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Abstract 

The increasing demand for embedded multimedia 

applications makes evident the need for end-to-end Quality 

of Service (QoS) provisioning. Particularly, operating 

systems, despite their location at end systems, switches or 

routers, must guarantee that resources under their control 

are adequately managed to fulfill the application 

requirements. This work proposes the implementation of 

QoS provisioning in real-time embedded systems scheduler. 

In order to achieve the end-to-end QoS, we propose the 

implementation of the control and management of QoS 

mechanisms in the operating system scheduler. The 

implementation of such mechanisms includes admission 

control and resource reservation, as well as process 

scheduling control and active monitoring of the delivered 

QoS. As a result, a new scheduling algorithm, named ER-

EDF, is proposed and compared to previous scheduler 

solutions. This approach was validated through a set of 

benchmarks and we conclude that ER-EDF adds 

performance and simplified hard real-time support to real-

time embedded applications. 

Keywords: real-time systems, scheduler algorithms, QoS. 

1 Introduction 

In the last years, there has been an increase demand for 

hardware/software platforms with multimedia application 

support. These platforms are increasingly distributed, real-

time, embedded, and must operate under highly 

unpredictable and changeable conditions. 

In order to provide end-to-end Quality of Service (QoS), 

required by multimedia applications, resource management 

on the whole operation environment is needed. Indeed, QoS 

provisioning requires the implementation of several tasks 

both in the end-systems and in the communication provider, 

including its switches and routers. In the end-systems, 

resources controlled by the operating system, like CPU, 

memory and communication buffers, must be adequately 

managed to ensure that the interaction of various 

applications will not cause individual QoS violations. 

QoS provisioning has become even harder since new 

requirements, imposed by new types of multimedia 

application and new codification techniques have emerged. 

In fact, the rapid and inexpensive deployment of services 

with new QoS requirements has become essential to 

embedded multimedia applications. 

Real-Time Operating Systems (RTOS) services and 

mechanisms (e.g. scheduling) with QoS support emerged to 

provide predictability to the critical systems. However, the 

current generation of commercial-off-the-shelf RTOS 

schedulers lacks adequate support for applications with 

stringent QoS requirements. Since processing and 

communication requirements are distinct for each media 

type, different QoS guarantees are necessaries to maintain 

synchronization characteristics, temporal constraints, and 

reliability, among others, of an application. 

The computing infrastructure for these systems must be 

sufficiently flexible to support workload variation at 

different times during an application lifecycle, yet maintain 

highly predictable and dependable behavior. Controlling the 

real-time behavior of such embedded systems is one 

important dimension of the delivered QoS. 

The recent focus on user control over QoS aspects stems 

from technology advances in historically challenging 

research areas, such as allocation policies, synchronization 

of streams in embedded multimedia applications, and 

assured communication in the face of high demand. The 

focus on QoS aspects has led to the development of a 

number of proposed and implemented improvements to 

commonly available embedded computing infrastructures. 

When coupled with embedded software that can recognize 

and react to environmental changes, these improvements 

form the basis for constructing appropriate adaptive 

behavior for next-generation embedded real-time systems. 

Two main phases can be identified during the QoS 

provisioning: negotiation and tuning. The QoS negotiation 

phase involves mechanisms responsible for task (or jobs) 

admission control. An admission characterizes the 

establishment of a service contract (or service agreement) 

between a task and the QoS provisioning environment. 

During the service offering, both sides can break the 

previously negotiated contract. The task may not respect 

anymore its initial load and the environment can be no 

more able to maintain the service level agreement, since 

resources are dynamically shared. The QoS tuning phase 

provides mechanisms responsible for monitoring the flow 
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load and the QoS really offered to the application tasks. In 

case of contract violation, from any side, it should fire 

actions to reestablish the QoS negotiated level. 

The specification of QoS services can involve the choice 

of scheduling, admission and classification algorithms, as 

well as other configuration parameters, such as tasks that 

will be part of the communication protocol stack or the 

description of the system initial state for the QoS 

provisioning (e.g. initial partitioning of resources for each 

application class). For this sake, diverse high-level 

adaptability abstractions have been proposed [1] (e.g. 

reflection, open signaling, active networks, etc). These 

abstractions usually rely on switches and end systems that 

can be explicitly programmed during communication 

infrastructure operation, demanding, therefore, an operating 

system with sufficient flexibility. Nonetheless, the variety 

of available embedded RTOS (eRTOSs) hampers the 

deployment of such high-level adaptability abstractions. For 

example, the most used scheduling algorithm for embedded 

real-time applications, which is the Earliest Deadline First 

(EDF) was not conceived to offer guarantees and has an 

unpredictable behavior when the system is overloaded [2], 

thus not providing predictability of execution. 

