
Evaluation of Static and Dynamic Tasl< Mapping

Algorithms in NoC-Based MPSoCs

Ewerson Carvalho, Cesar Marcon, Ney Calazans and Fernando Moraes

Pontificia Universidade Cat6lica do Rio Grande do SuI (F ACIN-PUCRS)
Av. Ipiranga, 6681 - P32 - 90619-900 - Porto Alegre - RS - Brasil
{ewerson.carvalho, cesar.marcon, ney.calazans, fernando.moraes}@pucrs.br

Abstract - Task mapping is an important issue in MPSoC

design. Most recent mapping algorithms perform them at

design time, an approach known as static mapping.

Nonetheless, applications running in MPSoCs may execute a

varying number of simultaneous tasks. In some cases,

applications may be defined only after system design, enforcing

a scenario that requires the use of dynamic task mapping.

Static mappings have as main advantage the global view of the

system, while dynamic mappings normally provide a local

view, which considers only the neighborhood of the mapping

task. This work aims to evaluate the pros and cons of static and

dynamic mapping solutions. Due to the global system view, it is

expected that static mapping algorithms achieve superior

performance (w.r.t. latency, congestion, energy consumption).

As dynamic scenarios are a trend in present MPSoC designs,

the cost of dynamic mapping algorithms must be known, and

directions to improve the quality of such algorithms should be

provided without increasing execution time. This quantitative

comparison between static and dynamic mapping algorithms is

the main contribution of this work.

I. INTRODUCTION

Applications running in MPSoCs (e.g. multimedia and
networking) may present dynamic task workload, implying a
variable number of tasks running at any given moment,
which may exceeds the available resources. As a result, it is
necessary to control task operation and system resources use,
including the dynamic management of task load.

Task mapping consists in finding a placement for
application tasks, to fulfill a set of requirements (e.g. energy
consumption saving and congestion reduction). Mapping
decisions may drastically influence system performance.
Concerning the moment in which it is defined, task mapping
can be classified as static or dynamic. [n the first case, tasks
placement is defined at design time. Several works propose
static mapping techniques, including e.g. references [I] to
[7]. These techniques are not appropriate for dynamic
workloads scenarios, due to their algorithmic complexity and
consequent execution time. Dynamic task mapping, on the
other hand, is capable to define each task placement at
runtime. Related references are [8] to [13].

978-1-4244-4467 -0/09/$25.00 ©2009 IEEE 087

This work investigates the performance of static and
dynamic task mapping algorithms in NoC-based MPSoCs.
The main objective here is to compare both mapping
alternatives and enumerate advantages and drawbacks of
each one. The investigation employs two static mapping
algorithms proposed in several approaches available in the
literature, and two dynamic algorithms originally proposed
by some of the Authors in [13].

The remaining of this paper is organized as follows.
Section II presents the state of the art in static mapping
algorithms. The state of the art and some techniques of
dynamic task mapping algorithms are supplied in Section III.
Section IV presents the experimental setup and results.
Finally, Section V provides a set of conclusions.

II. STATIC MAPPING TECHNIQUES

Static approaches are suitable only for specific platforms,
not allowing the insertion of new applications into the
system at run-time. As these approaches are performed
during the design time, the algorithms may use a more
thorough amount of information about the system to take
decisions. This includes the topology of the application
graph, the volume/rate of the communication between tasks,
the total system use, etc. [n this way, the quality of mappings
with a global view may be superior w.r.t. approaches with
only a local view, as the dynamic mappings presented later.

