
Exploring NoC Mapping Strategies: An Energy and Timing Aware Technique

César Marcon
1
, Ney Calazans

2
, Fernando Moraes

2
, Altamiro Susin

1
, Igor Reis

2
, Fabiano Hessel

2

1 PPGC - II - UFRGS - Av. Bento Gonçalves, 9500, Porto Alegre, RS – Brazil
2 PPGCC - FACIN – PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS – Brazil
{marcon, susin}@inf.ufrgs.br,{calazans, moraes, ireis, hessel}@inf.pucrs.br

Abstract

Complex applications implemented as Systems on
Chip (SoCs) demand extensive use of system level model-
ing and validation. Their implementation gathers a large
number of complex IP cores and advanced interconnec-
tion schemes, such as hierarchical bus architectures or
networks on chip (NoCs). Modeling applications involves
capturing its computation and communication character-
istics. Previously proposed communication weighted mod-
els (CWM) consider only the application communication
aspects. This work proposes a communication dependence
and computation model (CDCM) that can simultaneously
consider both aspects of an application. It presents a solu-
tion to the problem of mapping applications on regular
NoCs while considering execution time and energy con-
sumption. The use of CDCM is shown to provide esti-
mated average reductions of 40% in execution time, and
20% in energy consumption, for current technologies.

1. Introduction

SoC design requires special communication resources

to fulfill stringent design requirements. Deep sub-micron

effects pose formidable physical design challenges for

long wires and global on-chip communication. Many de-

signers have proposed a change from the mainstream syn-

chronous design paradigm to a globally asynchronous, lo-
cally synchronous (GALS) paradigm [1]. In a GALS de-

sign, the application is partitioned into synchronous do-

mains. Each domain is locally synchronous and placed in-

side a limited region, usually called tile. An asynchronous

communication resource provides the link between syn-

chronous domains. A NoC is an intra-chip communication

infrastructure, usually composed by a set of routers inter-

connected by point to point communication channels, im-

plementing a chosen topology. The NoC channels can be

designed to provide an asynchronous communication pro-

tocol between otherwise synchronous domains. NoCs can

then be easily adapted to implement systems based on the

GALS paradigm. Besides, they present high scalability,

reusability, and reliability [2].

Consider a SoC implemented using the GALS para-

digm and composed by n cores. Suppose this SoC em-

ploys a NoC as its internal sole communication resource.

The application mapping problem for this architecture

consists in finding an association of each core to a tile (a

mapping) such that some cost function is minimized.

In the most general case, the problem allows n! possi-

ble solutions. Given a future SoC with hundreds of tiles

[3], exhaustive search of the problem solutions space will

rapidly become unfeasible. Consequently, the optimal im-

plementation of such SoCs requires efficient mapping

strategies. Some mapping strategies have been proposed.

For example, [4] and [5] propose a communication
weighted model (CWM) to account for the overall com-

munication volume of each channel. However, CWM

does not consider communication timing. This paper pro-

poses a communication dependence and computation
model (CDCM) to capture both, the volume and timing of

application communication. Comparing these models for a

0.07 technology, CDCM produced estimated average re-

ductions of 40% and 20% in execution time and energy

consumption w.r.t. CWM.

The remaining of the paper is organized as follows.

Section 2 discusses related work. Section 3 gives a formu-

lation of the mapping problem. Section 4 describes and

compares CWM and CDCM algorithms and Section 5

presents experimental results. Section 6 presents some

conclusions and directions for further work.

2. Related Work

Hu and Marculescu [4] showed that by using mapping

algorithms it is possible to reduce by more than 60% the

energy consumption when compared to random mapping

solutions. The authors propose the use of an application
characterization graph (APCG), a way of capturing

CWMs. Murali and De Micheli [5], propose a solution

similar to that in [4]. Their CWM is represented by a

structure called core graph. The main goal of their work is

to propose an algorithm that maps cores on mesh NoC ar-

chitectures under bandwidth constraints, trying to mini-

mize average communication delay.

Ye et al. [6], propose a model to evaluate the energy

consumption in a communication infrastructure containing

routers, internal buffers and interconnected wires. The

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

same authors [7] describe the contention problem in

NoCs, evaluating the associated performance reduction.

They propose as solution a routing algorithm that mini-

mizes energy consumption, by reducing the required buff-

ers in the communication network.

The approach of the present paper proposes and uses

CDCM, which models application packet dependence and

computation time. It explores CDCM and CWM strategies

to solve mapping problems fulfilling energy consumption

and execution time requirements. It stresses that CWMs as

the ones presented in [4][5] abstract communication tim-

ing, an essential information to estimate execution time

and energy consumption of the application. CDCMs lead

to a better mapping solution if compared to CWMs, with

low extra computational effort. Moreover, the dynamic

energy model presented in [6] is extended here to include

static energy consumption. Instead of evaluating different

routing algorithms, as in [7], this work explores commu-

nication dependence graphs to reduce communication

buffers, saving area, execution time and energy.

3. Problem Formulation

Each core behavior can be modeled by its computation

and communication characteristics. Here a formulation of

the mapping problem is proposed using graph structures,

together with models, strategies, and algorithms for it.

3.1 Graph Definitions

Graph structures used in this work are defined here:

CWG, CDCG, and CRG. Figure 1 illustrates them.