The key issues of this paper is to discuss and propose an 

adequate support for QoS provisioning and service 

adaptability that can be built in a general purpose eRTOS. 

In this sense, we present a new scheduling algorithm for 

QoS provisioning on eRTOS, named ER-EDF. In this 

paper, we mainly focus on the QoS provisioning for hard 

real-time tasks. 

In order to validate the proposed approach, three 

algorithms were implemented in an embedded operating 

system: EDF, Reservation EDF (R-EDF) and Enhanced R-

EDF (ER-EDF). The main issue of the ER-EDF is the 

performance enhancements and support for processing 

reservation for hard real-time tasks, as we will demonstrate 

in the experimental results. 

The remaining of this paper is organized as follows. 

Section 2 presents the related work. Next, in Section 3, the 

basic concepts of job and task model are explained. Section 

4 presents the R-EDF algorithm and its limitations. Section 

5 presents the new algorithm ER-EDF. Section 6 shows the 

implementation and experiments created to validate the 

proposed algorithm. Finally, Section 7 concludes this work. 

2 Related work 

Resource reservation is a common mechanism to 

provide separation between real-time applications and best-

effort applications, in an open shared environment 

[3][4][5][6]. This approach allows multimedia application 

to reserve processor resource and guarantees the resource 

availability to the admitted applications. 

Real-time scheduling algorithms such as Rate 

Monotonic (RM) and EDF [2][7] are designed to guarantee 

resource availability to real-time applications. Deng et al. 

[8] proposed a scheduling scheme for hard real-time 

applications in open environment. However, these 

algorithms usually do not work well in a general-purpose 

open environment where soft real-time applications coexist 

with best-effort applications and compete for resource. 

Abeni and Buttazzo [9] introduced the Constant 

Bandwidth Server (CBS), which schedules tasks based on 

budget reservation. It uses dedicated servers to isolate 

groups of tasks and guarantee protection to other tasks. 

CBS restricts the execution of tasks to its budget to protect 

other tasks, thus allowing unnecessary deadline misses. 

Zhu et al. [10] proposed the Diff-EDF scheduler, which 

offers guarantees to tasks by changing a task’s deadlines 

based on its desired miss-rate. Tasks with modified 

deadlines are then put into an EDF queue. Being focused on 

continuous media soft real-time applications, Diff-EDF 

lacks support to multiple classes and hard real-time tasks. 

SMART [11] and Rialto [12] allow applications to 

specify real-time requirements for a computation unit. For 

example, Rialto uses a primitive BeginConstraint() to 

specify start time, deadline and criticality for a code block. 

These approaches may incur a large overhead, since 

multimedia applications usually contain a lot of code blocks 

with timing constraints and it is necessary to specify time 

constraints for each individual code block. 

Yuan et al. [13] introduced the R-EDF algorithm, which 

targets the mix of soft real-time multimedia applications 

and best-effort applications in open shared environment. It 

supports multiple classes of multimedia tasks to reserve 

CPU resource, based on task utilization. The utilization-

based reservation is optimistic, and the R-EDF algorithm 

protects overrun, handling it in a predictable time bound. 

However, some times the algorithm can deliver unexpected 

results for soft real-time applications generating undesirable 

delays. In addition, hard real-time applications are not 

supported. This work improves R-EDF algorithm by hard 

real-time supporting and a better overall performance of the 

application. 

3 Job and Task Models 

Models of real-time systems may use the concepts of 

task and job to represent the behavior of applications. A 

task is a part of an application, since that an application can 

be seen as a set of tasks. A job computes part of a task, 

having a release time and deadline. For example, a task 

could be mapped to a video decoding function and its jobs 

could be mapped to the processing of each frame, i.e. each 
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frame is a job. 

Figure 1(a) illustrates the job model. Together with the 

release time and deadline, a job has the processing time P 

and the relative deadline R, which, for this work, it is also 

considered the period of the task. The utilization θ of a job 

J is θ(J) = P/R. The task T is composed by a set of jobs 

(T = {J1, J2, ..., Jn}, where n ≥ 1), as it is illustrated in 

Figure 1(b). In a task T with n jobs, the utilization of the 

task is 
n

i

i

J

n

)(
1

∑
=

= )(Τ

θθθθ

θθθθ . The current job list (CJL) of a 

task is the set of jobs that have already been released but 

not yet completed. That is, CJL(T) = {Js, …, Jm}, where 

Jm is the latest released job. 

