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Abstract

Complex applications implemented as Systems on 
Chip (SoCs) demand extensive use of system level model-
ing and validation. Their implementation gathers a large 
number of complex IP cores and advanced interconnec-
tion schemes, such as hierarchical bus architectures or 
networks on chip (NoCs). Modeling applications involves 
capturing its computation and communication character-
istics. Previously proposed communication weighted mod-
els (CWM) consider only the application communication 
aspects. This work proposes a communication dependence 
and computation model (CDCM) that can simultaneously 
consider both aspects of an application. It presents a solu-
tion to the problem of mapping applications on regular 
NoCs while considering execution time and energy con-
sumption. The use of CDCM is shown to provide esti-
mated average reductions of 40% in execution time, and 
20% in energy consumption, for current technologies. 

1. Introduction 

SoC design requires special communication resources 

to fulfill stringent design requirements. Deep sub-micron 

effects pose formidable physical design challenges for 

long wires and global on-chip communication. Many de-

signers have proposed a change from the mainstream syn-

chronous design paradigm to a globally asynchronous, lo-
cally synchronous (GALS) paradigm [1]. In a GALS de-

sign, the application is partitioned into synchronous do-

mains. Each domain is locally synchronous and placed in-

side a limited region, usually called tile. An asynchronous 

communication resource provides the link between syn-

chronous domains. A NoC is an intra-chip communication 

infrastructure, usually composed by a set of routers inter-

connected by point to point communication channels, im-

plementing a chosen topology. The NoC channels can be 

designed to provide an asynchronous communication pro-

tocol between otherwise synchronous domains. NoCs can 

then be easily adapted to implement systems based on the 

GALS paradigm. Besides, they present high scalability, 

reusability, and reliability [2]. 

Consider a SoC implemented using the GALS para-

digm and composed by n cores. Suppose this SoC em-

ploys a NoC as its internal sole communication resource. 

The application mapping problem for this architecture 

consists in finding an association of each core to a tile (a 

mapping) such that some cost function is minimized. 

In the most general case, the problem allows n! possi-

ble solutions. Given a future SoC with hundreds of tiles 

[3], exhaustive search of the problem solutions space will 

rapidly become unfeasible. Consequently, the optimal im-

plementation of such SoCs requires efficient mapping 

strategies. Some mapping strategies have been proposed. 

For example, [4] and [5] propose a communication 
weighted model (CWM) to account for the overall com-

munication volume of each channel. However, CWM 

does not consider communication timing. This paper pro-

poses a communication dependence and computation 
model (CDCM) to capture both, the volume and timing of 

application communication. Comparing these models for a 

0.07  technology, CDCM produced estimated average re-

ductions of 40% and 20% in execution time and energy 

consumption w.r.t. CWM. 

The remaining of the paper is organized as follows. 

Section 2 discusses related work. Section 3 gives a formu-

lation of the mapping problem. Section 4 describes and 

compares CWM and CDCM algorithms and Section 5 

presents experimental results. Section 6 presents some 

conclusions and directions for further work. 

2. Related Work 

Hu and Marculescu [4] showed that by using mapping 

algorithms it is possible to reduce by more than 60% the 

energy consumption when compared to random mapping 

solutions. The authors propose the use of an application 
characterization graph (APCG), a way of capturing 

CWMs. Murali and De Micheli [5], propose a solution 

similar to that in [4]. Their CWM is represented by a 

structure called core graph. The main goal of their work is 

to propose an algorithm that maps cores on mesh NoC ar-

chitectures under bandwidth constraints, trying to mini-

mize average communication delay. 

Ye et al. [6], propose a model to evaluate the energy 

consumption in a communication infrastructure containing 

routers, internal buffers and interconnected wires. The 
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same authors [7] describe the contention problem in 

NoCs, evaluating the associated performance reduction. 

They propose as solution a routing algorithm that mini-

mizes energy consumption, by reducing the required buff-

ers in the communication network. 

The approach of the present paper proposes and uses 

CDCM, which models application packet dependence and 

computation time. It explores CDCM and CWM strategies 

to solve mapping problems fulfilling energy consumption 

and execution time requirements. It stresses that CWMs as 

the ones presented in [4][5] abstract communication tim-

ing, an essential information to estimate execution time 

and energy consumption of the application. CDCMs lead 

to a better mapping solution if compared to CWMs, with 

low extra computational effort. Moreover, the dynamic 

energy model presented in [6] is extended here to include 

static energy consumption. Instead of evaluating different 

routing algorithms, as in [7], this work explores commu-

nication dependence graphs to reduce communication 

buffers, saving area, execution time and energy. 