Lei and Kumar [1] present a two-step genetic mapping
algorithm that aims to optimize application execution time.
Graphs represent applications and the target architecture is a
NoC. [n [2], Wu et al. also investigate the use of a genetic
mapping algorithm. Results show 51 % less energy
consumption by considering DVS techniques in combination
with the mapping algorithm. Murali et al. [3] explore
mappings for more than one application during the NoC
design process. The Authors employ the Taboo Search
algorithm to explore the large solution search space.
Manolache et al. [4] investigate task mapping into NoCs,
aiming at guaranteeing packet latency. For this purpose, both
task mapping algorithm (i.e. Taboo Search) and packet
routing are defmed at design time. In [5], Hu and Marculescu

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:31:41 UTC from IEEE Xplore. Restrictions apply.

present a branch-and-bound algorithm to map a given set of
IPs onto a NoC with bandwidth reservation. Experimental
results show 51.7% communication energy savings
compared to an ad hoc implementation. Orsila et al. [6]
investigate the mapping of applications on MPSoCs. For
automated mapping, these Authors propose a new parameter
selection scheme for the Simulated Annealing algorithm.
The Authors suggest that this may render mapping faster and
less memory expensive.

The static mapping algorithms used as reference in this
work are based on [7], where the Authors investigate how to
map modules into a NoC targeting low energy consumption.
They compare several algorithms using the communication
weighted model CWM, where applications are characterized
by inter-task communication volume. The employed
heuristics are Simulated Annealing (SA) and Taboo
Search (TS).

III. DYNAMIC MAPPING TECHNIQUES

In opposition to static mapping, in dynamic scenarios the
time taken to map each task is relevant, since it influences
the overall application execution time. To reduce mapping
overhead, greedy algorithms may be used, since these trade
search space exploration quality by fast results.

Even if the mapping execution time is an important cost
function, the literature in general does not consider the
overhead to map tasks [9] [11]. These works assume that the
system execution time gains with this new mapping
compensate the time spent to map each task. Based on this
assumption, many authors employ the same strategies used
for static scenarios in dynamic scenarios. For example, SA
algorithms are employed for static mapping in [3] and [6]
and for dynamic mapping in [9].

Smit et al. [8] present an iterative hierarchical approach
to map an application to a NoC-based SoC at runtime, where
a set of communicating tasks models the application. Aiming
at energy consumption savings, the mapping algorithm tries
to place each task near to its communicating entities.
Similarly, in [9], besides the SA algorithm, Ngouanga et al.
use a Force Directed mapping algorithm, which aims to
approximate communicating tasks. Chou and Marculescu
[10] include user behavior information in the task mapping
process. This behavior information is employed to define
tasks periodicity and communication rates. Mehran et al. [11]
present a mapping algorithm that searches a placement
following a Spiral path, tending to place communication
tasks near to each other, as in [8]. This method executes for a
single application without cost function evaluation. Al
Faruque et al. [12] suggest a distributed agent-based
mapping approach, recommended for larger MPSoCs, as the
one presented in their paper, a 32x64 system.

The dynamic mapping algorithms used in this paper were
originally proposed in [13]. The main cost function of these
algorithms is to reduce the NoC congestion, being thus
called congestion aware algorithms. MPSoCs presented in
[13] are heterogeneous, composed by distinct Processing

088

Elements (PEs) as embedded reconfigurable logic and
processors. In the present work, MPSoCs are homogeneously
modeled, to focus on the comparison between static and
dynamic approaches.

Each application is modeled having an initial task. The
mapping of initial application tasks employs a Clustering
strategy. The MPSoC is partitioned in regions named
clusters, where only one initial task can be mapped at some
specific time instant. As each application has a unique initial
task, the clustering strategy reduces the probability of tasks
belonging to different applications to share the same NoC
region. Consequently, the sharing of NoC channels by
communications of distinct applications is also reduced,
which is one of the applied heuristics to fulfill the congestion
reduction requirement.

The employed heuristics are:

Path Load (PL) - It considers only the channels used by
the mapping task (communication path). The PL algorithm
computes the cost of each mapping according to the
communication path. Then, it adds the new task rates to the
current rates in each channel of the communication path. The
cost of all feasible maps is then computed, and the selected
mapping is the first one with minimum cost.

Best Neighbor (BN) - The BN algorithm reuses the PL
cost computation scheme changing the search method. In
BN, the search method follows a spiral path, testing the
neighbors of the task requesting a new task from distance 1
to NoC limits. The best neighbor is selected according to the
communication path occupation. This algorithm is faster
than PL, since it is not necessary to verifY all possible maps.
However, the BN algorithm does not evaluate the number of
hops, so it may find false small cost maps.

