
ER-EDF: A QoS Scheduler for Real-Time Embedded Systems

David Matschulat, César A. M. Marcon, Fabiano Hessel

PPGCC - FACIN – PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS – Brazil

Fabiano.Hessel@pucrs.br

Abstract

The increasing demand for embedded multimedia

applications makes evident the need for end-to-end Quality

of Service (QoS) provisioning. Particularly, operating

systems, despite their location at end systems, switches or

routers, must guarantee that resources under their control

are adequately managed to fulfill the application

requirements. This work proposes the implementation of

QoS provisioning in real-time embedded systems scheduler.

In order to achieve the end-to-end QoS, we propose the

implementation of the control and management of QoS

mechanisms in the operating system scheduler. The

implementation of such mechanisms includes admission

control and resource reservation, as well as process

scheduling control and active monitoring of the delivered

QoS. As a result, a new scheduling algorithm, named ER-

EDF, is proposed and compared to previous scheduler

solutions. This approach was validated through a set of

benchmarks and we conclude that ER-EDF adds

performance and simplified hard real-time support to real-

time embedded applications.

Keywords: real-time systems, scheduler algorithms, QoS.

1 Introduction

In the last years, there has been an increase demand for

hardware/software platforms with multimedia application

support. These platforms are increasingly distributed, real-

time, embedded, and must operate under highly

unpredictable and changeable conditions.

In order to provide end-to-end Quality of Service (QoS),

required by multimedia applications, resource management

on the whole operation environment is needed. Indeed, QoS

provisioning requires the implementation of several tasks

both in the end-systems and in the communication provider,

including its switches and routers. In the end-systems,

resources controlled by the operating system, like CPU,

memory and communication buffers, must be adequately

managed to ensure that the interaction of various

applications will not cause individual QoS violations.

QoS provisioning has become even harder since new

requirements, imposed by new types of multimedia

application and new codification techniques have emerged.

In fact, the rapid and inexpensive deployment of services

with new QoS requirements has become essential to

embedded multimedia applications.

Real-Time Operating Systems (RTOS) services and

mechanisms (e.g. scheduling) with QoS support emerged to

provide predictability to the critical systems. However, the

current generation of commercial-off-the-shelf RTOS

schedulers lacks adequate support for applications with

stringent QoS requirements. Since processing and

communication requirements are distinct for each media

type, different QoS guarantees are necessaries to maintain

synchronization characteristics, temporal constraints, and

reliability, among others, of an application.

The computing infrastructure for these systems must be

sufficiently flexible to support workload variation at

different times during an application lifecycle, yet maintain

highly predictable and dependable behavior. Controlling the

real-time behavior of such embedded systems is one

important dimension of the delivered QoS.

The recent focus on user control over QoS aspects stems

from technology advances in historically challenging

research areas, such as allocation policies, synchronization

of streams in embedded multimedia applications, and

assured communication in the face of high demand. The

focus on QoS aspects has led to the development of a

number of proposed and implemented improvements to

commonly available embedded computing infrastructures.

When coupled with embedded software that can recognize

and react to environmental changes, these improvements

form the basis for constructing appropriate adaptive

behavior for next-generation embedded real-time systems.

Two main phases can be identified during the QoS

provisioning: negotiation and tuning. The QoS negotiation

phase involves mechanisms responsible for task (or jobs)

admission control. An admission characterizes the

establishment of a service contract (or service agreement)

between a task and the QoS provisioning environment.

During the service offering, both sides can break the

previously negotiated contract. The task may not respect

anymore its initial load and the environment can be no

more able to maintain the service level agreement, since

resources are dynamically shared. The QoS tuning phase

provides mechanisms responsible for monitoring the flow

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

load and the QoS really offered to the application tasks. In

case of contract violation, from any side, it should fire

actions to reestablish the QoS negotiated level.

