
A VHDL Based Approach for Fast and Accurate Energy
Consumption Estimations

César A. M. Marcon, Sérgio Johann Filho, Fabiano P. Hessel

PPGCC / FACIN / PUCRS – Av. Ipiranga, 6681, Porto Alegre, RS – Brazil

cesar.marcon@pucrs.br

Abstract

Efficient energy consumption became an important
requirement and constraint to be considered in many systems
implementations, mainly to the embedded ones. Accurate and
efficient power estimation during the design phase is required,
in order to meet the power specifications without a costly
redesign. High abstraction levels descriptions enable fast
energy consumption estimations, but hardly enable accurate
estimations. It normally requires evaluations at low
abstraction levels, such as electric ones. On the other hand,
low abstraction levels require too much design effort and
design time. In this sense, this work presents an approach for
energy consumption estimation for systems written in
synthesizable VHDLs. A VHDL cell library is the base of the
methodology, which is characterized with some relevant
energy consumption information according to foundry
parameters. The use of this approach leads to high-quality
energy consumption estimations and design time saving.

1. Introduction

The increases in chip density, operating frequency, and
demand for portable applications have made power
consumption a VLSI design major concern. Excessive power
dissipation in integrated circuits not only discourages their use
in a mobile environment, but also causes overheating, which
degrades performance and reduces chip lifetime [1].
Therefore, designers need methods and tools to minimize not
only the energy consumption, but also the high power density,
avoiding reliability problems and expensive cooling systems.

It is imperative the use of tools for power consumption
estimation, in order to guide the designer in solving these kind
of problems. Unfortunately, accurate estimations can be
achieved only with low description levels, which demand too
much design and processing time. In addition, low abstraction
level descriptions are more error prone, difficult to understand,
to maintain, and to document the systems, when compared to
high abstraction levels.

These drawbacks encourage researchers in finding new
methods and/or models that leads to accurate estimations that
overcome the problems. This paper proposes an approach for
energy consumption estimation, named EngyLib (which
stands for Energy Library), which allows the designer
describing systems in high abstraction levels, with accuracy
estimations of low abstraction levels.

EngyLib highlight is a VHDL cell library, which is
characterized according to static power dissipation, dynamic
energy consumption, and number of transistors switching. The
approach consists of converting a high-level system
description to an equivalent low-level one, which is a VHDL
netlist composed by the characterized cell. Next, through a
simulation step, the energy consumption is estimated

according to the input stimuli.

Many levels and description languages may be used to
describe the system under energy consumption estimation, like
behavioral VHDL and structural Verilog. However, the high-
level description has to be synthesizable to a VHDL composed
by the characterized cells.

EngyLib is part of CAFES [2], which is a Java open-
source framework developed targeting different sort of
analyses and syntheses of embedded systems.

Results achieved by comparing electric simulation of
small processors and embedded applications with the proposed
approach attest the efficiency and efficacy of EngyLib. This
approach reduces in average 38 times the estimation time,
paying the cost of only 13 percent of energy consumption
imprecision, when compared to energy consumption
reference, accomplished by electric simulation.

2. EngyLib, a VHDL Based Approach for
Energy Consumption Estimation

EngyLib is the approach proposed here, which uses the
precision of electric levels to build a VHDL cell library. This
one is timing and energy consumption characterized, enabling
to estimate through VHDL simulation the static and dynamic
energy consumption of circuits. EngyLib provides many
benefits, as for instance, VHDL simulation is much faster than
an electric one, speeding up the energy consumption
estimation of the system under evaluation. In addition,
although the approach proposed here synthesizes the system
description to a low-level one, the designer may only work at
high abstraction levels, since low-level description are seen as
an intermediary language of the estimation flow.

Figure 1 illustrates that starting from a system description
the designer may estimate the energy consumption, number of
switching and execution timing, of the entire system or part of
it by performing three steps: (i) logic synthesis, (ii) connection
analysis, and (iii) system simulation.

Library of
characterized

cells

Circuit simulation

Input signals

System description

Logic synthesis

VHDL netlist1

Energy
consumption

estimation

Output
signals

Number
of

switching

Execution
time

estimation

Connectivity tool

VHDL netlist2

Figure 1 – Workflow for energy consumption estimation

276

978-1-4244-1710-0/07/$25.00 c© 2007 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:25:02 UTC from IEEE Xplore. Restrictions apply.

