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Abstract - Task mapping is an important issue in MPSoC 

design. Most recent mapping algorithms perform them at 

design time, an approach known as static mapping. 

Nonetheless, applications running in MPSoCs may execute a 

varying number of simultaneous tasks. In some cases, 

applications may be defined only after system design, enforcing 

a scenario that requires the use of dynamic task mapping. 

Static mappings have as main advantage the global view of the 

system, while dynamic mappings normally provide a local 

view, which considers only the neighborhood of the mapping 

task. This work aims to evaluate the pros and cons of static and 

dynamic mapping solutions. Due to the global system view, it is 

expected that static mapping algorithms achieve superior 

performance (w.r.t. latency, congestion, energy consumption). 

As dynamic scenarios are a trend in present MPSoC designs, 

the cost of dynamic mapping algorithms must be known, and 

directions to improve the quality of such algorithms should be 

provided without increasing execution time. This quantitative 

comparison between static and dynamic mapping algorithms is 

the main contribution of this work. 

I. INTRODUCTION 

Applications running in MPSoCs (e.g. multimedia and 
networking) may present dynamic task workload, implying a 
variable number of tasks running at any given moment, 
which may exceeds the available resources. As a result, it is 
necessary to control task operation and system resources use, 
including the dynamic management of task load. 

Task mapping consists in finding a placement for 
application tasks, to fulfill a set of requirements (e.g. energy 
consumption saving and congestion reduction). Mapping 
decisions may drastically influence system performance. 
Concerning the moment in which it is defined, task mapping 
can be classified as static or dynamic. [n the first case, tasks 
placement is defined at design time. Several works propose 
static mapping techniques, including e.g. references [I] to 
[7]. These techniques are not appropriate for dynamic 
workloads scenarios, due to their algorithmic complexity and 
consequent execution time. Dynamic task mapping, on the 
other hand, is capable to define each task placement at 
runtime. Related references are [8] to [13]. 
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This work investigates the performance of static and 
dynamic task mapping algorithms in NoC-based MPSoCs. 
The main objective here is to compare both mapping 
alternatives and enumerate advantages and drawbacks of 
each one. The investigation employs two static mapping 
algorithms proposed in several approaches available in the 
literature, and two dynamic algorithms originally proposed 
by some of the Authors in [13]. 

The remaining of this paper is organized as follows. 
Section II presents the state of the art in static mapping 
algorithms. The state of the art and some techniques of 
dynamic task mapping algorithms are supplied in Section III. 
Section IV presents the experimental setup and results. 
Finally, Section V provides a set of conclusions. 

II. STATIC MAPPING TECHNIQUES 

Static approaches are suitable only for specific platforms, 
not allowing the insertion of new applications into the 
system at run-time. As these approaches are performed 
during the design time, the algorithms may use a more 
thorough amount of information about the system to take 
decisions. This includes the topology of the application 
graph, the volume/rate of the communication between tasks, 
the total system use, etc. [n this way, the quality of mappings 
with a global view may be superior w.r.t. approaches with 
only a local view, as the dynamic mappings presented later. 

Lei and Kumar [1] present a two-step genetic mapping 
algorithm that aims to optimize application execution time. 
Graphs represent applications and the target architecture is a 
NoC. [n [2], Wu et al. also investigate the use of a genetic 
mapping algorithm. Results show 51 % less energy 
consumption by considering DVS techniques in combination 
with the mapping algorithm. Murali et al. [3] explore 
mappings for more than one application during the NoC 
design process. The Authors employ the Taboo Search 
algorithm to explore the large solution search space. 
Manolache et al. [4] investigate task mapping into NoCs, 
aiming at guaranteeing packet latency. For this purpose, both 
task mapping algorithm (i.e. Taboo Search) and packet 
routing are defmed at design time. In [5], Hu and Marculescu 
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present a branch-and-bound algorithm to map a given set of 
IPs onto a NoC with bandwidth reservation. Experimental 
results show 51.7% communication energy savings 
compared to an ad hoc implementation. Orsila et al. [6] 
investigate the mapping of applications on MPSoCs. For 
automated mapping, these Authors propose a new parameter 
selection scheme for the Simulated Annealing algorithm. 
The Authors suggest that this may render mapping faster and 
less memory expensive. 