The specification of QoS services can involve the choice

of scheduling, admission and classification algorithms, as

well as other configuration parameters, such as tasks that

will be part of the communication protocol stack or the

description of the system initial state for the QoS

provisioning (e.g. initial partitioning of resources for each

application class). For this sake, diverse high-level

adaptability abstractions have been proposed [1] (e.g.

reflection, open signaling, active networks, etc). These

abstractions usually rely on switches and end systems that

can be explicitly programmed during communication

infrastructure operation, demanding, therefore, an operating

system with sufficient flexibility. Nonetheless, the variety

of available embedded RTOS (eRTOSs) hampers the

deployment of such high-level adaptability abstractions. For

example, the most used scheduling algorithm for embedded

real-time applications, which is the Earliest Deadline First

(EDF) was not conceived to offer guarantees and has an

unpredictable behavior when the system is overloaded [2],

thus not providing predictability of execution.

The key issues of this paper is to discuss and propose an

adequate support for QoS provisioning and service

adaptability that can be built in a general purpose eRTOS.

In this sense, we present a new scheduling algorithm for

QoS provisioning on eRTOS, named ER-EDF. In this

paper, we mainly focus on the QoS provisioning for hard

real-time tasks.

In order to validate the proposed approach, three

algorithms were implemented in an embedded operating

system: EDF, Reservation EDF (R-EDF) and Enhanced R-

EDF (ER-EDF). The main issue of the ER-EDF is the

performance enhancements and support for processing

reservation for hard real-time tasks, as we will demonstrate

in the experimental results.

The remaining of this paper is organized as follows.

Section 2 presents the related work. Next, in Section 3, the

basic concepts of job and task model are explained. Section

4 presents the R-EDF algorithm and its limitations. Section

5 presents the new algorithm ER-EDF. Section 6 shows the

implementation and experiments created to validate the

proposed algorithm. Finally, Section 7 concludes this work.

2 Related work

Resource reservation is a common mechanism to

provide separation between real-time applications and best-

effort applications, in an open shared environment

[3][4][5][6]. This approach allows multimedia application

to reserve processor resource and guarantees the resource

availability to the admitted applications.

Real-time scheduling algorithms such as Rate

Monotonic (RM) and EDF [2][7] are designed to guarantee

resource availability to real-time applications. Deng et al.

[8] proposed a scheduling scheme for hard real-time

applications in open environment. However, these

algorithms usually do not work well in a general-purpose

open environment where soft real-time applications coexist

with best-effort applications and compete for resource.

Abeni and Buttazzo [9] introduced the Constant

Bandwidth Server (CBS), which schedules tasks based on

budget reservation. It uses dedicated servers to isolate

groups of tasks and guarantee protection to other tasks.

CBS restricts the execution of tasks to its budget to protect

other tasks, thus allowing unnecessary deadline misses.

Zhu et al. [10] proposed the Diff-EDF scheduler, which

offers guarantees to tasks by changing a task’s deadlines

based on its desired miss-rate. Tasks with modified

deadlines are then put into an EDF queue. Being focused on

continuous media soft real-time applications, Diff-EDF

lacks support to multiple classes and hard real-time tasks.

SMART [11] and Rialto [12] allow applications to

specify real-time requirements for a computation unit. For

example, Rialto uses a primitive BeginConstraint() to

specify start time, deadline and criticality for a code block.

These approaches may incur a large overhead, since

multimedia applications usually contain a lot of code blocks

with timing constraints and it is necessary to specify time

constraints for each individual code block.

Yuan et al. [13] introduced the R-EDF algorithm, which

targets the mix of soft real-time multimedia applications

and best-effort applications in open shared environment. It

supports multiple classes of multimedia tasks to reserve

CPU resource, based on task utilization. The utilization-

based reservation is optimistic, and the R-EDF algorithm

protects overrun, handling it in a predictable time bound.

However, some times the algorithm can deliver unexpected

results for soft real-time applications generating undesirable

delays. In addition, hard real-time applications are not

supported. This work improves R-EDF algorithm by hard

real-time supporting and a better overall performance of the

application.

