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Abstract. Embedded computing systems are currently present in a wide range
of consumer goods and their main characteristic is the implicit specialized be-
havior but keeping a certain level of flexibility once it avoids redesigning due
to small requirement changes. Thus, microprocessors usually are a good al-
ternative to achieve such flexibility. Consequently, embedded systems designs
make use of homogeneous or heterogeneous processors families for its complete
implementation, which is known as Multiprocessor System-on-Chip (MPSoC),
which can have a performance speed up through using dynamic load balancing
strategies, such as task migration, to fairly distribute the existing tasks among
all embedded processors. The objectives of this work are to discuss architec-
tural aspects for embedded systems, which allow a dynamic task migration and
its implications, as well as to present different techniques for the dynamic task
migration showing their possible use in MPSoCs.

1. Introduction

In embedded computing systems, ordinarily, the execution of the tasks should be per-
formed in a given period, thus imposing time restrictions. Systems, which present such
type of restriction, are known asreal-time systems(RTSs) and make use of a specific
operating system known asReal-Time Operating System(RTOS) to make their manage-
ment in a higher level of abstraction viable. Besides other OS common features, one of
the main purposes of the RTOSs consists in trying to guarantee that a task execution is
completed respecting its timing restrictions, which usually is responsibility of the RTOS
task scheduler [Farines et al. 2000].

On the other hand, due to cost and performance issues, it is desirable to implement
embedded systems in a single chipSystem-on-Chip(SoC), which allows the use of het-
erogeneous components such as CPUs, memories and buses. Furthermore, it is possible
that a SoC is composed by more than one processing element (PE), being known asMulti-
processor System-on-Chip(MPSoC). Thus, the requirements and implementation charac-
teristics needed by a given application must be taken into account during the development
of an MPSoC causing that customized architectures be designed [Jerraya et al. 2005]. In
this context, the need for a load balance of the system can be observed in MPSoCs as well
as in general purpose distributed and parallel computing systems. This issue has been
previously and broadly studied in these systems’ areaand with the rise of the MPSoCs, it
is object of research in both academia and industry [Bertozzi et al. 2006].
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The main goal of this work consists of presenting different alternatives of architec-
tural support for dynamic load balancing techniques, such as task migration, concerning
real-time MPSoCs. Through using such techniques, it might be possible to distribute
dynamically and homogeneously the system’s load, avoiding execution overload. It is
mainly due to execution overloads that many permanent failures of the system occur, like
electro migration, stress migration and dielectric breakdown [Council 2006]. Avoiding
overloaded spots may increase the application performance as well as delaying different
types of failures.

The remainder of the paper is organized as it follows. The next section shows
the related work and points their importance to this paper. In Section 3 several issues
regarding to load balancing are presented. Section 4 shows some architecture proposals
regarding to load balancing and particularly task migration evaluations. Finally, Section 5
concludes this work and presents some future work.

2. Related work
Although load balance techniques for general purpose paral-
lel computing have already been studied in some previous
works [Suen and Wong 1992], [Chang and Oldham 1995], [de Mello and Senger 2006]
let’s focus here on the works concerning the embedded computing issues. Is spite of
having some similarity with general purpose parallel computing, once both architectures
have multiple processing elements, MPSoCs present many different challenges within
their own design time, which makes even more difficult to implement efficient task
migration mechanisms.

Nollet et al. [Nollet et al. 2005] propose a reuse technique, concerning the proces-
sor’s debug registers, in order to decrease the initial overhead of a heterogeneous MPSoC
task migration. Therefore, the OS must verify the system workload and notify the task
that should be migrated. It is important to notice that, when dealing with task migra-
tion, specially on embedded systems, one of the main concerns must be the way to access
memory, once one should consider that task migration implies in transferring, somehow,
both task code and data from a node to another.

Streichert et al. [Streichert et al. 2006] on task mapping optimization with fault
tolerant mechanisms. The main idea here is to guarantee, once a fail occurs, that the
executing tasks are migrated to other non-fault PE. In this work, the architecture details are
not presented although the presented model for the task biding considering fault tolerance
could be used as threshold criteria to initiate the task migration process supported by the
architecture to be discussed throughout this paper.

Bertozzi et al. [Bertozzi et al. 2006] present an approach that deals with MPSoCs
task migration. They propose a strategy where the user is responsible for setting the
possible migration points in the application code. The architecture of the authors’ work is
composed by one master and an arbitrary number of slaves cores. Even though this paper
presents an architecture that could be used as a basis to our work its need for migration
points is not desired at all once our work is more focused on achieving a architectural
support for dynamic task migration.

Götz et al. [G̈otz et al. 2007] present a design flow for dynamic relocation of hy-
brid tasks. These tasks may be executed either in hardware or in software and are repre-
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sented through astate transition graph, where each state is known as computation block
and stands for a given task operation. In our opinion as important as the architecture sup-
port for the task migration, the consideration of the correct threshold migration parameters
are vital to the feedback of successful results in migration performances.

