
High-Level Estimation of Execution Time and Energy 
Consumption for Fast Homogeneous MPSoCs Prototyping 

Sérgio J. Filho, Alexandra Aguiar, César A. Marcon, Fabiano P. Hessel 
Av. Ipiranga, 6681 - PPGCC / FACIN / PUCRS, Porto Alegre, Brazil 
{sergiojf, alexandra.aguiar}@inf.pucrs.br, {cesar.marcon, fabiano.hessel}@pucrs.br 

 
 

Abstract 

In order to fulfill the increasing performance 
requirements, complex embedded systems design makes use 
of many processors communicating through efficient 
infrastructures, performing Multiprocessor-Systems-on-
Chip (MPSoCs). Issues related to execution time and 
energy consumption estimations become more relevant 
during the design stage of such systems, in order to verify 
their compliance with the specification. Different estimation 
techniques have been proposed, including analytical and 
simulation-based methods. Analytical methods are faster 
than simulation-based methods, but the system description 
is more complex, and sometimes this approach conducts to 
low precision results misleading future design steps. On the 
other hand, the more accurate results achieved with 
simulation-based method, using low-level descriptions, may 
delay the design making it unfeasible or at least affecting 
the time-to-market. In this context, improvements in 
simulation-based methods become pertinent. This paper 
presents a study, a design flow and a tool for high-level 
simulation-based estimation of execution time and energy 
consumption of homogeneous MPSoCs. The implemented 
tool, which employs the methodology presented in this 
paper, improved dramatically simulation times when 
compared to RTL simulations. The preliminary results show 
that, for some cases, the RTL simulation takes tens hours 
while the implemented tool gets close estimation results in 
just few seconds. 

1 Introduction 

Advances in fabrication technology allow the 
implementation of complex systems with millions of 
transistors. Such advances also allow the integration of 
multiple components, such as processors, controllers and 
memories integrated into a single chip, performing a 
System-on-Chip (SoC). 

The design flow for embedded systems must consider 
real time execution, performance and power consumption 
requirements. Moreover, the market pressure requires fast, 
optimized and low cost designs. Flexibility is another 

important requirement. It must be possible to aggregate new 
functions to the SoC without re-designing it. 

Microprocessors have an important role in the flexibility 
of embedded systems. SoC solutions use one or more 
processors from the same or from different families. Such 
solutions, named Multiprocessor-Systems-on-Chip 
(MPSoCs), require specific models and tools to deal with 
the complexity of current applications. 

In order to evaluate the requirements of an MPSoC, 
hardware and software components functionalities have to 
be evaluated concomitantly. Nowadays, many of the 
available frameworks allow integrating these components 
later in the design flow - when the hardware prototype is 
available. However, since designers need to evaluate 
different implementation scenarios as soon as possible, 
estimation tools must be incorporated into the initial steps 
of the design flow. 

These tools can be classified as simulation-based or 
analytical-based according to the underlying method. 
Analytical methods allow foreseeing a future state of the 
system, and sometimes its characteristics, by its partial or 
total behavior modeling facing of a set of input events. In 
this class of tools, the system does not need to pass by 
intermediate states. On the other hand, to simulation-based 
tools estimate a future state, it is necessary to pass through 
many intermediary states. 

Normally, analytical-based tools are many times faster 
than simulation-based ones, making them attractive to 
complex systems estimations. However, those tools 
normally pay the cost of low accuracy when compared to 
simulation methods. 

The objective of this work is to maintain the accuracy 
achieved by simulation-based tools, which uses low-level 
descriptions, together with the performance in execution 
time of analytical-based tools. In this sense, this work 
proposes a platform, a design flow and a tool for execution 
time and energy consumption estimation of homogeneous 
MPSoCs. A platform, composed of four processors 
interconnected by a bus system and described in VHDL is 
used as a study case for estimation tool evaluation. After 
synthesizing the VHDL high-level description of the 
platform into a gate-level (RTL) description, time execution 

The 19th IEEE/IFIP International Symposium on Rapid System Prototyping

978-0-7695-3180-9/08 $25.00 © 2008 IEEE
DOI 10.1109/RSP.2008.25

27

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



and energy consumption estimations are taken from RTL 
descriptions and organized in a high-level tool, to speedup 
simulation times. 