3. Problem Formulation 

Each core behavior can be modeled by its computation 

and communication characteristics. Here a formulation of 

the mapping problem is proposed using graph structures, 

together with models, strategies, and algorithms for it. 

3.1 Graph Definitions 

Graph structures used in this work are defined here: 

CWG, CDCG, and CRG. Figure 1 illustrates them. 

Definition 1: A communication weighted graph (CWG) is 

a directed graph <C, W>. The set of vertices 

C = {c1, c2…, cn} represents the set of cores in one appli-

cation. Assuming wab is the number of bits of all packets 

sent from a core ca to a core cb, then the set of edges 

W is {(ca, cb) | ca, cb C and wab 0}, and each edge is la-

beled with the value wab.

W represents all communications between application 

cores, while CWG reveals information of application rela-

tive communication volume. This is similar to the defini-

tions of APCG from [4] and core graph from [5]. 

Definition 2: Let C be a set of cores of a given applica-

tion. The communication dependence and computation 
graph or CDCG of this application is a directed graph 

<P, D>. The set of vertices P contains all packets

exchanged between every pair of cores communicating in 

an application. There are also two special vertices named 

Start and End. The set of edges D contains all communi-

cations dependences in an application. Elements of P are 

4-tuples in the form pabq = (ca, cb, taq, wabq), where ca, cb

C, and pabq is the q-th packet sent from ca to cb. This 

packet contains wabq bits and is transmitted after the com-

putation time taq of the originating core (ca) has elapsed. 

The set of all packets sent from ca to cb is Pab.

The CDCG represents the communication and compu-

tation for an application composed by an arbitrary number 

of cores. The direction of the edges in this graph denotes 

that the destination vertex computation depends on the 

computation of the origin vertex. In other words, the des-

tination vertex presents a communication dependence
w.r.t. the origin vertex. 

CWM and CDCM are evaluated here using a mesh to-

pology NoC using wormhole, deterministic XY routing 

algorithm. Other NoC topologies can be equally treated. 

Definition 3: A communication resource graph is a di-

rected graph CRG = < , L>, where the vertex set is the set 

of tiles  = { 1, 2,…, n}, and the edge set 

L = {( i, j), i, j } gives the set of paths from i to j.

The value n is again the total number of tiles and is 

equal to , the product of the two NoC dimensions. 

CRG edges and vertices represent physical links and 

routers of the target architecture, respectively. The CRG 

definition is equivalent to the architecture characteriza-
tion graph in [4] and to the NoC topology graph in [5]. 

Figure 1 illustrates the above definitions using a hypo-

thetical application with four IP cores exchanging a total 

of six packets and a 2 2 NoC. Figure 1(a) shows a CWG 

where C = {A,B,E,F}, the edge labels are wAB = 15, 

wAF = 15, wBF = 40, wEA = 35, wFB = 15 and the set W can 

be extracted easily from the Figure. Figure 1(b) depicts 

one possible CDCG for the application, where 

P = {pEA1 = (E,A,10,20), pEA2 = (E,A,20,15), pAF1 = 

(A,F,6,15),…} and D = {(Start,pEA1), (pEA1, pEA2), (pAB1,

pAF1)…}. Figure 1(c) and Figure 1(d) depict two arbitrary 

mappings of C, each corresponding to a CRG as follows: 

(c) CRG1=<{ 1, 2, 3, 4}, {( 1,B),( 2,A),( 3,F),( 4,E)}> and 

(d) CRG2=<{ 1, 2, 3, 4},{( 1,B),( 2,E),( 3,F), ( 4,A)}>.
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Figure 1 – (a) CWG; (b) CDCG; (c,d) 2 mappings. 

3.2 Energy and Timing Model 

Energy consumption originates from both IP cores and 

interconnection. This work focuses on NoC energy con-

sumption, proposing models to estimate energy dissipa-

tion, used as cost functions to evaluate mappings. 
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Dynamic energy consumption is proportional to 

switching activity, arising from packets moving across the 

NoC, dissipating energy on the interconnect wires and in-

side each router. Static energy consumption comes mainly 

from leakage current, and is proportional to the applica-

tion execution time and to the number of gates. Normally, 

static energy contributes with the smallest part of the en-

ergy consumption. However, for deep-submicron tech-

nologies, leakage current cannot be neglected, and static 

energy consumption is a significant part of the total en-

ergy consumption, reaching up to 20% in new technolo-

gies [8]. 

