit size of Phoenix NoC is customizable,
and the number of flits in a packet is limited to 2(flit size in bits).
Additionally, Phoenix NoC employs credit-based flow control.
In this mechanism, if there is an available space in the receiver
input buffer, the receiver router informs the transmitter router
through creditOut/creditIn (Figure 2) signal, and the
transmitter interprets as an available credit enabling a flit
transmission in a single clock cycle.

D. Router Architecture
Figure 3 shows the Phoenix router architecture that is

logically composed of three modules: (i) communication; (ii)
routing; and (iii) fault management.

Figure 3 - The Phoenix router architecture.

Communication module encompasses four bidirectional
ports (i.e. NORTH, SOUTH, EAST and WEST) dedicated to
interconnect routers, and a bidirectional port (i.e. LOCAL) that
enables the communication between the router and its local
PE.

Each bidirectional port has an input and an output link, and
the input communication is buffered with a circular FIFO with
configurable depth for temporary data storage, which is used
when the routing path is congested by other packets.

Routing module is controlled by Switch control circuit that
performs the packets routing and arbitration according to the
packet header and the Routing table. The arbitration is a
dynamic rotating policy implemented with Round Robin
algorithm to ensure that all incoming requests are processed,
i.e. preventing starvation phenomenon.

This algorithm takes in average three clock cycles to
address a routing request dispatched by the reading of the
packet header. If the routing algorithm enables the
communication, the Switch control commands the Crossbar
switch, through the control signal, to establish the connection
between input port and the desired output port.

Fault management module includes the Fault control
machine that is the main circuit for fault-tolerant operation. It
searches for control packets in all input ports, and takes
decisions according to the command code (refer to Section
III.F). For instance, Fault control machine may receive a
command from OsPhoenix to fill the Routing table.
Additionally, the Fault monitor circuit is responsible for
detecting defective output link, and set the links status on the
Fault table, which is a 4-field vector. Each field is used to
store the operation status of NORTH, SOUTH, EAST and WEST
output links, where each field contains two bits to inform if the
link is (i) not verified, (ii) faulty or (iii) operating properly.

E. Routing Algorithm
Phoenix is a source routing NoC whose path is computed

according to the Routing table content, which starts filled with
XY routing. However, depending on the faults occurrence, the
OsPhoenix searches for new routing paths that are deadlock
free, which modifies the Routing table content. OsPhoenix
routing algorithm is based on a Region Based Routing [8],
which is a technique that group target addresses into regions
aiming to reduce the routing table size. With a minimum of
four regions, the Routing table may select several paths even
in the presence of faults. Nevertheless, increasing Routing
table size, Phoenix may provide more optimized paths
searching for a possible minimum path. This algorithm is not
described here, since it is not focus of this work.

F. Packet Format
Each field of a Phoenix packet is exactly 1-flit length, and

despite this length is user defined, the NoC requires a
minimum flit of 8-bits length to support in the same flit the
control flag and addressing of 64 PEs. Figure 4 shows that
Phoenix employs two types of packets: (i) data packet, which
carries the PEs messages; and (ii) control packet, which is
used by the router control mechanisms.

Figure 4 – Formats of Phoenix packets.

Both packet types contain a header that encloses two flits:
(i) flag_address, which is the first flit of the header composed
of (a) 1-bit flag to define the packet type (i.e. 0 is a data packet
and 1 is a control packet) and (b) the XY target address (e.g. ,
Figure 4 exemplifies the target address distributed on a flit of
16-bits length); and (ii) size, which is the second flit of the
header containing the quantity of flits that composes the packet
payload. Whereas the data packet payload is completely
transparent to NoC operation, the first flit of control packet
payload is a command code used to control the routers
status/operation.