This work is organized as follows. Section 2 presents the 
state-of-art of MPSoC architectures and tools. Section 3 
presents an MPSoC estimation platform, which is used as 
case study of our estimation tool. Section 4 describes our 
estimation tool. Section 5 presents preliminary results and 
in Section 6, conclusions are commented. 

2 State-of-Art 

Estimations achieved by simulation-based methods may 
be done with different levels of description. Some 
simulation tools use architectural description languages, 
such as LISA [1], Expression [2] and MIMOLA [3], to 
describe the processor architecture. Tools, which support 
such languages, produce the simulator, the compiler and 
sometimes the synthesizable hardware, according to the 
architecture description. Some commercial tools, such as 
Lisatek [4] and Maxcore [5] use LISA language. 

Energy aware architectural design exploration and 
analysis simulation tool for ARM based SoC designs is 
proposed in [6]. The tool integrates the behavior and energy 
models of several user-defined custom processing units, as 
an extension to the cycle-accurate instruction-level 
simulator for the ARM low-power processor family. 
Although several studies demonstrate that technology, 
layout and gate level techniques offer energy consumption 
savings of a factor of two or less, architecture optimizations 
can often result in very expressive energy consumption 
savings [7]. In this sense, our work relates how a higher 
abstraction level tool can be used to model different 
application scenarios. 

Analytical methods are useful for the solution space 
exploration in higher abstraction levels (for example, 
transaction level). Usually, the application analysis extracts 
the number of different types of instructions [8]. After that, 
such instructions are mapped to a performance model, 
which is used to calculate their execution time. However, 
this kind of mapping, is not detailed enough to represent 
complex systems, as in the case of distributed applications, 
which have MPSoC as a sound candidate for target 
architecture. 

In [9], the authors use a non-linear method for execution 
time estimation. With a determined set of benchmarks, a 
classifier extracts a functional signature vector for a virtual 
processor. This vector contains the types of instructions and 
the number of executions of each one. 

A characterization-based macromodeling technique is 
presented in [10]. This one enables the extraction of fast 
high-level models of reusable software components, which 

is based on pre-characterization of more detailed models 
(e.g. cycle models or instruction models), which consume 
more computation time. The effort directed toward the 
construction of macromodels for a software module is paid 
off due to the large number of macromodel applications, 
when the module is simulated in the context of all the 
programs that include it. However, for such cases, new 
software modules do not have higher abstraction of 
software implementation. Therefore, the impact in 
simulation time may be too high. 

In [11], the authors evaluate the annotation method using 
a set of virtual instructions to represent the object-code 
level instructions. This method transforms the C language 
code into a virtual instruction set. Each instruction has a 
cost associated to the target architecture, which is obtained 
through either simulation or statistical methods [8]. The 
method, however, does not consider all implications of a 
distributed system. 

An important factor in real time performance estimation 
is to find critical execution paths, which can be achieved by 
worst-case execution time (WCET) techniques. In [12], the 
authors propose an analysis of a static method, using a 
technique named implicit path enumeration, stipulating the 
number of executions in each basic block, regarding to the 
WCET. The limits are calculated through linear equations 
obtained from structural application and architectural 
analysis. Nevertheless, this kind of technique does not take 
into account neither detailed execution time nor energy 
estimations. 

In [13], the authors present a method used to reduce the 
linear equations trying to extract a unique possible path. 
Their method does not use WCET analysis, but intervals 
calculated taking into account a variable execution cost of a 
basic block. Conversely, the method, does not consider 
cycle-accurate estimations, which are quite relevant in 
complex systems, as software portions performance is 
dependent of hardware implementation. 