(a) Job 

 

(b) Task with n 

dependent jobs 
 

Figure 1: Task and Job Models 

4 R-EDF Concepts and Limitations 

R-EDF is a real-time scheduler, based on the well-

known EDF, which proposes to add QoS to task scheduling. 

It is accomplished by reserving the processing time via 

parameterization. R-EDF classifies five types of tasks: 

• Periodic Constant Processing Time (PCPT) jobs 

have constant processing time and relative deadline, 

resulting in constant utilization. 

• Events are a special kind of PCPT with only one job. 

• Periodic Variable Processing Time (PVPT) jobs 

have constant relative deadline and variable processing 

time. 

• Aperiodic/Sporadic Constant Utilization (ASCU) 

jobs have arbitrary relative deadlines and processing 

time, i.e. both parameters may vary at each job. 

Generally, there is no algorithm to meet deadlines for 

some sporadic jobs. Hence, the support to ASCU jobs 

imposes constraints: the jobs have constant utilization 

and their relative deadline is known at release time. 

• Best-effort tasks have no timing restrictions, but 

should not starve. 

Utilization θ and peak utilization ψψψψ are defined, as the 

average utilization of all jobs of a task and the maximum 

utilization among all jobs of a task, respectively. Each task 

reserves the processing time for all its jobs at the beginning 

of the task, based on θ for soft real-time tasks and ψψψψ for 

hard real-time tasks. For example, if a soft task has θ = 

20%, a 20% reservation will be effective for the task. When 

a job exceeds its reservation limit, it enters in the overrun 

state. The job returns to the ready state when the next 

release time of the task comes. Figure 2 illustrates the 

different states that a task can be. 

 

Figure 2: Finite state automata of real-time tasks 

The number 1 defines 100% of the processor capacity. 

Therefore, a system with M processor has capacity M. R-

EDF statistically multiplexes the processor capacity 

between real-time and best-effort tasks. The time-sharing 

capacity CTS is the unreserved capacity, which is shared 

among all best-effort tasks. CTS has a lower bound ββββ, such 

that CTS ≥ β, to protect best-effort tasks from starvation. 

Real-time capacity CRTp and peak capacity PCRTp of a 

processor p (1 ≤ p ≤ M) are, respectively, the sum of the 

utilizations of the tasks and the sum of peak utilization of 

tasks bound to a processor. That is, )( 
1

i

m

i

RTp TC ∑
=

= θθθθ  and 

)( 
1

i

m

i

RTp TC ∑
=

= θθθθ , where Ti (1 ≤ i ≤ m) are real-time tasks 

bound to a processor p. The system is classified as being 

real-time overloaded if PCRTp > 1, or βMPC

M

p
RTp∑

=

>
1

 -    for 

the whole system. Otherwise, the system is under loaded. 

Analyzing the R-EDF algorithm’s behavior, a limitation 

was found, as showed in Figure 3. 

PVPT A  θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3    

θ(A)=1/2                       

ψψψψ(A)=2/3  0 1     6   9   12   15  17    
                       

PVPT B  θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6    

θ(B)=1/3                       

ψψψψ(B)=2/3  0   3   6      12     17    
                       
  JA1 JB1    JA2 JB1  JA2 JA3 JB2 JB3    JA3 

Scheduling                    …   

R-EDF  0 1 2    6  8 9 10  12 13 14 15 16 17    

Figure 3: Reservation in R-EDF with two PVPT tasks 

Two PVPT tasks are illustrated in Figure 3. Task A has a 

reservation θ(A) = 1/2 and task B has reservation 
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θ(A) = 1/3. At the beginning of execution, the job JB1 

executes after job JA1. However, the job JB1 uses all its 

reserved time and enters in the overrun state. There would 

be time available to execute the job JB1 in the 3 and 4 time 

ticks. This example shows the restrictive reservation 

problem present in this algorithm. In the proposed 

algorithm (ER-EDF) we solve this issue by allowing tasks 

to execute in the extra available time (see Section 5). 

In addition, R-EDF does not support hard real-time 

tasks, since it assumes that a job can miss its deadline when 

the reservation is reached. In this algorithm, if a task enters 

in the overrun state, it will miss its deadline. 