26

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

The code field may carry the following commands detailed
next in Section IV:
• RD_FAULT_TAB - OsPhoenix uses it to read the Fault table.
When Fault control machine receives this command, it replies
with the FAULT_TAB command containing the Fault table in
the second flit of the payload;
• WR_FAULT_TAB - OsPhoenix sets the links fault status on
the Fault table;
• TEST_LINKS –OsPhoenix tells the Fault monitor to test all
links and set the Fault table;
• RST_FAULT_TAB - OsPhoenix resets the Fault table (i.e. all
links are marked as without faults). This code is transmitted to
all OsPhoenix running on neighbor PEs;
• RST_ALL_FAULTS - this code is transmitted to all
OsPhoenix running on neighbor PEs performing a distributed
way to reevaluate the status fault of all NoC links;
• TR_FAULT_TAB - OsPhoenix transmits the Fault table,
enclosed into the payload, to another OsPhoenix running on a
neighbor PE;
• RD_ROUT_TAB - OsPhoenix reads the Routing table (these
code is normally applied during NoC debugging);
• ROUT_TAB - the router replies the RD_ROUT_TAB code
inserting the Routing table in payload flits. Notice that the
Routing table size depends on the number of regions defined
by the routing mechanism;
• WR_ROUT_TAB - OsPhoenix sets the Routing table with the
values produced by the routing algorithm. The Routing table is
enclosed on the packet payload;
• DROP_PACKET - A router with a faulty link uses this
command to redirect a data packet to OsPhoenix, which
performs a packet rerouting (refer to Section IV.D).

IV. FAULT-TOLERANT MECHANISMS
This section describes the Phoenix fault tolerant

mechanisms implemented in software, inside OsPhoenix, and
in hardware, through Fault monitor and Fault control machine.

A. OsPhoenix Description

Figure 5 – Fault detection and notification mechanisms.

OsPhoenix is a small system placed into the PE’s operating
system that contains a Global fault table with the status of all
NoC links, where the status informs if a given link was or not
tested and, once tested, if it is a faulty link or not. OsPhoenix
employs command codes to manage the Fault control machine
and Fault monitor, performing four fault-tolerant mechanisms:
(i) Fault Detection; (ii) Fault Notification; (iii) Fault
Reevaluation; and (iv) Packet Rerouting and Drop. These
mechanisms are described next. Additionally, Figure 5 details
some steps of the two main fault mechanisms.

B. Fault Detection Mechanism
Phoenix fault model takes into account only faults on

output ports of inter router links (i.e. links on ports NORTH,
SOUTH, EAST and WEST). The fault detection mechanism starts
with OsPhoenix sending to the local router the command
TEST_LINKS (step 1 in Figure 5). Therefore, the Fault Monitor
requests to the Fault Control Machine to send a predefined test
packet to each output port. When the neighbor router receives
a test packet, it loops back a packet with the same information.
Therefore, the Fault Monitor is able to detect faulty links if
one of the following conditions occurs, otherwise the link is
considered tested and operating: (i) the low level control
protocol fails; (ii) the test packet is not replied; or (iii) the test
packet is replied but with different content.

Additionally, other routers identify a faulty router as a
router containing faults in its entire inbound links eliminating
the router from the possible routing paths. Finally, when Fault
Monitor finishes all link tests it sends the Faulty table to
OsPhoenix via FAULT_TAB command (step 2 in Figure 5).

C. Fault Notification Mechanism
The fault notification mechanism works in distributed way.

Each OsPhoenix performs its fault notification mechanism
propagating faults information to a neighbor OsPhoenix until it
does not reach the stabilization condition.

Fault notification mechanism, which is accomplished by
OsPhoenix, comprehends the following steps:
1. When OsPhoenix receives a packet with the Fault table,

which can be from the local router (i.e. a FAULT_TAB
command) or form another OsPhoenix (i.e. a
TR_FAULT_TAB command), it verifies if its Global fault
table is updated with the same values. If at least one value
changed, OsPhoenix update the Global fault table and
sends new packets with the same content (using only
TR_FAULT_TAB command, step 3 and 4 in Figure 5) to all
other neighbor OsPhoenix, otherwise OsPhoenix discards
the received packet;

2. Since the beginning of the operation of fault notification
mechanism, OsPhoenix starts a timer, which operates at
same clock cycle of the NoC. This one is used to compare
with the Maximum Stabilization Time Period (MSTP),
which is the stabilization condition of the fault notification
mechanism. When the timer reaches MSTP value,
OsPhoenix considers that all faults where notified to all
other OsPhoenix, enabling to compute the routing
algorithm. When the algorithm finishes, OsPhoenix sends

27

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

the WR_ROUT_TAB command (step 5 in Figure 5)
containing the Routing table to the Fault Control Machine.

MSTP is proportional to the maximum NoC length, which
is dependent on the NoC size and on the quantity and
positioning of the faults. Since the quantity and positioning of
the faults are not known during the design, we use here MSTP
as the maximum NoC length delay, which is a worst case
condition achieved by a packet passing through all routers.