Any abstraction level, which reduces the designer
description effort and the error prone, may be used to perform
the system description. The only restriction here is that this
description has to be synthesizable, so that a logic synthesis
tool may convert it to a netlist of VHDL cells. This synthesis
is constrained to only the set of cells that are pre-characterized
according to energy consumption parameters. This work uses
Leonardo Spectrum [3] as the synthesis tool.

Figure 2 depicts a partial VHDL description of an
accumulator system, which is a synthesizable one.

architecture accumulator of accumulator is
...

begin
...

soma <= opA + opB;
process(clock, reset)
begin

if reset = '1' then
 opA <= (others=>'0');

elsif clock'event and clock = '1' then
opA <= opA + 1;

 end if;
end process;

...
end accumulator;

Figure 2 – Partial description of a synthesizable VHDL

The synthesis of the VHDL behavioral of Figure 2
generates a VHDL netlist description, which is partially
illustrated in Figure 3, and named VHDL netlist1 in Figure 1.
architecture accumulator of accumulator is

...
begin

...
opA_5: dffr port map(Q=>opA_5, QB=>nx210, D=>nx140, CLK=>nx248, R=>nx258);
ix216: nand02 port map(Y=>nx215, A0=>opA_3, A1=>nx50);
ix177: xor2 port map(Y=>saida_6, A0=>nx156, A1=>nx174);
ix157: mux21 port map(Y=>nx156, A0=>nx210, A1=>nx204, S0=>nx146);

...
end accumulator;

Figure 3 – Partial VHDL netlist of Figure 2 system

The connection analysis step enhances the synthesized
VHDL netlist by adding the fan-out estimation of each output
signal of each cell. A tool that searches all connectivity of
output signals and knows the fan-in of each type of cell does
it. This tool is implemented inside CAFES framework [2]. In
addition, this tool may help the designer inserting special cells
that represents metal lines. This is a partial manual step, which
is normally performed when the system under evaluation have
large transmission wires.

Figure 4 shows the VHDL netlist2 generated by connection
analysis tools. Here, all output signals have annotated a fan-
out according to the associated load capacitance.

architecture accumulator of accumulator is
...

begin
...

opA_5: Entity work.DffReset port map(Q=>opA_5, FanOut_Q=>2,
QB=>nx210, FanOut_QB=>3, D=>nx140, CLK=>nx248, R=>nx258);

ix216: Entity work.Nand2 port map(Y=>nx215, FanOut_Y=>2, A0=>opA_3,
A1=>nx50);

ix177: Entity work.Xor2 port map(Y=>saida_6, FanOut_Y=>1, A0=>nx156,
A1=>nx174);

ix157: Entity work.Mux2to1 port map(Y=>nx156, FanOut_Y=>2,
A0=>nx210, A1=>nx204, S0=>nx146);

...
end accumulator;

Figure 4 – Partial VHDL netlist with fan-out annotation

architecture accumulatorTestBench of accumulatorTestBench is
...

begin
PowerEstimation1: Entity work.PowerEstimation;
UUT: Entity work.accumulator port map (

clock => clock,
 reset => reset, ...)

...
end accumulatorTestBench;

Figure 5 – Partial test bench description

Any kind of commercial VHDL simulator can perform the
circuit simulation step. The designer has just to insert the
appropriated input stimuli to the inputs of the circuit under
analysis and include the PowerEstimation entity inside the

VHDL source file. PowerEstimation is an EngyLib entity
that contains static and dynamic energy consumption
estimations, the sum of transistors switching of each
transition, timing, and other information. Figure 5 depicts a
partial VHDL containing the input file for accumulator system
simulation with energy consumption estimation.

3. VHDL Library Characterization

The first step in VHDL library characterization is
choosing an appropriate set of cells. If this propose, it was
selected a large number of embedded applications to verify the
most used cells, and the effect of discard the less used one.
This process carried out to a basic library with a set of 15 cells
composed by logic gates and flip-flops. Once the set was
select, the cells were geometrically and electrically described
according to a target technology (for instance, CMOS TSMC
0.35μm). A stimuli generation tool, which was implemented
inside CAFES, generates all possible stimulus combinations of
each cell. Figure 6 illustrates that having as inputs the target
technological library, the input signals, and the electric library,
containing the cell behavior and its electric characteristics, an
electric simulator generates a set of outputs, reflecting logic,
timing, and electric behaviors.