5 The ER-EDF Algorithm 

Enhanced R-EDF (ER-EDF) is an improvement of R-

EDF. It was conceived to improve the QoS delivered to soft 

real-time tasks and provide reservation for hard-real time 

ones. The analysis of R-EDF showed that it can be 

improved; hence modifications were introduced to allow 

the prevention of restrictive reservations and allow the 

reservation of hard real-time tasks. 

The hard real-time reservation is accomplished with the 

establishment of reservations based on worst case [1], i.e. 

the reservation is the peak utilization ψψψψ of a task. This 

allows the scheduling of hard real-time, soft real-time and 

best effort tasks in the same system. 

5.1 Admission Control 

Changes in the admission control were introduced to 

effect the proposed alterations. At the creation time, each 

task informs the scheduler if it is a soft or hard real-time 

task. The admission control algorithm is presented below. 

Step 1: Initially, the real-time capacity CRTp and peak real-time 
capacity PCRTp of each processor p are set to 0 (1 ≤ p ≤ M), and the 
time-sharing capacity CTS is set to M. 

Step 2: A real-time task with utilization θ and peak utilization ψψψψ 
requests reservation: 

If the task is hard real-time then (reserve using ψψψψ) 

If the time-sharing capacity can be reduced to admit this 

task CTS - ψψψψ > ββββ, and a processor p (1< p < M) can fulfill 

the requirement CRTp + ψψψψ ≤ 1 then 

Task is bound to the processor p, with: CRTp = CRTp + 

ψψψψ; PCRTp = PCRTp + ψψψψ; CTS = CTS - ψψψψ 

Else 

Task is rejected. 

End if 

Else (reserve using utilization θ): 

If the time-sharing capacity can be reduced to admit this 

task CTS - θ > ββββ and a processor p (1 ≤ p ≤ M) can fulfill 
the requirement CRTp + θ ≤ 1 then 

Task is bound to the processor p, with: CRTp = CRTp + θ; 

PCRTp = PCRTp + ψψψψ; CTS = CTS - θ 

Else 

Task is rejected 

End if 

End if 

Step 3: If a real-time task with utilization θ and peak utilization ψψψψ, 
bound to a processor p, releases its reservation, then: 

If the task is hard real-time, then 

CRTp = CRTp-ψψψψ; PCRTp = PCRTp-ψψψψ; CTS = CTS+ψψψψ. 

Else 

CRTp = CRTp - θ; PCRTp = PCRTp - ψψψψ; CTS = CTS + θ. 

End if 

5.2 Scheduling 

ER-EDF incorporates modifications to allow better use 

of the processing capacity. These modifications are 

conceived to allow a task to exit its overrun state and 

execute in the available time. The modifications include: 

1. Forbid a task to enter in the overrun state when there 

is not any real-time task ready; 

2. At the end of a job, remove the task with the earliest 

deadline from the overrun state if no other real-time task is 

ready to execute. 

Like its predecessor, ER-EDF only activates the overrun 

protection mechanism when the system is overloaded. 

Consequently, ER-EDF has analogous behavior as the EDF 

algorithm, when the system is under loaded. The ER-EDF 

algorithm is described next. 

Step 1: Selection a task for execution. 

If any real-time task is ready, then 

Select one whose latest released job has the earliest 
deadline and execute jobs in the CJL in order; 

Else if there is a task in the overrun state, then 

Select the task in the overrun state whose latest released 
job has the earliest deadline, put it in the ready state and 
execute jobs in the CJL in order. 

Else 

Invoke the best-effort task scheduler. 

End if 

Step 2: The scheduler waits until the next time unit. 

If a running task finishes all its jobs, then 

It enters the waiting state; 

Else if the system is overloaded and the CJL of the current task 
is not empty and the task used all its reserved time, then 

If there is any real-time task ready then 

Current task enters the overrun state. 

Else if the ran utilization of the current task is greater or 

equal than (1- ββββ), then 

It enters the overrun state. 

Else 

It continues to execute. 

End if 

End if 

Check all tasks for reached release times and set them to the 
ready state. 

Step 3: Go to step 1. 
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PVPT A  θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3    

θ(A)=1/2                       

ψψψψ(A)=2/3  0 1     6   9   12   15  17    
                       

PVPT B  θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6    

θ(B)=1/3                       

ψψψψ(B)=2/3  0   3   6      12     17    
                       
  JA1 JB1    JA2 JB1  JA2 JA3 JB2 JB3    JA3 

Scheduling                    …   

R-EDF  0 1 2    6  8 9 10  12 13 14 15 16 17    
                       
  JA1 JB1  JA2 JB2 JA2  JA3 JB3 JA3     

Scheduling                       

ER-EDF  0 1   4  6  8 9 10  12  14 15 16 17    

Figure 4: Restrictive reservation in R-EDF and ER-EDF 

with two PVPT tasks 

In Figure 4, two PVPT tasks are show executing under 

R-EDF and ER-EDF algorithms according to the example 

presented in Section 4. While in R-EDF execution the job 

JB1 enters the overrun state, ER-EDF verifies that no other 

real-time task is available to run and allows that job to 

execute in the 3 and 4 time ticks, passing its reserved time. 