While CWMs are only suitable to compute dynamic 

energy, CDCMs can be used to estimate the total energy 

consumption of the NoC, enabling the computation of 

static and dynamic power dissipation figures. The ap-

proach here is similar to those in [4] and [5], but some 

concepts are extended to consider static energy consump-

tion. The concept of bit energy EBit [6] is used to estimate 

the dynamic energy consumption for each bit, when these 

flip its polarity from a previous value. EBit is split into 

three components: bit dynamic energy (ERbit) dissipated at 

the router (router wires, buffers and logic gates); bit dy-

namic energy dissipated on horizontal (ELHbit) and verti-

cal (ELVbit) links between tiles; and bit dynamic energy 

(ECbit) dissipated on the links between the router and the 

core of the tile. The relationship between these quantities 

is expressed by Equation (1), which computes the dy-

namic energy consumption of a bit passing through a 

router and a vertical or horizontal link. 

(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit

ERbit depends on the buffer structure and technology to 

estimate how many bit flips occur to write, read and pre-

serve the information. ELbit is directly proportional to the 

tile dimension. For regular mesh NoCs with square tiles, it 

is reasonable to estimate that ELHbit and ELVbit have the 

same value. Therefore, ELHbit and ELVbit are represented 

simply by ELbit. Furthermore, for large tile dimensions, 

ECbit is negligible w.r.t. ELbit.

Equation (2) computes the dynamic energy consumed 

by a single bit traversing the NoC, from tile i to tile j,

where  corresponds to the number of routers through 

which the bit passes. 

(2) EBitij = ERbit + (  - 1) ELbit

Let i and j be the tiles to which ca and cb, are respec-

tively mapped. Then, the dynamic energy consumed by a 

ca cb communication is given by EBitab = wab EBitij.

Equation (3) gives the total amount of NoC dynamic en-
ergy consumption (EDyNoC) for CWM, computing this for 

all bits of all communications (y) occurring in the NoC. 

(3) EDyNoC(CWM) = 

y

1i

(i)E abBit , ca,cb  C

The total NoC energy consumption (ENoC) using 

CWM corresponds to EDyNoC(CWM), since CWM is a model 

that does not carry timing information. It should be clear 

from this reasoning that CWM is inappropriate to compute 

static energy consumption. 

Let wabq be the total amount of bits of a packet pabq

Pab, going from core ca to core cb. Then, the dynamic en-

ergy consumed by the q-th packet of a ca cb communica-

tion is given by EBitabq = wabq EBitij. Hence, equation (4) 

gives EDyNoC for CDCM and kabi represents the number of 

packets of the i-th communication from core ca to core cb.

(4) EDyNoC(CDCM) = 
abi

abq

k

1q

y

1i

(i)BitE ca,cb  C

The static power of each router (PSRouter) is propor-

tional to the number of gates that compose the router and 

that can be estimated by electrical simulation. With n rep-

resenting the number of tiles, equation (5) computes NoC
static power consumption (PstNoC).

(5) PStNoC = n PSRouter

The total packet delay of the wormhole routing algo-

rithm is composed by the routing delay and by the packet
delay. The routing delay is the time necessary to create the 

communication path, which is determined during the traf-

fic of the first flit, where the header of the packet is 

placed. The packet delay depends on the number of re-

maining flits. Let nabq be the number of flits of the q-th 

packet from ca to cb, obtained by dividing wabq by the link 

width. Let  be the period of a clock cycle, and let tr be 

the number of cycles needed for taking a routing decision 

inside a router. Also, let tl be the number of cycles needed 

to transmit a flit through a link (between tiles or between 

an IP core and a router). The routing delay (dRijq) and the 

packet delay (dPijq) of the q-th packet from i to j, are rep-

resented in Equations (6) and (7), considering that a 

packet goes through  routers without contention. Conten-

tions can only be determined at execution time. 

(6) dRijq = (  (tr + tl) + tl)

(7) dPijq = (tl  (nabq - 1)) 

The total packet delay (dijq), obtained from the sum of 

(dRijq) and (dPijq), is expressed by Equation (8). 

(8) dijq = (  (tr + tl) + tl nabq)

The application execution time (texec) is obtained from 

both the computation of all tiq and dijq, and the contention 

time. Static energy consumption is proportional to PstNoC

and to texec. Thus, equation (9) computes NoC static en-
ergy consumption (EstNoC).