This work employs simulation of high-level abstraction 
levels for software execution time and energy consumption 
estimations, which performs a simulation tool. A detailed 
model of the architecture, implemented in RTL, is used as 
estimation reference to a cycle-accurate simulator. 

3 Estimation Platform Proposal 

3.1 Architecture 
Some decisions regarding to the adopted architecture 

had to be taken to create a platform for execution time and 
energy consumption estimations. Such decisions consider 
the microprocessors and interconnection structure adopted 

28

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



in the architecture, which are necessary for the construction 
of a prototype. 

The MIPS I processor was adopted in this work due to 
some advantages: (i) available open source description, (ii) 
the easiness of multiple cores integration, and (iii) existence 
of high performance compilers for a large portion of 
embedded systems applications. Moreover, the MIPS 
architecture is generic enough to represent a great segment 
of embedded processors characteristics (i.e. RISC 
architectures). Thus, the same framework analyzed may be 
reused and extended for other processor families. 

SoCs composed of few cores may be built around a bus 
interconnection easily, with low cost and without 
significant performance losses. As a result, custom bus 
architecture was used to build the study case platform 
proposed in this work, since this platform is composed of 
four cores. Although this was the target MPSoC 
architecture, it can be easily expanded or reduced, 
according to the application as the interconnection system 
is highly parameterizable. Such architecture has been 
successfully prototyped in hardware (using FPGAs). 

3.2 Methodology 
The methodology adopted in this work starts with a 

simulation tool to detect the logic modules activity. This is 
performed by using VHDL gate-level simulation. During 
this step, a module is stimulated by changing the logical 
values on its input ports. This module reacts according to 
these logic values, generating VHDL events on each 
internal logic gate of the module. Such events can be used 
to estimate the energy consumed on each gate. 

The first step of this method is synthesizing the 
architecture behavioral VHDL description using a target 
technology library. In this work, the architecture was 
synthesized through Leonardo Spectrum tool [14] using 
CMOS TSMC 0.35 µm technology1, producing a VHDL 
netlist. After synthesis, this netlist is converted by CAFES 
[15] tool, creating references to the energy estimation 
library. The CAFES tool takes into account the energy 
consumed on each gate, according to input events 
(transitions) and gate fanout. 

The next step is the circuit simulation and it is performed 
by a VHDL simulator, such as ActiveHDL [16] and 
ModelSim [14]. Figure 1 shows the methodology flow used 
for energy consumption estimation in digital CMOS 
circuits. In this work, ten different logic gates were used. 
Therefore, the synthesis process is not restricted to generate 
only this set of gates. 
                                                        
1 This technology is just an example. The library can be pre-

characterized with any kind of technology. 

 
Figure 1 – Methodology flow for execution time 
and energy consumption estimation. 

The key component for energy consumption estimations 
is the pre-characterized library. The main underlying idea is 
the use of VHDL events to accumulate the power dissipated 
by the module under simulation. In fact, according to [15], 
the estimation does not report a real consumption, but a 
close value. The applied methodology also takes into 
account the power dissipated by parasite components, 
which are introduced by interconnections (metal and vias) 
and each logic gate fanout. 

3.3 Single processor platform 
Firstly, a platform with a single processor was built. 

Such platform consists of one Plasma [17] processor core, 
which implements the MIPS I instruction set and other 
components, as presented in Figure 2. 

 

Synthesized Plasma core

Internal memory 
(bootloader) 

UART 

Estimation library 

External memory 
(SRAM or BlockRAM) 

Testbench 

In
te

rn
al

 C
PU

 b
us

 

 
Figure 2 – Initial platform architecture. 

Figure 2 shows the internal structure of the processor, 
formed by a netlist of the processing core, an internal 
memory, an UART and an interface to external memory. 

29

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



The library is instantiated by the cores for energy 
consumption estimations. 

The platform architecture conception isolates the 
processor core from the internal memory and UART. Thus, 
processor estimations refer only to its core (control, 
datapath and registers). The methodology flow was applied 
to this module enabling execution time and energy 
consumption estimations. 