In the time tick 15, the job JA3 enters the overrun state, 

allowing JB3 to execute. Soon after JB3 execution, JA3 exits 

the overrun state, finishing its execution in the remaining 

available time. 

6 Implementation/Experiments 

The Spartan-3 Starter Board [14], together with Plasma 

soft-core processor, was used to validate the proposed 

algorithms. The border contains 1 MiB of SRAM memory, 

displays, leds, serial port and JTAG for bit stream loading. 

Plasma implements a reduced MIPS instruction set. It also 

is open-source, allowing a flexible hardware support. 

The operating system used is EPOS
1
. EPOS is an 

application-oriented operating system, i.e. it adapts 

automatically to the application requirements. The two 

algorithms were implemented in this OS and two 

experiments are shown next. 

In the first experiment, a situation where four real-time 

tasks are executed is shown. Each task has 500 jobs to 

execute simultaneously. The first three are PCPT tasks, i.e. 

have constant utilization. PCPT tasks have peak utilization 

equal to task utilization (θ = ψψψψ). Thus, PCPT tasks have 

similar behavior to tasks marked as hard real-time. 

Table 1 presents the parameters used to generate the 

experiment data. Task 2 is the only one marked as hard 

real-time. However, the reservation is similarly made to the 

first three tasks. Task 4 is a PVPT task where each job 

receives a generated utilization based on a linear 

                                                           
1
 Available in http://epos.lisha.ufsc.br/ 

mathematical distribution, where the minimum is 10% and 

the maximum is 42%. The system is classified overloaded 

with %115)T( i

4

1i

=∑
=

Ψ . The total reservation of the system 

is 100%. 

Table 1: Parameters for experiment data generation – 

first experiment 

 

The deadline miss results for the four tasks of the 

execution are presented in Figure 5. In this experiment, the 

hard real-time parameter was disabled in R-EDF and ER-

EDF to verify the similar behavior for PCPT tasks. Even 

though only the second task is marked as hard real-time, all 

first three behave similarly, losing 0% of its deadlines. In 

the execution of the EDF algorithm, all tasks miss 

deadlines. R-EDF and ER-EDF present no deadline miss 

for PCPT tasks, which is therefore compensated in the 

PVPT task. However, ER-EDF presents lower deadline 

miss rate compared to R-EDF. 

 

Figure 5: Deadline miss comparison for EDF, R-EDF 

and ER-EDF with/without hard real-time marks 

The next experiment shows two tasks with different 

periods executing in an overloaded environment. The first 

task is a hard real-time PCPT with constant utilization of 

50%. The second is a PVPT with numbers generated by a 
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linear distribution. Table 2 shows the parameters provided 

to generate data to be used in the execution. 

Table 2: Parameters for experiment data generation – 

second experiment 

 

Figure 6 compares EDF, R-EDF and ER-EDF showing 

their deadline miss rate for the execution described in Table 

2. EDF presents an undesirable behavior showing 

considerable deadline miss rate for both tasks. R-EDF 

shows the first task correctly being treated as hard real-time 

with 0% deadline miss. ER-EDF shows analogous 

execution to R-EDF. However, ER-EDF presents an 

improvement of 30% on the second task over R-EDF. 

 

Figure 6: Deadline miss comparison for EDF, R-EDF 

and ER-EDF 

7 Conclusions 

This work introduced a new real-time scheduler 

algorithm to provide quality of service to applications. The 

new algorithm – Enhanced R-EDF – is based on R-EDF, a 

multiclass real-time scheduler. R-EDF presents some 

limitations that are overcome by the new algorithm. In 

addition, the support for hard real-time tasks was added, 

which is fundamental to applications that require great 

responsiveness, and allows the existence of hard real-time, 

soft-real time and best effort tasks in the same system. 

ER-EDF showed significant improvement over its 

predecessor R-EDF. The addition of hard real-time support 

allows developers to parameterize the application to fulfill 

application’s real-time requirements. However, the 

enhancement of real-time execution costs to the best-effort 

tasks more starvation time. 
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