(9) EStNoC = PStNoC texec

Finally, equation (10) gives the overall static plus dy-

namic energy consumption at the NoC (ENoC) for CDCM. 
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(10) ENoC(CDCM) = EStNoC + EDyNoC(CDCM)

4. Communication Algorithms Comparison 

The FRW framework implements a simulated anneal-

ing search method to obtain mapping solutions for CWM 

and CDCM. Moreover, it can also execute an exhaustive 

search method to compare the quality of solutions against 

an absolute optimum solution, for small NoCs. Both algo-

rithms, CWM and CDCM, start from an initial mapping, 

evaluate the mapping cost, and search for a new mapping 

that reduces the computed cost, until reaching a stop con-

dition. For both algorithms, the mapping cost is stored in-

side cost variables of CRG edges and vertices. The sum of 

all cost variables determines the mapping objective func-

tion. Initially, all cores of C are randomly mapped onto 

the set of tiles and all cost variables are set to 0. 

Given a mapping function, let tiles i and j be the re-

spective images of cores ca and cb in this function. For the 

CWM algorithm, each total number of bits in all packets 

of ca cb communications (wab) is associated to the cost 

variable of the corresponding vertices and edges of CRG. 

These start at i, follow the path defined by the XY rout-

ing algorithm and end at j. Equation (3) is the objective 

function of CWM, used to evaluate the cost of each map-

ping. The cost variable of each CRG edge is used to com-

pute the dynamic energy of a link by multiplying wab by 

ELbit. The cost variable of each CRG vertex is used to 

compute the dynamic energy of a router by multiplying 

wab by ERbit. The sum of all cost variables of CRG results 

in EDyNoC. This procedure is illustrated in Figure 2. CWM 

aims to find mappings reducing EDyNoC.

CDCG improves CWM, as it considers computation 

time and packet ordering. Dependent packets cannot be 

concurrent. However, independent packets can occur at 

the same time, and may consequently lead to package con-

tention, if they share the same communication resource. 

Packet contention implies larger texec, leading to increased 

EStNoC. The CDCM algorithm searches for mappings that 

minimize the sharing of communication resources for 

concurrent packets. To allow this, each CRG edge and 

vertex are associated to a cost variable list, where each 

element of the list represents a packet that contains the 

number of bits, the absolute time interval that the packet is 

occupying the NoC resource, the source and target tiles. 

The CDCM algorithm starts with all vertices pointed 

by the Start vertex (Figure 1(b)). Pointing to a CDCG 

vertex implies that the packet enclosed into the vertex 

may be executed onto the CRG. A vertex execution marks 

all of its output edges as free. A vertex can only be exe-

cuted if all of its input edges are free. The algorithm 

searches for all free vertices following all paths, until all 

paths reach the End vertex. This procedure computes the 

time of each dependent path in the CRG. To execute a 

CDCG vertex that encloses the q-th packet onto the CRG, 

all bits of the q-th packet of ca cb communication (wabq)

are associated with the corresponding vertices and edges 

of CRG, starting from i, following the XY routing algo-

rithm, and ending in j.

When two or more packets compete for the same re-

source, all concurrent packets have to be contained into 

router input buffers. Therefore, from the contention point 

until reaching the target tile, contention time is added to 

the elapsed time, enabling to estimate the total packet de-

lay more accurately. This procedure is illustrated in Figure 

3 and Figure 4, where the communication weight of A F

is stored into the buffer of router 1. The cost variable list 

of CRG edges and vertices computes the dynamic energy 

of links and routers by multiplying wabq by ELbit and by 

ERbit, respectively. For a given mapping, the sum of all 

cost variables generates the value EDyNoC. When all pack-

ets of CDCG are executed into CRG texec is obtained, 

enabling to compute ENoC through equation (10), the ob-

jective function to evaluate the mapping cost. The goal of 

CDCM is to find mappings that minimize ENoC.

For both, CWM and CDCM algorithms, if the map-

ping cost achieved with a new mapping is smaller than the 

previously stored, the current mapping and cost are saved 

for further comparison. If the stop condition has not been 

reached, a new mapping is chosen and cost re-evaluated. 