IV. EXPERIMENTS AND RESULTS

The simulation environment employs the Hermes NoC
[14], a 2D-mesh topology with 16-bit flit width, described in
RTL VHDL. Other parameters include wormhole packet
switching, input buffers, and deterministic XY routing
algorithm. Processing Elements are modeled using two
different RTL SystemC-Cthreads, one for the Manager
Processor and the second one for the remaining PEs.

The set of graphs employed in the experiments is
composed by 4 synthetic application graphs (obtained with
the TGFF tool, containing from 7 to 9 tasks), and 4 real
applications graphs: MPEG-4 decoder, with 13 tasks; Video
Object Plane Decoder (VOPD), with 13 tasks; Romberg
integration method (RBERG), with 10 tasks; and Multi
Window Display (MWD), with 12 tasks. The MPEG-4 graph
contains, as relevant characteristic, one task connected to 8
other tasks. The VOPD application presents smaller inter
task dependency when compared to MPEG-4. The RBERG
graph presents an important inter-task dependency, where
most tasks communicate with 4 tasks.

Two simulation scenarios are evaluated:

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:31:41 UTC from IEEE Xplore. Restrictions apply.

• Single Application Mapping - This scenario employs a
5x4 homogeneous MPSoC. The goal here is to compare
mapping algorithms according to different performance
figures, for a single application. Thus, a static mapping
can explore all MPSoC resources without the
interference of other applications.

• Multiple Application Mapping - This scenano
employs a 9x9 homogeneous MPSoC. This scenario
aims at comparing mapping algorithms when a set of
applications are simultaneously mapped.

A. Single Application Mapping

Figure 1 presents the task mapping of the real
applications, for each algorithm. The number of hops
required to execute all bidirectional communication between
all pair of connected tasks is also indicated, for all mappings.

The SA algorithm obtains the smaller number of hops for
all applications, which denotes a smaller number of used
channels to accomplish all communications. BN and PL,
which have a local view of the application, achieve results
near to SA and superior to TS. The exception is the MPEG-4
application, where task 1 has 8 neighbors. For BN and PL
this task was mapped near task ° (its caller), and the
remaining tasks connected to this task were mapped far from
it, due to the lack of available resources. Algorithms
considering the whole application graph (SA e TS) are able
to map MPEG-4 task 1 in a central position.

't
(!)
w
"-
::;:

0
;s:
::;:

0
"-
0
>

Path Load/ Simulated Tabu
Best Neighbor Annealing Search

4

2

1 3 8 1 11

0 5 7 9 9 10

Number of hops = 50

3 9 11 10

2 10 8 9 3

1 5 7 2

0 4 6 10 0 1

Number of hops = 28 Number of hops = 34

3 0

2 r s
r- r-- 2 1 4 7 5 r-

1 5 8 3 5 7 4 1 9 8

0 4 7 9 6 8 9 0 2 3 6
-Number of hops - 42 -Number of hops - 36 -Number of hops - 52

4 5 6 7 6 4 3 7 8 12

3 12 2 7 2 11

1 9 8 9 10

0 2 10 11 3 1 a
Number of hops = 40 Number of hops = 38 Number of hops = 46

Figure 1. Mapping results. Each square represents one PE. Numbers
inside squares identify the task allocated inside it.

Table I presents the results obtained in this first scenario,
normalized to the SA algorithm. The first two parameters are
related to the channel occupation, which represents NoC
usage. Observe that the cost of the dynamic algorithms is
low, approximately 6% for the average NoC occupation. The
average overhead of packet transmission latency is even

089

lower, 1 %. The average total number of hops increases 14%
for the dynamic approaches.

TABLE I. SUMMARY OF RESULTS FOR THE MPSoC 5x4 SCENARIO.

VALUES ARE NORMALIZED W.R.T. THE SAALGORlTHM RESULTS.