The static mapping algorithms used as reference in this 
work are based on [7], where the Authors investigate how to 
map modules into a NoC targeting low energy consumption. 
They compare several algorithms using the communication
weighted model CWM, where applications are characterized 
by inter-task communication volume. The employed 
heuristics are Simulated Annealing (SA) and Taboo 
Search (TS). 

III. DYNAMIC MAPPING TECHNIQUES 

In opposition to static mapping, in dynamic scenarios the 
time taken to map each task is relevant, since it influences 
the overall application execution time. To reduce mapping 
overhead, greedy algorithms may be used, since these trade 
search space exploration quality by fast results. 

Even if the mapping execution time is an important cost 
function, the literature in general does not consider the 
overhead to map tasks [9] [11]. These works assume that the 
system execution time gains with this new mapping 
compensate the time spent to map each task. Based on this 
assumption, many authors employ the same strategies used 
for static scenarios in dynamic scenarios. For example, SA 
algorithms are employed for static mapping in [3] and [6] 
and for dynamic mapping in [9]. 

Smit et al. [8] present an iterative hierarchical approach 
to map an application to a NoC-based SoC at runtime, where 
a set of communicating tasks models the application. Aiming 
at energy consumption savings, the mapping algorithm tries 
to place each task near to its communicating entities. 
Similarly, in [9], besides the SA algorithm, Ngouanga et al. 
use a Force Directed mapping algorithm, which aims to 
approximate communicating tasks. Chou and Marculescu 
[10] include user behavior information in the task mapping 
process. This behavior information is employed to define 
tasks periodicity and communication rates. Mehran et al. [11] 
present a mapping algorithm that searches a placement 
following a Spiral path, tending to place communication 
tasks near to each other, as in [8]. This method executes for a 
single application without cost function evaluation. Al 
Faruque et al. [12] suggest a distributed agent-based 
mapping approach, recommended for larger MPSoCs, as the 
one presented in their paper, a 32x64 system. 

The dynamic mapping algorithms used in this paper were 
originally proposed in [13]. The main cost function of these 
algorithms is to reduce the NoC congestion, being thus 
called congestion aware algorithms. MPSoCs presented in 
[13] are heterogeneous, composed by distinct Processing 
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Elements (PEs) as embedded reconfigurable logic and 
processors. In the present work, MPSoCs are homogeneously 
modeled, to focus on the comparison between static and 
dynamic approaches. 

Each application is modeled having an initial task. The 
mapping of initial application tasks employs a Clustering 
strategy. The MPSoC is partitioned in regions named 
clusters, where only one initial task can be mapped at some 
specific time instant. As each application has a unique initial 
task, the clustering strategy reduces the probability of tasks 
belonging to different applications to share the same NoC 
region. Consequently, the sharing of NoC channels by 
communications of distinct applications is also reduced, 
which is one of the applied heuristics to fulfill the congestion 
reduction requirement. 

The employed heuristics are: 

Path Load (PL) - It considers only the channels used by 
the mapping task (communication path). The PL algorithm 
computes the cost of each mapping according to the 
communication path. Then, it adds the new task rates to the 
current rates in each channel of the communication path. The 
cost of all feasible maps is then computed, and the selected 
mapping is the first one with minimum cost. 

Best Neighbor (BN) - The BN algorithm reuses the PL 
cost computation scheme changing the search method. In 
BN, the search method follows a spiral path, testing the 
neighbors of the task requesting a new task from distance 1 
to NoC limits. The best neighbor is selected according to the 
communication path occupation. This algorithm is faster 
than PL, since it is not necessary to verifY all possible maps. 
However, the BN algorithm does not evaluate the number of 
hops, so it may find false small cost maps. 