Barcelos et al. [Barcelos et al. 2007] propose a hybrid memory organization ap-
proach, which puts together both centralized and distributed memory organizations fo-
cused in a task migration with less energy consumption. Therefore, depending on the
position of the source and destination node in the Networks-on-Chip (NoC) architecture,
the data to be migrated is taken either from this source node or from a global shared mem-
ory. In the same research group Brião et al. [Brĩao et al. 2007] takes into account the task
migration overhead in a dynamic environment and discusses its impacts in terms of en-
ergy, performance and real-time constraints for NoC based MPSoCs. Studying the impact
of task migration is especially important when talking about load balancing systems, once
it enables the load balancing technique.

Coskun et al. [Coskun et al. 2007] show a task scheduling system aware of the
MPSoC temperature. Indeed the die temperature might be one of the greatest motivations
for implementing load-balancing techniques once hot spots accelerate permanent fault
mechanisms such as the previously mentioned electro migration, stress migration and
dielectric breakdown [Council 2006]. Having such information, it might be possible to
decide migration threshold situations to performance, energy consumption and related
with die temperature measurements.

3. Load balancing

Load balancing issues have been addressed for many
years in general purpose distributed and parallel sys-
tems [Casavant and Kuhl 1988], [Suen and Wong 1992], [Chang and Oldham 1995],
[de Mello and Senger 2006]. Considering it, it is important to introduce the main concept
of load balancing, which is the division of the amount of work among several nodes of
a given group of processing nodes. The main objective is to guarantee that none or at
least the minimum possible number of the nodes neither are overloaded nor underloaded.
The main advantages in assuring a balance of the total system workload are (i) having
a good utilization of all the system nodes, (ii) improving overall performance and (iii)
minimizing communication delays.

According to [Casavant and Kuhl 1988], load-balancing mechanisms can be clas-
sified into either global or local policies. Local policies concern individually each node of
the system and its own scheduling issues, while global one takes into account decisions
such as where to execute a process in the available nodes. Besides, there is other main
part of the taxonomy, which considers both static and dynamic policies. They regard the
time at which the scheduling or assignment decisions are made.

Static load balancing is a method in which depending on the nodes’ performance
the workload is distributed in the beginning of the system execution. The main advan-
tage of this method is the communication reduction between load controller and the other
components, which boosts the performance. Conversely, the main drawback is that it
cannot adjust itself to the runtime unknown issues, thus decreasing the application perfor-
mance [Abubakar and Aftab 2004].
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On the other hand, dynamic load balancing determines the distribution of work-
load at run-time. The master of the system performs the assignment of new tasks to
the remaining members, depending on the recent information collected. Since the work-
load distribution is done during runtime, it may give better performance at the cost of
overhead associated with communication needs [Abubakar and Aftab 2004]. Therefore,
the overhead associated should be limited in a reasonable way in order to achieve bet-
ter performance [Dandamudi 1998]. There are many dynamic load-balancing algorithms
proposed. They have four basic steps in common [Zaki et al. 1996]:

• Load monitoring, that is monitoring system’s components performance;
• Synchronization, that is exchanging this information among nodes;
• Rebalancing criteria, that is calculating new distributions and making the work

movement decision;
• Task migrationor actual data movement.

Regarding to current OSs, like the Linux 2.6 kernel, it is noticeable their capability
of utilizing the power offered by a shared memory architecture, either loosely or tightly
coupled. The key feature consists in the ability to balance workload across the available
CPUs while maintaining cache efficiency, which can be compromised because when a
task is associated with a single CPU, moving it to another CPU requires the cache to
be flushed. This will increase the latency of the task’s memory access until its data is,
indeed, in the cache of the new CPU. That is why the kernel keeps a pair of runqueues
for each processor and each runqueue supports a given number of priorities, with a top
number, which is used for real-time tasks, and the rest for user tasks. Then, time slices
are given to tasks for their execution and after using their allocation of time slice, they are
moved from the active runqueue to the expired runqueue. This mechanism provides fair
access for all tasks to the CPU. In that case, with a task queue per CPU, workload can be
balanced given the measured load of all CPUs in the system. This measurement is given
by the scheduler, which performs load balancing to redistribute the tasks along the nodes.