Performance figures

Channel Occupation (average)

Channel Occupation (deviation)

Packet Latency (average)

Packet Latency (deviation)

Number of Hops

Total Execution Time

Communication Energy

i Dynamic
...

PL BN

1.07 1.06

0.97 0.92

1.01 1.01

0.99 0.99

1.14 1.14

1.04 1.03

138 138

Static

SA TS
1.00 0.96

1.00 0.94

1.00 1.0 I

100 1.00

/.00 1.26

100 1.0 I

100 1.11

Concerning the total execution time, Table I shows that
the values obtained with BNIPL mapping algorithms are in
average only 4% worse if compared to SA. It is important to
point out that it is considered the time to map each task when
dynamic algorithms are executed. Since static mapping
algorithms are performed at design time, there is no mapping
overhead during the application execution. In addition, it is
important to note that this overhead is obtained for scenarios
were applications execute, in average, only 310,909 clock
cycles. Increasing the communication volume and/or task
execution time, the task mapping overhead is minimized. For
example, when the communication volume is increased by
10 times in [15], this overhead is canceled.

The last line of Table I presents the average energy
consumption, estimated according to [7]. Dynamic mapping
algorithms are penalized in this performance figure, due to
the additional network hops involved in the communication.
MPEG-4 is the application that most penalizes dynamic
mapping algorithms. If this application is not considered in
the average, the energy consumption penalty becomes
smaller (17%). This comparison reveals that dynamic
mapping has smaller costs compared to static mapping, when
application graphs do not have strongly connected tasks.
Situations like that in the MPEG-4 benchmark are not
commonplace in real applications.

B. Multiple Application Mapping

This experiment maps 8 concurrent applications into the
MPSoC. The mapping quality may be estimated as a
function of the area fragmentation. Figure 2 presents the
application area distribution for the BN mapping. BN and PL
generate applications that are more isolated. The smaller
fragmentation observed in the dynamic mapping algorithm
comes from the clustering strategy, which increases the size
of contiguous blocks.

Table II presents the results for this second scenario,
normalized as a function of the TS algorithm (for larger
benchmarks TS outperforms SA). The overall overhead
induced by dynamic mapping in such a complex scenario is
small, which may be observed in columns PL and BN,
respectively: 7% and 13% in average channel occupation,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:31:41 UTC from IEEE Xplore. Restrictions apply.

7% and 10% in average packet latency, 4% and 3% in total
execution time, and 18% and 13% in the communication
energy consumption.

Best Neighbor (number of hops = 264)

Single Task of
- - Application AO

(FRAGMENTATION)

Triangle where
the PE is shared

- - - by A2 and A5
(REUSE)

Application A7 in
a contiguous area

--.- - FREE
resource

Figure 2. Application distribution with BN algorithm in a 9x9 MPSoC.
Applications are represented by Ai. MP is the Manager.

TABLE II. SUMMARY OF RESULTS FOR THE MPSoC 9x9 SCENARIO.

VALUES ARE NORMALIZED W.R. T THE TS ALGORITHM.

Performance figures
Dynamic Static

PL BN SA TS
Channel Occupation (average) 1.07 1.13 1.13 1.00
Channel Occupation (deviation) 1.18 1.27 1.36 1.00
Packet Latency (average) 1.07 1.10 1.16 1.00
Packet Latency (deviation) 1.03 1.11 1.05 1.00
Number of Hops 0.93 0.92 1.59 1.00
Total Execution Time 1.04 1.03 1.02 1.00
Energy Consumption 1.18 1.13 1.35 1.00

V. CONCLUSION

This work addressed an important issue for the practical
utilization of MPSoCs: task mapping. The evaluation of
mapping algorithms is found in the literature, but a fair
comparison between static and dynamic approaches was not
yet available. This is the main contribution of this paper.