IV. EXPERIMENTS AND RESULTS 

The simulation environment employs the Hermes NoC 
[14], a 2D-mesh topology with 16-bit flit width, described in 
RTL VHDL. Other parameters include wormhole packet 
switching, input buffers, and deterministic XY routing 
algorithm. Processing Elements are modeled using two 
different RTL SystemC-Cthreads, one for the Manager 
Processor and the second one for the remaining PEs. 

The set of graphs employed in the experiments is 
composed by 4 synthetic application graphs (obtained with 
the TGFF tool, containing from 7 to 9 tasks), and 4 real 
applications graphs: MPEG-4 decoder, with 13 tasks; Video 
Object Plane Decoder (VOPD), with 13 tasks; Romberg 
integration method (RBERG), with 10 tasks; and Multi
Window Display (MWD), with 12 tasks. The MPEG-4 graph 
contains, as relevant characteristic, one task connected to 8 
other tasks. The VOPD application presents smaller inter
task dependency when compared to MPEG-4. The RBERG 
graph presents an important inter-task dependency, where 
most tasks communicate with 4 tasks. 

Two simulation scenarios are evaluated: 
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• Single Application Mapping - This scenario employs a 
5x4 homogeneous MPSoC. The goal here is to compare 
mapping algorithms according to different performance 
figures, for a single application. Thus, a static mapping 
can explore all MPSoC resources without the 
interference of other applications. 

• Multiple Application Mapping - This scenano 
employs a 9x9 homogeneous MPSoC. This scenario 
aims at comparing mapping algorithms when a set of 
applications are simultaneously mapped. 

A. Single Application Mapping 

Figure 1 presents the task mapping of the real 
applications, for each algorithm. The number of hops 
required to execute all bidirectional communication between 
all pair of connected tasks is also indicated, for all mappings. 

The SA algorithm obtains the smaller number of hops for 
all applications, which denotes a smaller number of used 
channels to accomplish all communications. BN and PL, 
which have a local view of the application, achieve results 
near to SA and superior to TS. The exception is the MPEG-4 
application, where task 1 has 8 neighbors. For BN and PL 
this task was mapped near task ° (its caller), and the 
remaining tasks connected to this task were mapped far from 
it, due to the lack of available resources. Algorithms 
considering the whole application graph (SA e TS) are able 
to map MPEG-4 task 1 in a central position. 
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Figure 1. Mapping results. Each square represents one PE. Numbers 
inside squares identify the task allocated inside it. 

Table I presents the results obtained in this first scenario, 
normalized to the SA algorithm. The first two parameters are 
related to the channel occupation, which represents NoC 
usage. Observe that the cost of the dynamic algorithms is 
low, approximately 6% for the average NoC occupation. The 
average overhead of packet transmission latency is even 

089 

lower, 1 %. The average total number of hops increases 14% 
for the dynamic approaches. 

TABLE I. SUMMARY OF RESULTS FOR THE MPSoC 5x4 SCENARIO. 

VALUES ARE NORMALIZED W.R.T. THE SAALGORlTHM RESULTS. 

Performance figures 

Channel Occupation (average) 

Channel Occupation (deviation) 

Packet Latency (average) 

Packet Latency (deviation) 

Number of Hops 

Total Execution Time 

Communication Energy 

i Dynamic 
....................................................... 

PL BN 

1.07 1.06 

0.97 0.92 

1.01 1.01 

0.99 0.99 

1.14 1.14 

1.04 1.03 

138 138 

Static 

SA TS 
1.00 0.96 

1.00 0.94 

1.00 1.0 I 

100 1.00 

/.00 1.26 

100 1.0 I 

100 1.11 

Concerning the total execution time, Table I shows that 
the values obtained with BNIPL mapping algorithms are in 
average only 4% worse if compared to SA. It is important to 
point out that it is considered the time to map each task when 
dynamic algorithms are executed. Since static mapping 
algorithms are performed at design time, there is no mapping 
overhead during the application execution. In addition, it is 
important to note that this overhead is obtained for scenarios 
were applications execute, in average, only 310,909 clock 
cycles. Increasing the communication volume and/or task 
execution time, the task mapping overhead is minimized. For 
example, when the communication volume is increased by 
10 times in [15], this overhead is canceled. 