Library of
characterized cells

Set of cells

Stimuli extraction

Input signals

Electric simulation

Simulation results

Parameters extraction

Electric parameters

VHDL library building

Electric
description

building

Electric
library of

cells

Technological
library

(Foundry
parameters)

Figure 6 – VHDL library characterization

Each set of input stimulus produces different energy
consumptions. Table 1(a) shows the energy consumption of all
input combinations of a not gate that generate transistors
switching. It considers a fan-out of one gate. Table 1(b) shows
the static power dissipation, when inputs do not change.

While fan-out does not affect the static power dissipation,
the load capacitance influences directly the dynamic energy
consumption. To represent the fan-out influence, two solutions
were evaluated: (i) to construct functions that allows the
knowledge of energy consumption of a given fan-out by
interpolation, and (ii) to annotate explicitly all fan-out
possibilities. This work chose the last one, since this last leads
to more accurate estimations.

Table 1 – Dynamic energy consumption and static power
dissipation for all input combinations of a not gate

Input transition Energy consumption (J)
0 1 2.2993 E-13(a)

1 0 2.2258 E-13

Input transition Power dissipation (W)
0 0 3.6825 E-10(b)

1 1 7.1430 E-14

Figure 7 depicts a partial VHDL of the characterized not
gate, where some energy and power parameters listed in Table
1 may be seen in lines 21, 22, 34 and 35.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 277

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:25:02 UTC from IEEE Xplore. Restrictions apply.

1 use work.POWER_PCK.all;
2 entity Inv is
3 port(Y: out STD_LOGIC; FanOut_Y: in NATURAL := 3;
4 A: in STD_LOGIC);
5 end Inv;
6 architecture Inv of Inv is begin
7 process(A)
8 variable PreviousA: STD_LOGIC := '0';
9 variable staticPower, cellDynamicEnergy: REAL := 0.0;
10 variable dynamicEnergy: REAL;
11 variable switching: NATURAL := 0;
12 variable transition: STD_LOGIC_VECTOR(1 downto 0);
13 begin
14 transition := PreviousA & A;
15 dynamicEnergy := 0.0;
16 switching := switching + 2;
17 totalSwitching := totalSwitching + 2;
18 case transition is
19 when "01" =>
20 case FanOut_Y is
21 when 1 => dynamicEnergy := 2.2993E-13;
22 when 2 => dynamicEnergy := 3.1251E-13;
23 ...
24 when "10" =>
25 case FanOut_Y is
26 when 1 => dynamicEnergy := 2.2258E-13;
27 ...
28 end case;
29 cellDynamicEnergy := cellDynamicEnergy + dynamicEnergy;
30 totalDynamicEnergy := totalDynamicEnergy + dynamicEnergy;
31 totalStaticPower := totalStaticPower - staticPower;
32 transition := (A & A);
33 case transition is
34 when "00" => staticPower := 3.6825E-10;
35 when "11" => staticPower := 7.1430E-14;
36 end case;
37 totalStaticPower := totalStaticPower + staticPower;
38 Y <= not A;
39 PreviousA := A;
40 end process;
41 end Inv;

Figure 7 – Partial VHDL description of a not gate

In addition, Figure 7 shows some local and global
variables used to compute static and dynamic energy
consumption, and the number of transistors switching. For
instance, cellDynamicEnergy is a local variable containing
the total dynamic energy consumed by the cell during the
simulation. The global variable totalDynamicEnergy
contains the sum of all cellDynamicEnergy of the system.
The local vector transition stores the previous input value and
the new one. It is used to evaluate if occurred or not a
transition in any input signal enabling to estimate both static
and dynamic energy consumption. The global variable
totalStaticPower contains the static energy consumption of
all system cells. Each transition the static power value is
recomputed to its new value, according to the latest input
value. It preserves the consistence of the static energy
consumption of the entire system, which is computed each
time step of simulation.