D. Packet Rerouting and Drop Mechanism
Some NoC links may fail during Phoenix operation

described in the previous two sections. These faults are taken
into account similarly to the initial NoC operation. However,
routers, which have not been updated with this fault
information, consider that the fault does not exist and the
router can transmit packets along the failed path. Aiming to
avoid packets trapped inside the NoC due to a fault link, we
implemented a Packet rerouting mechanism that runs on the
router whose output port is defective. This mechanism
redirects a packet, whose destination path passes through a
fault link, to the local port, changing the data packet to a
control packet (i.e. inserting the command DROP_PACKET).
OsPhoenix reassemble the original data packet with a new path
– a packet rerouting.

Figure 6 shows an example of the rerouting mechanism
applied to a packet, which was sent from PE_A to PE_B
following path 1. In this example, one link fail and the packet
is directed to the local PE (i.e. PE_C) to be rerouted to path 3.

Figure 6 – Packet rerouting example.

When a fault occurs during the packet transmission (i.e.
only part of the packet passes through the link and then the
link fail) the Packet rerouting mechanism does not work
properly. In fact, it was necessary to implement another
solution that we call Packet drop mechanism: i) the flits that
had already passed through the fault link compose an
incomplete packet, which is propagated through all routers
until reach the target PE. Then, the flits are discarded by
OsPhoenix, since they compose an invalid packet; ii) the
remaining packet flits are eliminated into the router. When a
packet is dropped, the packet content is lost and it has to be
resent at higher software levels.

E. Fault Reevaluation Mechanism
The Fault notification mechanism was designed to support

only permanent faults. This approach facilitates the
notification mechanism to stabilize quickly. However, the NoC
was designed to support that a reevaluation of the faulty status

of all NoC links, which any OsPhoenix may require in a
distributed manner using RST_ALL_FAULTS command. This
procedure guarantees that transient faults are not accidentally
detected as a permanent fault.

The reset command is sent to all neighbor PEs, which upon
receiving this command, they: (i) reset their Global fault table;
(ii) request to their local router to reset the respective Fault
table through RST_FAULT_TAB command; and (iii) retransmit
the RST_ALL_FAULTS command to their respective neighbor
PEs. During MSTP time the NoC stops running again, thus
this time is used to propagate the system reboot message. After
MSTP, the operation is exactly equal to the one performed at
startup, i.e. a fault detection followed by a fault notification.

V. EXPERIMENTAL RESULTS
This section demonstrates the stabilization time of the

distributed fault notification mechanism.
Figure 7 illustrates the total stabilization for zero to 16

simultaneous faults and NoCs of different sizes. The results
demonstrate that the number of faults typically has a small
effect on the stabilization time. The exception is when the
number of faults is so large that most of the NoC links are
faulty. This is the case with 16 faults on a 4×4 NoC. This NoC
has 24 links and 16 of them are faulty. In this situation the
stabilization time decreases since the notification process has
to evaluate fewer links. Remark that for a square mesh NoC
with side L the number of links (nL) is computed with equation
nL = 2 × (L2 - L).

Figure 7 – Total monitoring stabilization time per number of faults

considering four NoC sizes.

Figure 8 highlights the previously mentioned effect since
in this chart the number of NoC routers normalizes the
stabilization time. For instance, if the total stabilization time
takes 700 clock cycles on a 4×4 NoC (i.e. 16 routers), then
700/16 is the normalized value.

This chart shows that the stabilization time presents low
rate with low quantity of fault links, due to the absence of
faults implies many paths with less hops to propagate the fault
notification. When the quantity of faulty links increases, the
stabilization time also increases. On the other hand, when the
quantity of faulty links becomes large compared to the total
quantity of links, the stabilization time decreases because
faulty links probably split the NoC, reducing the
communication paths. Additionally, the stabilization time per
router is around 55 clock cycles for NoCs of different sizes.

67
1

77
4 92
9

85
9

45
3

11
35 12
93

14
29

15
30

13
72

37
93

39
39 40
95

40
78

39
45

62
39

62
91 64

80

64
19

63
85

0 1 4 8 16

St
ab

ili
za

ti
on

 T
im

e
(c

lo
ck

 c
yc

le
s)

Faults

NoC Size: 4x4 5x5 8x8 10x10

28

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

Figure 8 – Stabilization time normalized by the number of routers of the NoC.

Figure 9 and Figure 10 illustrate the scalability of the
proposed approach for a scenario where the NoC is dedicated
to a traffic containing only monitoring packets, i.e. it does not
contain packets of data.

Figure 9 – Monitoring stabilization time for some sizes of square NoCs.