In RTOS systems, load-balancing techniques are desirable due to the same advan-
tages presented so far. In this context, one important thing is to maintain transparency of
the load balancing technique and one method for achieving it is to configure the RTOS,
so that individual threads can be assigned to run on specific processors based on its avail-
ability. Doing so, the processing load can be shared among processors with work auto-
matically assigned to a free processor. The RTOS must determine whether a processor
is free and, if it is true, a thread can be run on that processor even though the remain-
ing of the system may already be running other threads. In addition, priorities are also
important to consider once the RTOS scheduler is designed to maintain priority execu-
tion of all threads, in such way that higher priority threads are executed before lower
priority threads. Priority-based, preemptive scheduling uses multiple cores to run threads
when they are ready. The scheduler automatically runs threads on available cores. Details
regarding to our proposal on the scheduler’s implementation will be detailed along the
Section 4.

Consequently, it is possible to see that automatic load-balancing feature is bene-
ficial to overall system performance. For instance, one processor can be the responsible
for all external interrupt handling, which leaves the other processor free to focus in its ap-
plication processing, even during periods of intense interrupt activity that could degrade
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performance. In the following section, load balancing monitors strategies are presented.
These approaches serve as base for the implementation of dynamic load balancing tech-
niques, which are supported in the forthcoming architectures’ discussion.

3.1. Load balancing monitors

In order to get a fairly balanced system, monitors responsible for analyzing the load of the
system are desirable and there are two main approaches concerning their implementation
which are centralized and distributed ones. Both concepts are based in [Lan and Yu 2001]
definitions.

In a centralized load balancing system, a single node collects the global load in-
formation. The other nodes send their load status messages to the central scheduler and
all load-balancing decisions are made at the central scheduler based on the collected mes-
sages. A main issue of centralized load balancing mechanisms is relatively low reliability,
once its failure leads to load balancing policy disoperation.

Whereas, in a decentralized load balancing system, each node broadcasts its load
information periodically to other nodes, so they can update their own load tables. Every
node performs its node selection based on the global system load status, which is contin-
ually obtained. The major drawback is that every node, including busy ones, must keep
track of incoming update messages, as well as generate update messages of its own. Fi-
nally, taking the load balancing as a background, the next section discusses the proposed
architectures for dynamic load balancing mechanisms through task migration in real-time
MPSoCs.

4. Proposed architectures

In this section, several architectures are proposed in order to allow load balancing in
MPSoCs through task migration. Initially, the base platform is discussed followed by the
architecture strategies.

4.1. Base platform

The platform is composed of one Plasma [Cores 2007] processor core, which implements
the MIPS I instruction set. Several advantages arise in the use of this processor, such
as: open source implementation, ease integration among multiple cores through some
interconnection layer, pre-developed compilers and reasonable performance for most of
embedded applications. Besides the processor core, other components complete this basic
architecture, such as a netlist of the processing core, an internal memory, an UART and
an interface to external memory. All these components communicate through an internal
bus. A testbench, which generates clock and resets signals to the processor core and other
modules, was created, allowing the simulation of the platform functionality in an RTL
simulator.

To create an MPSoC platform we used four Plasma processors like the one de-
scribed earlier and their communication is done through a media control access and a bus.
The implemented architecture is presented as a block diagram depicted in Figure 1.

It is important to notice that although the interfaces are defined in a very generic
way, other communication strategies, like NoC, can be adopted instead. Regarding that it
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Figure 1. MPSoC base platform to be used in the study

is a simple system, where there are no DMA controllers and the processor is the responsi-
ble for managing all the communication, it is reasonable to use a smaller logic communi-
cation solution, once without the proper support, a more efficient communication method
would be underutilized anyway.

Moreover, this platform was implemented in VHDL and prototyped in FPGA.
Several software communication drivers were developed, using simplesendandreceive
blocking and non-blocking primitives. Besides, other operating systems can be used in
this architecture. The main options regarding this study are:

• EPOS [Fr̈ohlich and Schr̈oder-Preikschat 1999] - an OS oriented to application,
which adapts itself to the user application requirements;

• PlasmaRTOS [Cores 2007] - OS available for execution on Plasma processor;
• Own developedmicro-kernel, which is a small OS, when compared to the previous

ones.

4.2. Base platform and monitors

In order to supervise dynamically the system load, the monitor strategy is a main concern.
Therefore, analyzing the existing approaches (previously reviewed in Section 3.1) and
considering the base platform, it is possible to propose three different monitors strategies
here.

The first approach is ahardware-centralized monitor, which is implemented as a
dedicated hardware module. It communicates with the processors, storing their workload
information. New tasks arrive, for instance, when the monitor distribute them and evaluate
their impact on the entire system. This strategy is depicted in part A of Figure 2, where
can be seen the four processors connected through a bus and a dedicated hardware load
monitor. Another possible approach concerns to asoftware centralized monitor, that is,
a dedicated processor acting like a load monitor. Similarly to the hardware centralized
approach, this monitor should store the state of the system workload to take the different
decisions regarding to a possible migration of tasks. This approach is shown in part B of
Figure 2 among the other processing elements being all of them connected through a bus.