VHDL allows global variable through declaring them as
shared inside a global package. This is the way that each
instance of a cell can add its influence in global estimation.
Figure 8 illustrates some of the main shared variables inside
POWER_PCK, which is the power package of EngyLib.

package POWER_PCK is
shared variable totalDynamicEnergy: REAL := 0.0;
shared variable totalStaticPower: REAL := 0.0;
shared variable totalStaticEnergy: REAL := 0.0;
shared variable totalSwitching: NATURAL := 0;

...
end POWER_PCK;

Figure 8 –Partial description of the main EngyLib package

Although, this Section depicts a flow to characterize a
VHDL library of a particular technology, a set of tools built
inside CAFES framework allows to building new VHDL
libraries according to others technologies, as long as it will be
used the same set of selected cells.

4. Library Refinements and Verification

Estimations achieved with a netlist simulation, based on a
cell library, may be imprecise due to many issues, like an

inappropriate extraction of electric parameters and an unfitting
abstraction level modeling. To overcome it Figure 9 shows the
main steps applied to cell library refinement.

Electric simulation

Electric
simulation results

Electric
library of

cells

Technological
library

(Foundry
parameters)

VHDL
simulation

Logic2SPICE

Input signals

Input SPICE
signals

Logic synthesis,
Connectivity tool

SPICE netlist

VHDL2SPICE

VHDL netlist2

VHDL
simulation

results

System verification and
parameters refinement

System description
Library of

characterized cells

Figure 9 – Cell library refinements and verification

Innumerous circuit descriptions with different
complexities may be evaluated with the depicted flow,
including the precision of EngyLib. If the acquired precision is
not satisfactory, a new energy model may be planned for a
new evaluation.

The system description is converted by logic synthesis and
the connectivity tool on the same VHDL netlist used in VHDL
simulation of previous Section. Then, the VHDL2SPICE tool
converts the VHDL netlist onto a SPICE one, in way of
performing two equivalent estimations flows for future
comparison. The values used as input of VHDL simulation are
converted to electric ones with Logic2SPICE tool, according
to some electric parameters, such as power supply, slope up,
and slope down. Then, simulation results are compared in
manner of verifying the accuracy of the proposed method and
check the system behavior.

Table 2 – Energy consumption comparison between
SPICE simulation and EngyLib of a chain of not gates

Energy consumption (J)Interval (ns)
SPICE simulation EngyLib approach

Imprecision (%)

2000 8.2274 E-11 8.2206 E-11 0.0827%

Table 2 illustrates the energy consumption achieved by
SPICE simulation and EngyLib of a chain of not gates. A
simulation during 2000 ns shows an imprecision of less than
0.1%. This imprecision practically maintains for larger
evaluation.

Figure 10 illustrates PowerEstimation, which is the
simulation core architecture. It performs the integration of all
cells computation and some global calculi.

use work.POWER_PCK.all;
entity PowerEstimation is
end PowerEstimation;
architecture PowerEstimation of PowerEstimation is

signal step: STD_LOGIC;
...

begin
process
begin

step <= '0', '1' after TREF / 2;
 wait for TREF;
end process;

...
process(step)

variable cycles: NATURAL := 0;
 variable totalEnergy: REAL;
begin

cycles:= cycles + 1;
totalStaticEnergy := totalStaticEnergy +

 totalStaticPower * TREF;
totalEnergy := totalDynamicEnergy + totalStaticEnergy;

end process;
...

end PowerEstimation;

Figure 10 – PowerEstimation architecture, which is the
core of EngyLib approach

278 2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:25:02 UTC from IEEE Xplore. Restrictions apply.

The parameter TREF of Figure 10 is a time reference,
implying the precision of VHDL simulator, and affecting the
total static energy computation.

5. Experimental Results

It was performed energy consumption estimation on a
benchmark using electric simulation and EngyLib approach.
Both were performed on a PC with Pentium 4, 3.2 GHz
processors and 2 GB RAM. A router, two processors, and
three embedded applications compose the benchmark. The
selected router is a subcircuit of mesh NoC Hermes [4].
Plasma and 8051 processors are the ones selected. As
embedded applications, it is evaluated a Fast Fourier
Transform (FFT) and two image applications, one for object
recognition and another for image encoding.

Table 3 – Benchmark characteristics

Characteristics VHDL Code size (lines)
Circuit # of transistors high-level Synthesized
Router 52,376 630 2,985
8051 148,040 2057 8,967

Plasma 255,240 3089 16,124
FFT 66,550 697 3,699

Object recognition 54,774 612 2,578
Image encoding 55,732 734 2,903

Table 3 reports some characteristics of the benchmark.
Column 2 reports the number of transistors for the technology
mapped net lists (CMOS TSMC 0.35μm), while Columns 3
and 4 indicate the number of code lines in the original VHDL
code and the one achieved by the synthesis tool.