The application to be estimated is stored in the external 
core memory, which is generic, parameterizable, 
synthesizable and one cycle latency. Only the FPGAs 
BlockRAM resources limit its size. 

All components communicate through an internal bus. A 
testbench generates clock and reset signals to the processor 
core and other modules. Therefore, the platform 
functionality is simulated and estimations can be obtained. 

3.4 Complete platform 

The complete platform used here as case study has four 
Plasma processors communicating through a media control 
access and a bus. Figure 3 presents the block diagram of the 
implemented architecture. Four processors and a bus 
compose this architecture, although the interfaces are 
defined in a very generic way and another communication 
structure, such as a network-on-a-chip (NoC) could be used 
instead. A more efficient communication structure was not 
used because the processors, in this configuration (without 
DMA), would not use its full bandwidth. 

 
Figure 3 – Target architecture used for case study. 

The platform was fully described in VHDL and 
prototyped in FPGA. Software drivers for communication 
were implemented, using simple Send and Receive blocking 
and non-blocking primitives. 

The data exchanged among processors is organized in 
packets, whose structure is presented in Figure 4. The first 
2 bits are used for signaling between processors and the 
control access. Another 6 bits are used for addressing and 
24 bits hold data. 

 
Figure 4 – Packet structure. 

Our custom bus architecture was also described in 
VHDL, simulated and prototyped in FPGA. The bus 
architecture is economic in area and presents efficient 
throughput for the implemented MPSoC. Its characteristics 
are summarized on Table 1. 

Table 1 – Bus characteristics 

Feature Description 
Word width 8 bits (parameterizable)
Ports 4 (parameterizable)
Queue length 16 bytes (parameterizable)
Arbitration Round Robin algorithm
Latency 2 cycles per word, after arbitration
Frequency 25 MHz (prototyped), max. 222 MHz
Size 8372 logic gates
Throughput 100 Mb/s (8 data bits @ 25 MHz)
I/O protocol Handshake

The controller between cores and custom bus adapts the 
synchronous data port signals of each core to the 
asynchronous handshake protocol, implemented in the bus 
ports. This controller generates four 8-bit word bursts on 
the bus, for each 32-bit read or write event on the data ports 
of each core. Moreover, the controller also implements core 
addressing, which enables unicast or broadcasts packet 
destination address. 

The proposed platform architecture isolates the 
processors from the interconnection structure. Such 
characteristic allows the measurement of each component 
separately after logic synthesis. Table 2 summarizes the 
logic used by each component of the implemented platform. 
Plasma processors represent 86.36% of the used logic and 
the remaining (13.64%) is used by the interconnection 
infrastructure. 

Table 2 – Components area 

Component Size (logic gates) 
Bus 8372
Processor / Bus controller 2893
Processor (Plasma core) 82348 (20587 each)
Total 93613

30

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



4 Estimation Tool 

Gate-level simulations provide accurate execution time 
and energy consumption estimations [15]. However, the 
time spent to simulate even simple algorithms running on a 
single processor is prohibitive. 

A sound estimation tool relies on the idea of achieving 
accurate results in affordable computation time. To achieve 
this goal, we developed a high-level simulation tool. An 
instruction set simulator (ISS) of the MIPS I architecture 
was implemented. Such simulator runs native object code, 
executing it according to the hardware implementation of 
Plasma processor. In addition, the simulator includes 
mechanisms for cycle counting and energy consumption 
estimation. The cycle counting mechanism is also 
responsible for the individual instruction accounting. 
Furthermore, a time simulation mechanisms were 
implemented, to emulate hardware execution over a finite 
amount of time. One of them is the number of cycles to be 
performed on real hardware execution. 

Timing and functional emulation of the UART are also 
included. Consequently, algorithms that produce output to 
the UART are correctly emulated. 

Different instructions generate different stimuli inside 
the processor core. Thus, the energy per cycle changes 
accordingly to these stimuli. The estimation tool computes 
this behavior, applying it during the simulation of the 
application. It reduces the estimation error of energy 
consumption. 