3 Job and Task Models

Models of real-time systems may use the concepts of

task and job to represent the behavior of applications. A

task is a part of an application, since that an application can

be seen as a set of tasks. A job computes part of a task,

having a release time and deadline. For example, a task

could be mapped to a video decoding function and its jobs

could be mapped to the processing of each frame, i.e. each

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

frame is a job.

Figure 1(a) illustrates the job model. Together with the

release time and deadline, a job has the processing time P

and the relative deadline R, which, for this work, it is also

considered the period of the task. The utilization θ of a job

J is θ(J) = P/R. The task T is composed by a set of jobs

(T = {J1, J2, ..., Jn}, where n ≥ 1), as it is illustrated in

Figure 1(b). In a task T with n jobs, the utilization of the

task is
n

i

i

J

n

)(
1

∑
=

=)(Τ

θθθθ

θθθθ . The current job list (CJL) of a

task is the set of jobs that have already been released but

not yet completed. That is, CJL(T) = {Js, …, Jm}, where

Jm is the latest released job.

(a) Job

(b) Task with n

dependent jobs

Figure 1: Task and Job Models

4 R-EDF Concepts and Limitations

R-EDF is a real-time scheduler, based on the well-

known EDF, which proposes to add QoS to task scheduling.

It is accomplished by reserving the processing time via

parameterization. R-EDF classifies five types of tasks:

• Periodic Constant Processing Time (PCPT) jobs

have constant processing time and relative deadline,

resulting in constant utilization.

• Events are a special kind of PCPT with only one job.

• Periodic Variable Processing Time (PVPT) jobs

have constant relative deadline and variable processing

time.

• Aperiodic/Sporadic Constant Utilization (ASCU)

jobs have arbitrary relative deadlines and processing

time, i.e. both parameters may vary at each job.

Generally, there is no algorithm to meet deadlines for

some sporadic jobs. Hence, the support to ASCU jobs

imposes constraints: the jobs have constant utilization

and their relative deadline is known at release time.

• Best-effort tasks have no timing restrictions, but

should not starve.

Utilization θ and peak utilization ψψψψ are defined, as the

average utilization of all jobs of a task and the maximum

utilization among all jobs of a task, respectively. Each task

reserves the processing time for all its jobs at the beginning

of the task, based on θ for soft real-time tasks and ψψψψ for

hard real-time tasks. For example, if a soft task has θ =

20%, a 20% reservation will be effective for the task. When

a job exceeds its reservation limit, it enters in the overrun

state. The job returns to the ready state when the next

release time of the task comes. Figure 2 illustrates the

different states that a task can be.

Figure 2: Finite state automata of real-time tasks

The number 1 defines 100% of the processor capacity.

Therefore, a system with M processor has capacity M. R-

EDF statistically multiplexes the processor capacity

between real-time and best-effort tasks. The time-sharing

capacity CTS is the unreserved capacity, which is shared

among all best-effort tasks. CTS has a lower bound ββββ, such

that CTS ≥ β, to protect best-effort tasks from starvation.

Real-time capacity CRTp and peak capacity PCRTp of a

processor p (1 ≤ p ≤ M) are, respectively, the sum of the

utilizations of the tasks and the sum of peak utilization of

tasks bound to a processor. That is,)(
1

i

m

i

RTp TC ∑
=

= θθθθ and

)(
1

i

m

i

RTp TC ∑
=

= θθθθ , where Ti (1 ≤ i ≤ m) are real-time tasks

bound to a processor p. The system is classified as being

real-time overloaded if PCRTp > 1, or βMPC

M

p
RTp∑

=

>
1

 - for

the whole system. Otherwise, the system is under loaded.

Analyzing the R-EDF algorithm’s behavior, a limitation

was found, as showed in Figure 3.