For each circuit, it was firstly employed SPICE
simulations to obtain accurate reports of the reference energy
consumption. After that, with equivalent input stimuli, all
benchmarks were simulated applying EngyLib approach. A
random traffic provides input signals to energy consumption
estimation of the router; two small programs were used as
input of the processors, while embedded applications were
stimulated by typical input traces. After that, the
corresponding results generated by EngyLib were compared
with the SPICE reference report. It produces absolute and
relative comparison values depicted in Table 4 and Table 5.

Table 4 shows the elapsed time achieved by electric
simulation and EngyLib for each circuit. As it can be
observed, the approach proposed here reduces around of 34
times the simulation average time.

Table 4 – Time comparison between electric simulation
and EngyLib approach

Simulation time (seconds)
Circuit SPICE EngyLib Reduction

Router 73,983 2,521 29.35
8051 235,473 5,778 40.75
Plasma 211,850 6,710 31.57
FFT 100,113 2,953 33.90
Object recognition 180,224 5,880 30.65
Image encoding 47,187 1,157 40.78
Average 34.50

Column 2 of Table 5 depicts the energy consumption
achieve by each circuit during an electric simulation. Having
these energy consumptions as references, Column 3 to
Column 5 show the module percentage deviation of three
energy models variations. Column 4 presents the results of the
most accurate model, since it considerer static power

dissipation and the fan-out of each cell. It is also important to
observe that energy consumption of each kind of circuit
cannot be compared one with each other, since they are
completely applications running for different times.

Table 5 – Accuracy of energy consumption estimation,
regarding to different energy models

Energy consumption deviation from EngyLib to
SPICE reference (%)

With static power dissipationCircuit

SPICE
energy

consumption
reference

(mJ) Single fan-out All fan-outs

All fan-outs
without static

power dissipation
Router 1.13 5.07 3.11 3.12
8051 5.67 14.78 11.51 11.51
MIPS-like 11.19 31.23 25.12 25.13
FFT 1.47 9.35 8.49 8.49
Object recognition 0.90 8.42 5.03 5.04
Image encoding 1.02 21.05 16.94 16.95

Average 14.98 11.70 11.71

EngyLib approach has, in average, only 11.7% of
deviation from SPICE energy consumption reference. It is
well accepted when considering the benefits achieved by
EngyLib approach, such as simulation time reduction. More
deviation is achieved if the model considers only a single fan-
out, even if it is achieved as an average fan-out.

Considering this technology the static energy consumption
may be neglected when compared to the dynamic energy. On
the other hand, the static energy has an important role in the
estimation process of deep submicron technology, since it has
the same magnitude order of the dynamic energy
consumption.

6. Conclusions

Power estimation tools are required to manage the energy
consumption of modern VLSI designs during the design
phase, to avoid a costly redesign process. In this scenery, this
paper proposed an approach based on a pre-characterized cell
library, named EngyLib. It enables fast and accurate energy
consumption estimations of systems described in high-level
abstraction levels. The approach and auxiliary tools make part
of a Java open-source framework, enabling the designer make
any modification or enhancement into the library, tools, or the
proposed approach. Experimental results show that EngyLib
achieves high quality estimations, with expressive reduction of
the computation time.

References

[1] Farid Najm. A Survey of Power Estimation Techniques
in VLSI Circuits. IEEE Transactions on VLSI
Systems, v. 2, n. 4, p. 446-455, Dec. 1994.

[2] C. Marcon et al. Modeling the Traffic Effect for the
Application Cores Mapping Problem onto NoCs. IFIP
VLSI-SOC, v. 1, p. 391-396, 2005.

[3] Mentor Graphics. Leonardo Spectrum Datasheet.
Available at www.mentor.com/products/fpga_pld
/synthesis/leonardo_spectrum, 2007.

[4] F. Moraes et al. HERMES: an infrastructure for low area
overhead packet-switching networks on chip. VLSI the
Integration Journal, v. 38, n. 1, p. 69-93, Oct. 2004.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 279

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:25:02 UTC from IEEE Xplore. Restrictions apply.