Experiments with a complex scenario (8 simultaneous
applications) showed that the dynamic mapping overhead,
when compared to static mapping was in average 10% in
channel occupation, 8.5% in latency, 3.5% in total execution
time and 15.5% in the communication energy consumption.
This is an acceptable overhead, considering the advantages
offered by dynamic mapping: (i) smaller systems may be
used, since only tasks being executed are required to be
mapped into the system; (ii) the number of taskslapplications
may be superior to available system resources; (iii) the
inclusion of new applications after system design extends the
MPSoC lifetime.

As stated in the text, the main weakness of dynamic
mapping is the partial view of the application graph, since
the task being mapped considers only the communication

090

with its caller task. On the other hand, static algorithms
consider all tasks and resources together, enabling to explore
better mappings using complex algorithms. Some directions
can be explored to improve the performance of dynamic
mapping algorithms. Examples are: (i) when a given task
starts its execution, a manager processor could start the
mapping of all its slave tasks, or reserve resource for them;
(ii) adoption of some task migration strategy when the
communication cost becomes too high for a given task; (iii)
to increase the view of the dynamic heuristic for 2 or more
neighbor levels.

VI. ACKNOWLEDGMENTS

This research was supported partially by CNPq
(Brazilian Research Agency), projects 300774/2006-0,
471134/2007-4, 141225/2005-0, 308924/2008-8 and 3092551
2008-2.

REFERENCES

[I] Lei, T.; Kumar, S . Algorithms and Tools for Networks on Chip based
System Design. In: SBCCI, 2003. pp. 163-168.

[2] Wu, D., Bashir, M.; Petru, E. Scheduling and Mapping of Conditional
Task Graphs for the Synthesis of Low Power Embedded Systems. In:
DATE, 2003. pp. 253-360.

[3] Murali, S.; et al. A methodology for mapping multiple use-cases onto
networks on chips. In: DATE, 2006. pp. 118-123.

[4] Manolache, S.; et al. Fault and Energy-Aware Communication
Mapping with Guaranteed Latency for Applications Implemented on
NoC. In: DAC, 2005. pp. 266-269.

[5] Hu,./.; Marculescu, R. Energy- and Performance-Aware Mapping for
Regular NoC Architectures. IEEE Transaction on Computer-Aided
Design ofIntegrated Circuits and Systems, v. 24. 2005. pp. 551-562.

[6] Orsila, H.; et al. Automated Memory-Aware Application Distribution
for Multi-Processor System-an-Chips. Journal of Systems
Architecture, v. 53-11, 2007. pp. 795-815.

[7] Marcon, c.; et al. Comparison ofNoC Mapping Algorithms Targeting
Low Energy Consumption. lET Computers & Digital Techniques, v.
2-6. Nov. 2008. pp. 471-482.

[8] Smit, L.T.; et al. Runtime mapping of applications to a heterogeneous
Soc. In: International Symposium on SoC, 2005. pp.78-81.

[9] Ngouanga, A; et al. A contextual resources use: a proof of concept
through the APACHES platform. In: DDECS, 2006. pp.42-47.

[10] Chou, C-L.; Marculescu, R. User-Aware Dynamic Task Allocation in
Networks-on-Chip. In: DATE, 2008. pp.1232-1237.

[I I] Mehran, A; et al. DSM: A Heuristic Dynamic Spiral Mapping
algorithm for network on chip. IEICE Electronics Express, v. 5-13, p.
464-471,2008. pp. 464-471.

[12] AI Faruque, M. A; et al. ADAM: Runtime Agent-based Distributed
Application Mapping for on-chip Communication. In: DAC, 2008. pp.
760-765.

[13] Carvalho, E.; Moraes, F. Congestion-aware Task Mapping in
Heterogeneous MPSoCs. In: SoC, 2008. pp. 1-4.

[14] Moraes, F. et al. Hermes: an Infrastructure for Low Area Overhead
Packet-switching Networks on Chip. Integration, the VLSI Journal,
Vol. 38-1,2004.

[15] Carvalho, E.; Calazans, N.; Moraes, F. Investigating Runtime Task
Mapping for NoC-based Multiprocessor. In: VLSI-SoC, 2009.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:31:41 UTC from IEEE Xplore. Restrictions apply.