Exhaustive analysis shows that the energy consumption 
estimation can be distributed according to different classes 
of instructions: (i) Arithmetic, (ii) Branches, (iii) Loads / 
Stores, (iv) Logical and (v) Moves / Shifts. This distribution 
is somewhat in high abstraction level, but efficient enough 
to achieve approximated energy consumption estimation. 
Further classes would improve energy consumption 
estimations, at the cost of higher simulation times. Data 
variance also influences in core energy consumption, 
consequently, the energy consumption per cycle was 
modified inside the ISS for exception cases. 

Based on several RTL simulations, it was observed that 
different instructions inside a single class generated 
different energy parameters; as a result, weights were 
attributed for exception cases. 

Energy parameters were obtained from RTL simulations 
(gate level), and included in the proposed tool, as detailed 
in the next section. Such parameters are part of the energy 
consumption mechanism. 

5 Results 

Application tests were created for each instruction class, 
and the energy parameters were obtained through VHDL 
simulations of the processor description. Each application 
includes several instructions of the same class. Such 
applications run for a limited time, repeating the 
instructions exhaustively. After this, the accumulated 
energy consumed by the processor is divided by the 
executed number of cycles, and the energy per cycle 
consumed by each instruction class can be obtained, as 
shows Table 3. 

Table 3 – Average of energy consumption per 
cycle of each instruction class 

Instruction class Energy consumption per cycle (J) 
Arithmetic 1.60864E-09
Branches 2.39897E-09
Load / Store 1.69180E-09
Logical 2.51948E-09
Move 1.92844E-09
Shift 2.92796E-09

Table 4 presents the estimated energy consumption of 
the interconnection structure, regarding to both intense 
packet traffic and idle situations. Application tests were 
created to simulate traffic generation and the 
interconnection structure was simulated in VHDL, likewise 
the processors were. The same drivers using simple 
blocking and non-blocking Send and Receive primitives 
were used on VHDL simulation and in our tool. The latency 
of packet traffic was also simulated in VHDL and included 
in our high-level estimation tool. 

Table 4 – Interconnection energy consumption 

Energy consumption (J) Interconnection
per cycle per packet 

Idle 4.68900E-11 2.34450E-09
Data 1.62562E-10 8.12808E-09

Table 4 shows that packet traffic generates higher energy 
consumption of the interconnection in contrast to idle 
situations. Random data was generated in a test application 
and an average energy per packet was used as energy 
consumption reference. 

Several applications were implemented or ported to the 
MIPS I architecture. A summary of applications simulated 
in the VHDL platform and on the estimation tool is 
presented on Tables 5 and 6. 

Table 5 presents the execution time and the energy 
consumption estimations for applications running on a 
single processor. 

 

31

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



Table 5 – Single processor benchmarks 

VHDL Our Tool Benchmark 
WCET (ms) Energy (J) WCET (ms) Energy (ms) 

WCET 
Error 

Energy 
Error 

Sobel 33.74 1.33E-03 34.11 1.62E-03 1.09% 17.87%
JPEG 205.33 11.10E-03 207.30 11.12E-03 0.95% 0.25%
CRC32 7.87 0.79E-03 7.87 0.77E-03 0.02% 2.65%
ISqrt 16.64 1.89E-03 16.640 1.96E-03 0.00% 3.37%
ADPCM 267.14 31.46E-03 267.14 25.75E-03 0.00% 18.15%
Random 83.14 7.82E-03 83.13 7.74E-03 0.00% 0.01%

Several benchmarks were used as case study. Time 
execution estimation is quite accurate, as shown on Table 5. 
The maximum error in this set of benchmarks was around 
1%. Energy consumption estimations error was higher, 
around 18% on two corner cases, but other four cases 
demonstrated an estimation error of energy consumption 
below 4%. 

The set of benchmarks is composed of several 
algorithms, being one of them an edge detection algorithm 
(Sobel) performed on a sample 32x32 pixel monochrome 
image, a baseline JPEG encoder used to encode a 32x32 
pixel RGB sample, a standard CRC32 implementation, an 
integer square root algorithm, the Intel ADPCM encoder / 
decoder and a random number generator. 