Figure 2. Centralized hardware (A) and software (B) load monitor
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The last proposed type of architecture is adistributed monitor strategy, in which
the operating system of each Plasma core should always try to agree with each other in
relation to the total system workload. When a processor is overloaded, it might ask for
others help. If one is underloaded, it can automatically send its load to a normal loaded
one and put itself to some sort of sleeping mode. Figure 3 shows this strategy, where the
processors come to an agreement themselves in order to keep the system balanced.

Figure 3. Distributed load monitor

The main benefits of this implementation concerns its level of abstraction; it can
be done at OS level being easily updated or extended. Besides, neither the silicon area
of the chip needs to increase nor a dedicated module needs to be implemented. Overall,
this implementation is independent of both the communication architecture used and of
possible updates in the PE hardware. Finally, as it is a naturally distributed strategy, this
type of monitor should not affect significantly in the overall MPSoC performance.

No matter what monitor strategy is adopted, it should evaluate other issues than
just system workload. One of these concerns could regard to some temperature sensors,
for instance, in order to keep the chip temperature also balanced. Energy consumption
of each core could also be taken into account and specially be evaluated against the pure
workload information, thus generating a special type of monitor, which tries the best
workload taking into account energy consumption issues.

4.3. Task migration

When load-balancing strategies are adopted, they must define the way the load is actu-
ally going to be switched among the different processing elements. One of the main
approaches regarding this is the task migration one that, somehow, must migrate tasks
that are being executed in a given overloaded or underloaded node to an average loaded
one.

Regarding to some embedded systems own issues like commonly limited mem-
ory, performance requirements and energy saving concerns, we propose the use of two
different levels of hierarchy in order to perform task migration without the degradation of
the systems performance at all.

The first instance of the hierarchy is a set of processors with shared memory, so
that for task migration to happen the processors need simply send the task identification
to the recipient, which can easily access all needed task information through the shared
memory. This type of migration is here defined asinternal migration. In this case, each
set of processors would have a monitor strategy implemented allowing the set to be fairly
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balanced. Figure 4 shows this strategy in two different parts regarding to the monitors’
strategy we believe can better fit to it. The idea of keeping sets of processors is that
they are small, so that centralized monitors (either hardware or software) could be imple-
mented without compromising scalability.

Figure 4. A single set of processor: internal migration is allowed

The second part of the system is formed by several sets of processors with no
shared memory strategy. In this case, in a distributed way, sets of processors could agree
among themselves about migrating tasks from one given set of processor to another. In
this case, all the information concerning the task should also be sent and this overhead
should be included when considering if migration is needed or not. This type of migration
is defined to beexternal migration. As the number of sets of processors might increase
once they will not have shared memory limitations, we believe that the distributed monitor
is more indicated and this is presented in Figure 5.

Figure 5. Several sets of processors: external migration is allowed

In a certain way, this approach is locally symmetric multiprocessing (SMP) and
globally asymmetric multiprocessing (AMP) and tries to join advantages of both imple-
mentation strategies. Preliminary studies point that by doing this kind of implementation,
when considering hard real-time embedded systems, it might be possible to avoid deadline
missing, especially of hard real-time aperiodic tasks once when this type of task occurs:

• Other best effort tasks might be migrated internally in the same set of processors,
making enough space for the execution of the just arrived task;

• If the external migration is not going to violate any of the just arrived task dead-
lines, it could be performed in order to balance the system workload.

Finally, even regarding to all the potential benefits in using dynamic task migra-
tion mechanisms in real-time MPSoCs, its effective use is not a reality yet. Indeed, the
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very MPSoCs design issues can be faced as a series of potential to such implementa-
tions [Bertozzi et al. 2006]. Thus, these challenges have not allowed yet the full imple-
mentation of a total dynamic task migration mechanism in RTL level concerning this type
of systems.

5. Conclusion and Future work

Embedded systems are massively present in people’s lives and each more advances in
technology allow their growing impulse. Thus, MPSoC are being commonly used to im-
plement such systems, hence performance requirements and energy constraints might be
addressed. Besides that, embedded applications might also present real-time constraints
increasing the system design and management complexity.

Although MPSoCs tend to be dedicated to their application, one can notice its
resemblance with general-purpose parallel computer in the sense both have several pro-
cessing elements connected through some channel. For this reason, former and classical
issues of general-purpose parallel and distributed system are again being topic of research
and load balancing can be highlighted in this context.

In this paper, load-balancing theory is taken as background to achieve the main
objective of this work: propose architectures, which are able of implementing load bal-
ancing mechanisms and thus, allowing dynamic task migration among several nodes of
an MPSoC. The preliminary prototype was detailed and other studies regarding to the
load balancing monitor implementations were addressed. Future work includes the use of
existing and functional distributed applications in the platform with the proposed archi-
tecture updates and the comparison between dynamic load balancing system and regular
system strategies.
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