The last line of Table I presents the average energy 
consumption, estimated according to [7]. Dynamic mapping 
algorithms are penalized in this performance figure, due to 
the additional network hops involved in the communication. 
MPEG-4 is the application that most penalizes dynamic 
mapping algorithms. If this application is not considered in 
the average, the energy consumption penalty becomes 
smaller (17%). This comparison reveals that dynamic 
mapping has smaller costs compared to static mapping, when 
application graphs do not have strongly connected tasks. 
Situations like that in the MPEG-4 benchmark are not 
commonplace in real applications. 

B. Multiple Application Mapping 

This experiment maps 8 concurrent applications into the 
MPSoC. The mapping quality may be estimated as a 
function of the area fragmentation. Figure 2 presents the 
application area distribution for the BN mapping. BN and PL 
generate applications that are more isolated. The smaller 
fragmentation observed in the dynamic mapping algorithm 
comes from the clustering strategy, which increases the size 
of contiguous blocks. 

Table II presents the results for this second scenario, 
normalized as a function of the TS algorithm (for larger 
benchmarks TS outperforms SA). The overall overhead 
induced by dynamic mapping in such a complex scenario is 
small, which may be observed in columns PL and BN, 
respectively: 7% and 13% in average channel occupation, 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:31:41 UTC from IEEE Xplore.  Restrictions apply. 



7% and 10% in average packet latency, 4% and 3% in total 
execution time, and 18% and 13% in the communication 
energy consumption. 

Best Neighbor (number of hops = 264) 

Single Task of 
- - Application AO 

(FRAGMENTATION) 

Triangle where 
the PE is shared 

- - - by A2 and A5 
(REUSE) 

Application A7 in 
a contiguous area 

--.- - FREE 
resource 

Figure 2. Application distribution with BN algorithm in a 9x9 MPSoC. 
Applications are represented by Ai. MP is the Manager. 

TABLE II. SUMMARY OF RESULTS FOR THE MPSoC 9x9 SCENARIO. 

VALUES ARE NORMALIZED W.R. T THE TS ALGORITHM. 

Performance figures 
Dynamic Static 

PL BN SA TS 
Channel Occupation (average) 1.07 1.13 1.13 1.00 
Channel Occupation (deviation) 1.18 1.27 1.36 1.00 
Packet Latency (average) 1.07 1.10 1.16 1.00 
Packet Latency (deviation) 1.03 1.11 1.05 1.00 
Number of Hops 0.93 0.92 1.59 1.00 
Total Execution Time 1.04 1.03 1.02 1.00 
Energy Consumption 1.18 1.13 1.35 1.00 

V. CONCLUSION 

This work addressed an important issue for the practical 
utilization of MPSoCs: task mapping. The evaluation of 
mapping algorithms is found in the literature, but a fair 
comparison between static and dynamic approaches was not 
yet available. This is the main contribution of this paper. 

Experiments with a complex scenario (8 simultaneous 
applications) showed that the dynamic mapping overhead, 
when compared to static mapping was in average 10% in 
channel occupation, 8.5% in latency, 3.5% in total execution 
time and 15.5% in the communication energy consumption. 
This is an acceptable overhead, considering the advantages 
offered by dynamic mapping: (i) smaller systems may be 
used, since only tasks being executed are required to be 
mapped into the system; (ii) the number of taskslapplications 
may be superior to available system resources; (iii) the 
inclusion of new applications after system design extends the 
MPSoC lifetime. 

As stated in the text, the main weakness of dynamic 
mapping is the partial view of the application graph, since 
the task being mapped considers only the communication 
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with its caller task. On the other hand, static algorithms 
consider all tasks and resources together, enabling to explore 
better mappings using complex algorithms. Some directions 
can be explored to improve the performance of dynamic 
mapping algorithms. Examples are: (i) when a given task 
starts its execution, a manager processor could start the 
mapping of all its slave tasks, or reserve resource for them; 
(ii) adoption of some task migration strategy when the 
communication cost becomes too high for a given task; (iii) 
to increase the view of the dynamic heuristic for 2 or more 
neighbor levels. 
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