PVPT A θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3

θ(A)=1/2

ψψψψ(A)=2/3 0 1 6 9 12 15 17

PVPT B θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6

θ(B)=1/3

ψψψψ(B)=2/3 0 3 6 12 17

 JA1 JB1 JA2 JB1 JA2 JA3 JB2 JB3 JA3

Scheduling …

R-EDF 0 1 2 6 8 9 10 12 13 14 15 16 17

Figure 3: Reservation in R-EDF with two PVPT tasks

Two PVPT tasks are illustrated in Figure 3. Task A has a

reservation θ(A) = 1/2 and task B has reservation

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

θ(A) = 1/3. At the beginning of execution, the job JB1

executes after job JA1. However, the job JB1 uses all its

reserved time and enters in the overrun state. There would

be time available to execute the job JB1 in the 3 and 4 time

ticks. This example shows the restrictive reservation

problem present in this algorithm. In the proposed

algorithm (ER-EDF) we solve this issue by allowing tasks

to execute in the extra available time (see Section 5).

In addition, R-EDF does not support hard real-time

tasks, since it assumes that a job can miss its deadline when

the reservation is reached. In this algorithm, if a task enters

in the overrun state, it will miss its deadline.

5 The ER-EDF Algorithm

Enhanced R-EDF (ER-EDF) is an improvement of R-

EDF. It was conceived to improve the QoS delivered to soft

real-time tasks and provide reservation for hard-real time

ones. The analysis of R-EDF showed that it can be

improved; hence modifications were introduced to allow

the prevention of restrictive reservations and allow the

reservation of hard real-time tasks.

The hard real-time reservation is accomplished with the

establishment of reservations based on worst case [1], i.e.

the reservation is the peak utilization ψψψψ of a task. This

allows the scheduling of hard real-time, soft real-time and

best effort tasks in the same system.

5.1 Admission Control

Changes in the admission control were introduced to

effect the proposed alterations. At the creation time, each

task informs the scheduler if it is a soft or hard real-time

task. The admission control algorithm is presented below.

Step 1: Initially, the real-time capacity CRTp and peak real-time
capacity PCRTp of each processor p are set to 0 (1 ≤ p ≤ M), and the
time-sharing capacity CTS is set to M.

Step 2: A real-time task with utilization θ and peak utilization ψψψψ
requests reservation:

If the task is hard real-time then (reserve using ψψψψ)

If the time-sharing capacity can be reduced to admit this

task CTS - ψψψψ > ββββ, and a processor p (1< p < M) can fulfill

the requirement CRTp + ψψψψ ≤ 1 then

Task is bound to the processor p, with: CRTp = CRTp +

ψψψψ; PCRTp = PCRTp + ψψψψ; CTS = CTS - ψψψψ

Else

Task is rejected.

End if

Else (reserve using utilization θ):

If the time-sharing capacity can be reduced to admit this

task CTS - θ > ββββ and a processor p (1 ≤ p ≤ M) can fulfill
the requirement CRTp + θ ≤ 1 then

Task is bound to the processor p, with: CRTp = CRTp + θ;

PCRTp = PCRTp + ψψψψ; CTS = CTS - θ

Else

Task is rejected

End if

End if

Step 3: If a real-time task with utilization θ and peak utilization ψψψψ,
bound to a processor p, releases its reservation, then:

If the task is hard real-time, then

CRTp = CRTp-ψψψψ; PCRTp = PCRTp-ψψψψ; CTS = CTS+ψψψψ.

Else

CRTp = CRTp - θ; PCRTp = PCRTp - ψψψψ; CTS = CTS + θ.

End if

5.2 Scheduling

ER-EDF incorporates modifications to allow better use

of the processing capacity. These modifications are

conceived to allow a task to exit its overrun state and

execute in the available time. The modifications include:

1. Forbid a task to enter in the overrun state when there

is not any real-time task ready;

2. At the end of a job, remove the task with the earliest

deadline from the overrun state if no other real-time task is

ready to execute.

Like its predecessor, ER-EDF only activates the overrun

protection mechanism when the system is overloaded.

Consequently, ER-EDF has analogous behavior as the EDF

algorithm, when the system is under loaded. The ER-EDF

algorithm is described next.

Step 1: Selection a task for execution.