CWM and CDCM are able to estimate EDyNoC accu-

rately, since this value depends only on the bit traffic 

along the NoC. The essential difference between the mod-

els is that CWM is not appropriate to estimate texec, due to 

the absence of task computation time and the impossibility 

of evaluating packet contention. The main advantages of 

CWM are (i) easy extraction of application core graph 

(CWG), since this can be done by simulation techniques; 

and (ii) low computational complexity. The automatic ex-

traction of the CDCM application core graph is a hard 

task, since simulations only allow extracting possible 

message orderings, and not the required message depend-

ence. As a consequence, CDCGs are described by hand, 

increasing the error susceptibility. The greater complexity 

of CDCM is observed on its algorithmic implementation, 

which increases computation time and memory usage 

w.r.t. CWM. However, CDCM captures the message or-

dering, and thus allows estimating the absolute execution 

time, and consequently the EStNoC. The main drawback of 

CDCM evaluation is that in real embedded applications, 

the number of packets between cores is much larger than 

the number of cores. Since each vertex of CDCG repre-

sents a packet exchanged between two cores and each ver-

tex of CWG represents a core, CDCGs are larger than 

CWGs. A comparison between the CPU time required by 

CDCM and CWM algorithms is presented in Section 5. 

4.1 Energy and Timing Analysis 

This Section shows the application of algorithms 
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CWM and CDCM to the example application mappings of 

Figure 1. The CWM evaluation does not capture the dif-

ferences between the two mappings. However, CDCM 

evaluation shows that these mappings imply different exe-

cution times and distinct energy consumption estimates. 

Figure 2 illustrates how the internal model of the 

CWM algorithm represents the energy for the two map-

pings of Figure 1(c, d). For illustration purposes, the ex-

ample assumes that ERbit = ELbit = 1  10-12J/bit. The 

mapping of CWG onto CRG results that each vertex and 

edge of CRG is annotated with ERbit and ELbit energies, 

respectively. For instance, the execution of E A com-

munication of Figure 1(a) onto the mapping of Figure 2(a) 

implies 35  10-12J of energy consumption, which is com-

puted in tiles 4 and 2, and in the link between these tiles. 

Applying equation (3), over all communications of Figure 

1(a), EDyNoC results in 390  10-12J for both mappings. 

Energy consumption = 390  10-12J

85 65
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15 55 35 0
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3 4

70 35

6585
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Figure 2 – Mappings for Figure 1(c, d) - estima-
tion of energy consumption obtained with CWM. 
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Figure 3 – Figure 1(c, d) mappings, using CDCM. 
To evaluate CDCM mappings, consider the same pa-

rameters stated before, tr = 2 clock cycles, tl = 1 clock cy-

cle,  = 1 ns, one-bit sized flits, and unbounded router 

buffers. Figure 3 shows the same mappings illustrated be-

fore, now evaluated with CDCM. Each edge and each ver-

tex is annotated with the number of bits in a given time in-

terval. For instance, in Figure 3(a) tile 4 is annotated with 

20(E A):[11,32] and 15(E A):[57,73] which means 

that there are two packets from E to A. The first packet 

has 20 bits and occupies router 4 during the interval from 

11 ns to 32 ns. This interval is obtained by adding the E 

computation time tE1 = 10 ns with 1 ns of the link time. 

The link from 4 to 2 is annotated with the same two 

packets, each one delayed by the router delay. 

Figure 4 depicts the CDCM algorithm execution over 

the mapping of Figure 3(a), showing a timing diagram that 

illustrates all computations and all packet deliveries. Dur-

ing A F and B F packets transmission some conten-

tions occur, since they compete for the same resources at 

the same time. When the B F packet uses the router of 

tile 1, the A F packet is contained into the input buffer 

of 1. This contention implies that the packet is delayed 

until the B F packet is transmitted to tile 3. The effect 

of this delay is observed in the router variables of 1 and 

the variables of the link between the 3 router and IP core 

F. These variables are marked with ‘*’ in Figure 3(a). 
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Figure 4 – Timing for Figure 3(a) mapping. 
Figure 5 shows the timing diagram corresponding to 

the mapping depicted in Figure 3(b). It is possible to ob-

serve that this mapping avoids contention, since there are 

no packets competing for the same link at the same time. 

Changing the mapping of Figure 3(a) to that of Figure 

3(b) implies an execution time reduction of 11.1%, from 

100 ns to 90 ns. As there are different execution times for 

both mappings, the consumed static energy is different, 

too. For instance, consider PstNoC=0.1 10-12J/ns. Applying 

equation (10), ENoC can be obtained for both mappings, 

showing that mapping (a) consumes 1 % more energy 

than (b). This difference cannot be computed by CWM, 

since it just captures the effects of dynamic energy. 
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Figure 5 – Timing for Figure 3(b) mapping. 