For a partial validation of the estimation tool, a non-
trivial algorithm was chosen. As a case study, the JPEG 
encoder, conforming to ISO-10918, was implemented and 
ported to the MIPS I architecture. This encoder was 
implemented according to the reference standard [19]. The 
bitstream generated from the encoding process has been 
verified in conformance. A version of this algorithm, where 
the generated encoded bitstream was outputted to the 
UART, was tested and verified on the FPGA prototype. 

Table 6 presents a benchmark of distributed 
applications, where algorithm parallelism and 
communication between processors occurs. The benchmark 
is composed of three algorithms – a broadcast algorithm, a 
distributed ADPCM encoder / decoder (MP ADPCM) and a 
distributed JPEG encoder (MP JPEG). 

Table 6 – Benchmark for execution time and 
energy consumption estimation of distributed 
applications 

VHDL Our Tool Benchmark 
WCET (ms) Energy (J) WCET (ms) Energy (J) 

WCET 
Error 

Energy 
Error 

Broadcast 17.45 6.54E-03 17.78 7.94E-03 1.82% 17.63%
MP ADPCM 206.73 47.94E-03 203.44 41.10E-03 1.59% 14.26%
MP JPEG 86.00 28.81E-03 86.77 27.46E-03 1.15% 4.66%

Estimation errors of execution time are a bit higher, 
when compared to single processor algorithms, mostly due 
to the simple modeling of the interconnection latency. 
Energy consumption estimation is pretty close to single 
processor benchmark. 

The broadcast algorithm is similar to the producer / 
consumer problem but here there is one producer and three 
consumers. As the packets are sent as broadcasts, all 

consumers receive the same packet. The execution time 
estimation error for this benchmark is around of 2% and the 
energy estimation error is around of 18%. 

MP ADPCM application uses two processors, being one 
the encoder and other the decoder. The first processor 
encodes 100 ms of 16 bit samples of audio data, and sends 
over the network 100ms of 4 bit samples. The decoder 
inverts the process and decodes all 4 bit samples, placing 
the decoded 16 bit sampled audio in a buffer. The process is 
iterated ten times, so a one second audio sample is 
processed. In this benchmark, the execution time error is 
less than 2%, and the energy estimation error is around of 
14%. 

A processor of MP JPEG encoder acts like a master 
processor sending data blocks as broadcast image to the 
three others processors, which act like slaves. Each slave 
processors executes, concurrently, algorithms of DCT, 
quantization and zigzag scan on the samples. The results 
are sending back to the master that executes Huffman 
encoding and bitstream organization. The encoded image is 
placed into a buffer. This application had 1% of execution 
time estimation error and less than 5% of estimation error 
concerning energy consumption. This is not a big 
difference, compared to the single processed 
implementations of the last two algorithms. 

Finally yet importantly, is important to state that VHDL 
simulation becomes unfeasible for a complete platform 
running complex distributed applications. For this case 
study, the VHDL simulation took about five days on a PC 
with a 2.8 GHz processor and 1 GB of RAM, on the longer 
algorithm. Nevertheless, our tool reported the results on just 
a few seconds. 

6 Conclusions and Ongoing Work 

This work proposes a methodology for software 
execution time and energy consumption estimations of 
homogeneous MPSoCs, which is composed by a design 
flow and a simulation tool. 

To evaluate the design flow and calibrate the simulation 
tool, an MPSoC platform comprised by four Plasma 
processors cores, which communicate through an internal 
bus, was implemented and used as case study. 

A gate-level simulation is used as reference to a higher-
level simulation tool. Although we noticed that a small 
error in the estimations was introduced in the higher-level 
simulations of the case study architecture, the benefit from 
speedup in simulation time (which is orders of magnitude 
smaller, in the proposed tool) becomes quite attractive, as 
many different application scenarios can be evaluated in a 
short period. 