If any real-time task is ready, then

Select one whose latest released job has the earliest
deadline and execute jobs in the CJL in order;

Else if there is a task in the overrun state, then

Select the task in the overrun state whose latest released
job has the earliest deadline, put it in the ready state and
execute jobs in the CJL in order.

Else

Invoke the best-effort task scheduler.

End if

Step 2: The scheduler waits until the next time unit.

If a running task finishes all its jobs, then

It enters the waiting state;

Else if the system is overloaded and the CJL of the current task
is not empty and the task used all its reserved time, then

If there is any real-time task ready then

Current task enters the overrun state.

Else if the ran utilization of the current task is greater or

equal than (1- ββββ), then

It enters the overrun state.

Else

It continues to execute.

End if

End if

Check all tasks for reached release times and set them to the
ready state.

Step 3: Go to step 1.

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

PVPT A θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3

θ(A)=1/2

ψψψψ(A)=2/3 0 1 6 9 12 15 17

PVPT B θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6

θ(B)=1/3

ψψψψ(B)=2/3 0 3 6 12 17

 JA1 JB1 JA2 JB1 JA2 JA3 JB2 JB3 JA3

Scheduling …

R-EDF 0 1 2 6 8 9 10 12 13 14 15 16 17

 JA1 JB1 JA2 JB2 JA2 JA3 JB3 JA3

Scheduling

ER-EDF 0 1 4 6 8 9 10 12 14 15 16 17

Figure 4: Restrictive reservation in R-EDF and ER-EDF

with two PVPT tasks

In Figure 4, two PVPT tasks are show executing under

R-EDF and ER-EDF algorithms according to the example

presented in Section 4. While in R-EDF execution the job

JB1 enters the overrun state, ER-EDF verifies that no other

real-time task is available to run and allows that job to

execute in the 3 and 4 time ticks, passing its reserved time.

In the time tick 15, the job JA3 enters the overrun state,

allowing JB3 to execute. Soon after JB3 execution, JA3 exits

the overrun state, finishing its execution in the remaining

available time.

6 Implementation/Experiments

The Spartan-3 Starter Board [14], together with Plasma

soft-core processor, was used to validate the proposed

algorithms. The border contains 1 MiB of SRAM memory,

displays, leds, serial port and JTAG for bit stream loading.

Plasma implements a reduced MIPS instruction set. It also

is open-source, allowing a flexible hardware support.

The operating system used is EPOS
1
. EPOS is an

application-oriented operating system, i.e. it adapts

automatically to the application requirements. The two

algorithms were implemented in this OS and two

experiments are shown next.

In the first experiment, a situation where four real-time

tasks are executed is shown. Each task has 500 jobs to

execute simultaneously. The first three are PCPT tasks, i.e.

have constant utilization. PCPT tasks have peak utilization

equal to task utilization (θ = ψψψψ). Thus, PCPT tasks have

similar behavior to tasks marked as hard real-time.

Table 1 presents the parameters used to generate the

experiment data. Task 2 is the only one marked as hard

real-time. However, the reservation is similarly made to the

first three tasks. Task 4 is a PVPT task where each job

receives a generated utilization based on a linear

1
 Available in http://epos.lisha.ufsc.br/

mathematical distribution, where the minimum is 10% and

the maximum is 42%. The system is classified overloaded

with %115)T(i

4

1i

=∑
=

Ψ . The total reservation of the system

is 100%.

Table 1: Parameters for experiment data generation –

first experiment

The deadline miss results for the four tasks of the

execution are presented in Figure 5. In this experiment, the

hard real-time parameter was disabled in R-EDF and ER-

EDF to verify the similar behavior for PCPT tasks. Even

though only the second task is marked as hard real-time, all

first three behave similarly, losing 0% of its deadlines. In

the execution of the EDF algorithm, all tasks miss

deadlines. R-EDF and ER-EDF present no deadline miss

for PCPT tasks, which is therefore compensated in the

PVPT task. However, ER-EDF presents lower deadline

miss rate compared to R-EDF.