5. Experimental Results 

Table 1 summarizes the characteristics of 18 applica-
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tions mapped onto 8 different NoC sizes. There are 4 em-

bedded applications (a distributed Romberg integration, 

an 8-point Fast Fourier Transform, and 2 image applica-

tions for object recognition and image encoding) with 

some variations, for a total of 8 embedded applications. 

The remaining applications are benchmarks randomly 

generated by a proprietary system, which is similar to 

TGFF [9]; however, the system describes benchmarks 

through CDCGs, representing message dependence and 

bit volume of each message. The NoC size is the number 

of CRG vertices, the number of cores corresponds to the 

number of CWG vertices, and the number of packets of all 

cores equals the number of CDCG vertices. 

Table 1 – Summary of NoC/application features. 
NoC size Number of 

cores

Number of packets 

of all cores 

Total volume of bits during 

application execution 

3 x 2 5; 6; 6 43; 17; 43 78,817; 174; 49,003 

2 x 4 5; 7;8 16; 33; 18 1,600; 23,235; 5,930 

3 x 3 7; 9; 9 16; 18; 32 1,600; 1,860; 43,120 

2 x 5 8; 9; 10 24; 51; 22 2,215; 23,244; 322,221 

3 x 4 10; 12; 14 15; 25; 88 3,100; 2,578,920; 115,778

8 x 8 62 344 9,799,200 

10 x 10 93 415 562,565,990 

12 x 10 99 446 680,006,120 

For each application, the best mapping achieved with 

the CWM algorithm is compared to the best mapping 

achieved with the CDCM algorithm, and the results are 

summarized in Table 2. For both models exhaustive 

search (ES) and simulated annealing (SA) were applied, 

depending on the NoC size. ETR gives the average execu-
tion time reduction, and ECS denotes the average energy 
consumption saving, for a given technology, when map-

pings achieved with the CDCM algorithm are compared to 

the ones achieved with the CWM algorithm. ECS0.35 col-

umn refers to ECS values obtained from 0.35  technol-

ogy, and ECS0.07 column refers to ECS values obtained by 

estimating 0.07  technology [8]. 

Table 2 – Average energy and execution time re-
ductions for CWM and CDCM. 

Algorithm NoC size ETR ECS0.35 ECS0.07

3 x 2 36 % 0,50 % 15 % 

2 x 4 27 % 0,43 % 13 % 

3 x 3 39 % 0,55 % 17 % 

2 x 5 42 % 0,72 % 23 % 

3 x 4 42 % 0,71 % 22 % 

8 x 8 38 % 0,6 % 19 % 

10 x 10 46 % 0,8 % 25 % 
Simulated an-

nealing only 
12 x 10 48 % 0,86 % 26 % 

Average 40 % 0,65 % 20 % 

First, for small NoC sizes (up to 3x4 or 2x5), both ES 

and SA methods reached the same results. For larger NoC 

sizes (8x8, 10x10 and 12x10), it is not possible to find op-

timum mappings with ES within a reasonable time. The 

ETR column shows that the CDCM algorithm results in 

40% average reduction of execution time when compared 

to the CWM algorithm. The ECS0.35 column illustrates a 

very small energy consumption saving, since the leakage 

current is not as important for this technology. However, 

for deep-submicron technologies, there is a significant re-

duction in energy consumption (20% in average), as ob-

servable in column ECS0.07. In addition, Table 2 shows a 

slight trend of energy consumption saving and execution 

time reduction when the NoC size increases.  

The computational complexity of the CWM algorithm 

is proportional to the number of communications between 
cores (NCC) and the computational complexity of CDCM 

algorithm is proportional to the number of dependences 
and packets of all cores (NDP). In real embedded applica-

tions, NDP is larger than NCC. However, the increase in 

CPU time with the increase of the NDP/NCC ratio is ap-

proximately linear with a small slope. The worst case for 

CDCM took only 23% more CPU time than for CWM. 

6. Conclusions and Future Work 

This paper addressed the problem of mapping applica-

tions onto NoCs. A communication dependence and com-

putation model (CDCM) has been introduced and com-

pared to the communication weighted model (CWM). As 

a conclusion CDCM is able to reduce the application exe-

cution time and energy consumption when compared to 

CWM. Experimental results show an average of 40% in 

execution time reduction. CDCM also reduces energy 

consumption. For a 0.07  technology, an average of 20% 

in energy savings is obtained. Moreover, CDCM presents 

only a moderate increase in computational cost, when 

compared to CWM, with better mapping results. 
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