The estimation tool is still under development stage. 

32

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 



Control structures, memory, processor registers, instruction 
counting and estimated energy consumption were replicated 
for full platform emulation. 

The most complex structure of the estimation tool is the 
ISS. A great effort is being made to improve its precision. 
Such precision improvement tends to minimize errors in 
estimations of the whole platform, since the logic related to 
processing elements represents around 86.36% of global 
MPSoC logic. 

References 

[1] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. 
Wahlen, and H. Meyr. A Methodology for the Design of 
Application Specific Instruction Set Processors (ASIP) Using 
The Machine Description Language LISA. International 
Conference on Computer Aided Design (ICCAD), 2001. 

[2] P. Mishra, M. Mamidipaka, and N. Dutt. Processor-Memory 
Co-exploration Using and Architecture Description 
Language. ACM Transactions on Embedded Computing 
Systems, v.3, n.1, pp.140-162, 2004. 

[3] R. Leupers. HDL-based Modeling of Embedded Processor 
Behaviour for Retargetable Compilation. International 
Symposium on System Synthesis (ISSS), 1998. 

[4] Coware, Lisatek - www.coware.com/products/lisatek.php. 
Last access on Aug. 2007. 

[5] ARM, Maxcore - www.arm.com. Last access on May 2005. 

[6] D. Crisu, S. D. Cotofana, S. Vassiliadis, P. Liuha. High-Level 
Energy Estimation for ARM-Based SOCs. 
http://ce.et.tudelft.nl/publicationfiles/794_12_dcrisu_samos2
003.pdf. Last access on Sep. 2007. 

[7] P. Landman. High-Level Power Estimation. International 
Symposium on Low Power Electronics and Design, pp. 
29-35, 1996. 

[8] P. Giusto, G. Martin, and E. Harcourt. Reliable Estimation of 
Execution Time of Embedded Software. Design Automation 
and Test in Europe (DATE), 2001. 

[9] G. Bontempi and W. Kruijtzer. A Data Analysis Method for 
Software Performance Prediction. Design Automation and 
Test in Europe (DATE), 2002. 

[10] A. Muttreja, A. Raghunathan, S. Ravi, N. K. Jha. Automated 
Energy/Performance Macromodeling of Embedded Software. 
IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, v.26, n. 3, Mar. 2007. 

[11] J. Bammi, E. Harcourt, W. Kruijtzer, L. Lavagno, and M. 
Lazarescu. Software Performance Estimation Strategies in a 
System-Level Design Tool. International Workshop on 
Hardware/Software Codesign (CODES), 2000. 

[12] Y.-T. Li and S. Malik, Performance Analysis of Embedded 
Software Using Implicit Path Enumeration. 32th Design 
Automation Conference (DAC), 1995. 

[13] F. Wolf and R. Ernst. Intervals in Software Execution Cost 
Analysis. 13th International Symposium on System 
Synthesis, (ISSS), 2000. 

[14] Mentor Graphics - www.mentor.com/products. Last access 
on Jan. 2008. 

[15] César Augusto Missio Marcon. Modelos para o Mapeamento 
de Aplicações em Infra-estruturas de Comunicação 
Intrachip. PhD Thesis, Universidade Federal do Rio 
Grande do Sul (UFRGS), 2005. 

[16] Aldec - www.aldec.com/products/active-hdl/. Last access on 
Jan. 2008. 

[17] Opencores - www.opencores.org.uk/projects.cgi/web/mips/. 
Last access on Jan. 2008. 

[18] R. Fisher, S. Perkins, A. Walker, and E. Wolfart. Sobel edge 
detector - homepages.inf.ed.ac.uk/rbf/hipr2/sobel.htm. Last 
access on Oct. 2006. 

[19] The International Telegraph and Telephone Consultative 
Committee. ISO/IEC 10918-1 information technology digital 
compression and coding of continuous-tone still images 
requirements and guidelines, 1992. 

 

33

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:19:05 UTC from IEEE Xplore.  Restrictions apply. 