Figure 5: Deadline miss comparison for EDF, R-EDF

and ER-EDF with/without hard real-time marks

The next experiment shows two tasks with different

periods executing in an overloaded environment. The first

task is a hard real-time PCPT with constant utilization of

50%. The second is a PVPT with numbers generated by a

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

linear distribution. Table 2 shows the parameters provided

to generate data to be used in the execution.

Table 2: Parameters for experiment data generation –

second experiment

Figure 6 compares EDF, R-EDF and ER-EDF showing

their deadline miss rate for the execution described in Table

2. EDF presents an undesirable behavior showing

considerable deadline miss rate for both tasks. R-EDF

shows the first task correctly being treated as hard real-time

with 0% deadline miss. ER-EDF shows analogous

execution to R-EDF. However, ER-EDF presents an

improvement of 30% on the second task over R-EDF.

Figure 6: Deadline miss comparison for EDF, R-EDF

and ER-EDF

7 Conclusions

This work introduced a new real-time scheduler

algorithm to provide quality of service to applications. The

new algorithm – Enhanced R-EDF – is based on R-EDF, a

multiclass real-time scheduler. R-EDF presents some

limitations that are overcome by the new algorithm. In

addition, the support for hard real-time tasks was added,

which is fundamental to applications that require great

responsiveness, and allows the existence of hard real-time,

soft-real time and best effort tasks in the same system.

ER-EDF showed significant improvement over its

predecessor R-EDF. The addition of hard real-time support

allows developers to parameterize the application to fulfill

application’s real-time requirements. However, the

enhancement of real-time execution costs to the best-effort

tasks more starvation time.

8 References

[1] A. Campbell et al. A Survey of Programmable Networks.

ACM SIGCOMM Computer Communications Review, v.

29, n. 2, pp. 7-23, 1999.

[2] C. Liu and J. Layland. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment.

Journal of ACM, v. 20, n. 1, pp. 46-61, 1973.

[3] H. Chu and K. Nahrstedt. A Soft Real Time Scheduling

Server in UNIX Operating System. IDMS, pp. 153-162,

1997.

[4] H. Chu and K. Nahrstedt. CPU Service Classes for

Multimedia Applications. ICMCS, v. 1, pp. 296-301, 1999.

[5] M. Jones, D. Rosu, and M. Rosu. CPU Reservations and

Time Constraints: Efficient, Predictable Scheduling of

Independent Activities. SOSP, pp. 198-211, 1997.

[6] C. Mercer et al. Processor Capacity Reserves: Operating

System Support for Multimedia Applications. ICMCS, pp.

90-99, 1994.

[7] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[8] Z. Deng and J. Liu. Scheduling Real-Time Applications in an

Open Environment. IEEE Real-Time Systems Symposium,

p. 308-319, 1997.

[9] L. Abeni and G. Buttazzo. Resource Reservation in Dynamic

Real-Time Systems. Real-Time Systems, v. 27, n. 2, pp.

123-167, 2004.

[10] H. Zhu et al. Diff-EDF: A Simple Mechanism for

Differentiated EDF Service. IEEE Real Time Technology

and Applications Symposium, pp. 268–277, 2005.

[11] J. Nieh and M. Lam. The Design, Implementation and

Evaluation of SMART: A Scheduler for Multimedia

Applications. SOSP, pp. 184–197, 1997.

[12] M. Jones et al. An Overview of the Rialto Real-Time

Architecture. ACM SIGOPS European Workshop, pp.

249-256, 1996.

[13] W. Yuan, K. Nahrstedt, and K. Kim. R-EDF: A reservation-

based EDF scheduling algorithm for multiple multimedia

task classes. IEEE Real Time Technology and

Applications Symposium, pp. 149-154, 2001.

[14] Xilinx, Inc. Spartan-3 Starter Kit Board - User Guide, 2005.

Available at www.xilinx.com/bvdocs/userguides/ug130.pdf.

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:26:30 UTC from IEEE Xplore. Restrictions apply.