Figure 9 shows the stabilization time of 4 square NoCs (i.e.
4×4, 5×5, 8×8, 10×10) considering that all links are operating
without faults. The results state that the stabilization time of
the proposed approach is practically linear with respect to the
quantity of routers.

Figure 10 – Monitoring stabilization time normalized by the number of NoC

links.

Figure 10 depicts that the stabilization time is also linear
related to the number of NoC links (i.e. nL) and the number of
faults does not have significant influence.

VI. CONCLUSION
Large MPSoCs are becoming more demanding in terms of

architecture design to meet the ever-rising application

requirements at runtime. Moreover, in this context, fault
diagnosis is crucial in order to guarantee system recovery and
reduced latency in case of faults. One alternative to overcome
this problem is applying fault-tolerant mechanisms in order to
recover from faults and discover alternative paths in the
network. To address this need, this work presents Phoenix,
which is a fault-tolerant 2D mesh NoC that enables properly
communication in case of finding manufacturing faults, or
most importantly, faults occurred during execution.

The propagation of faults is an iterative process, where
neighbors relay the fault notifications to others until reaching
a stabilization condition. The fault notification mechanism
uses a maximum period as stabilization condition, since it is
proportional to the maximum NoC length and copes with
runtime faults. Experimental results show that Phoenix is
scalable in terms of stabilization time and allows the MPSoC
operation even in the presence of several faults.

ACKNOWLEDGMENT
This work is partially funded by FAPERGS PqG 12/1777-

4 and Docfix SPI n.2843-25.51/12-3. Financial support also
granted by CAPES AEX 5967-13/9, CNPQ and FAPESP to
the INCT-SEC (National Institute of Science and Technology
Embedded Critical Systems Brazil), processes 573963/2008-8
and 08/57870-9.

REFERENCES
[1] A. Jantsch and H. Tenhunen. Network on Chip. Kluwer Academic

Publishers, 312p., Jan. 2003.
[2] É. Cota, A. Amory and M. Lubaszewski. Reliability, Availability and

Serviceability of Networks-on-Chip. Springer, 2012, p. 209.
[3] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw and D. Sylvester.

Vicis: a reliable network for unreliable silicon. Design Automation
Conference, pp. 812–817, 2009.

[4] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw.
A highly resilient routing algorithm for fault-tolerant NoCs. Design,
Automation, and Test in Europe, pp. 21–26, 2009.

[5] Z. Zhang, A. Greiner and S. Taktak, A reconfigurable routing
algorithm for a fault-tolerant 2D-Mesh Network-on-Chip. Design
Automation Conference, pp. 441–446, 2008.

[6] E. Wachter, A. Erichsen, A. Amory and F. Moraes. Topology-Agnostic
Fault-Tolerant NoC Routing Method. Design, Automation, and Test
in Europe, 2013.

[7] C. Feng, Z. Lu, A. Jantsch, J. Li and M. Zhang, A reconfigurable
fault-tolerant deflection routing algorithm based on reinforcement
learning for network-on-chip. Proceedings of Workshop on Network
on Chip Architectures - NoCArc, pp. 11–16, 2010.

[8] A. Mejia, M. Palesi, J. Flich, S. Kumar, P. Lopez, R. Holsmark and J.
Duato, Region-Based Routing: A Mechanism to Support Efficient
Routing Algorithms in NoCs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 3, pp. 356–369, Mar. 2009.

41
,9

48
,4

58
,0

53
,7

28
,3

45
,4

51
,7

57
,1

61
,2

54
,9

59
,3 61

,6 64
,0

63
,7

61
,6

62
,4

62
,9 64

,8

64
,2

63
,9

0 1 4 8 16

St
ab

ili
za

ti
on

 T
im

e/

Ro
ut

er
s

(c
lo

ck
 c

yc
le

s)

Faults

NoC Size: 4x4 5x5 8x8 10x10

737,1
1351,9

3970,2

6362,7

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 s
ta

bi
liz

at
io

n
ti

m
e

(c
lo

ck
 c

yc
le

s)

Number of routers

67
1 11

35

37
93

62
39

77
4 12

93

39
39

62
91

92
9 14

29

40
95

64
80

85
9

15
30

40
78

64
19

45
3

13
72

39
45

63
85

24 40 112 180

St
ab

ili
za

ti
on

 T
im

e
(c

lo
ck

 c
yc

le
s)

NoC links

of faults: 0 1 4 8 16

29

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:08:07 UTC from IEEE Xplore. Restrictions apply.