Definition 1: A communication weighted graph (CWG) is

a directed graph <C, W>. The set of vertices

C = {c1, c2…, cn} represents the set of cores in one appli-

cation. Assuming wab is the number of bits of all packets

sent from a core ca to a core cb, then the set of edges

W is {(ca, cb) | ca, cb C and wab 0}, and each edge is la-

beled with the value wab.

W represents all communications between application

cores, while CWG reveals information of application rela-

tive communication volume. This is similar to the defini-

tions of APCG from [4] and core graph from [5].

Definition 2: Let C be a set of cores of a given applica-

tion. The communication dependence and computation
graph or CDCG of this application is a directed graph

<P, D>. The set of vertices P contains all packets

exchanged between every pair of cores communicating in

an application. There are also two special vertices named

Start and End. The set of edges D contains all communi-

cations dependences in an application. Elements of P are

4-tuples in the form pabq = (ca, cb, taq, wabq), where ca, cb

C, and pabq is the q-th packet sent from ca to cb. This

packet contains wabq bits and is transmitted after the com-

putation time taq of the originating core (ca) has elapsed.

The set of all packets sent from ca to cb is Pab.

The CDCG represents the communication and compu-

tation for an application composed by an arbitrary number

of cores. The direction of the edges in this graph denotes

that the destination vertex computation depends on the

computation of the origin vertex. In other words, the des-

tination vertex presents a communication dependence
w.r.t. the origin vertex.

CWM and CDCM are evaluated here using a mesh to-

pology NoC using wormhole, deterministic XY routing

algorithm. Other NoC topologies can be equally treated.

Definition 3: A communication resource graph is a di-

rected graph CRG = < , L>, where the vertex set is the set

of tiles = { 1, 2,…, n}, and the edge set

L = {(i, j), i, j } gives the set of paths from i to j.

The value n is again the total number of tiles and is

equal to , the product of the two NoC dimensions.

CRG edges and vertices represent physical links and

routers of the target architecture, respectively. The CRG

definition is equivalent to the architecture characteriza-
tion graph in [4] and to the NoC topology graph in [5].

Figure 1 illustrates the above definitions using a hypo-

thetical application with four IP cores exchanging a total

of six packets and a 2 2 NoC. Figure 1(a) shows a CWG

where C = {A,B,E,F}, the edge labels are wAB = 15,

wAF = 15, wBF = 40, wEA = 35, wFB = 15 and the set W can

be extracted easily from the Figure. Figure 1(b) depicts

one possible CDCG for the application, where

P = {pEA1 = (E,A,10,20), pEA2 = (E,A,20,15), pAF1 =

(A,F,6,15),…} and D = {(Start,pEA1), (pEA1, pEA2), (pAB1,

pAF1)…}. Figure 1(c) and Figure 1(d) depict two arbitrary

mappings of C, each corresponding to a CRG as follows:

(c) CRG1=<{ 1, 2, 3, 4}, {(1,B),(2,A),(3,F),(4,E)}> and

(d) CRG2=<{ 1, 2, 3, 4},{(1,B),(2,E),(3,F), (4,A)}>.

Start

End (b) (d)

(a)15
BA

tA: 6

20
AE

tE: 10

40
FB

tB: 10

15
FA

tA: 6

15
AE

tE: 20

15
BF

tF: 6

B A

EF

A 15

15

B

F E

1535

40

(c)

B E

AF

3

1 2

4 3

1 2

4

Figure 1 – (a) CWG; (b) CDCG; (c,d) 2 mappings.

3.2 Energy and Timing Model

Energy consumption originates from both IP cores and

interconnection. This work focuses on NoC energy con-

sumption, proposing models to estimate energy dissipa-

tion, used as cost functions to evaluate mappings.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

Dynamic energy consumption is proportional to

switching activity, arising from packets moving across the

NoC, dissipating energy on the interconnect wires and in-

side each router. Static energy consumption comes mainly

from leakage current, and is proportional to the applica-

tion execution time and to the number of gates. Normally,

static energy contributes with the smallest part of the en-

ergy consumption. However, for deep-submicron tech-

nologies, leakage current cannot be neglected, and static

energy consumption is a significant part of the total en-

ergy consumption, reaching up to 20% in new technolo-

gies [8].

While CWMs are only suitable to compute dynamic

energy, CDCMs can be used to estimate the total energy

consumption of the NoC, enabling the computation of

static and dynamic power dissipation figures. The ap-

proach here is similar to those in [4] and [5], but some

concepts are extended to consider static energy consump-

tion. The concept of bit energy EBit [6] is used to estimate

the dynamic energy consumption for each bit, when these

flip its polarity from a previous value. EBit is split into

three components: bit dynamic energy (ERbit) dissipated at

the router (router wires, buffers and logic gates); bit dy-

namic energy dissipated on horizontal (ELHbit) and verti-

cal (ELVbit) links between tiles; and bit dynamic energy

(ECbit) dissipated on the links between the router and the

core of the tile. The relationship between these quantities

is expressed by Equation (1), which computes the dy-

namic energy consumption of a bit passing through a

router and a vertical or horizontal link.

(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit

ERbit depends on the buffer structure and technology to

estimate how many bit flips occur to write, read and pre-

serve the information. ELbit is directly proportional to the

tile dimension. For regular mesh NoCs with square tiles, it

is reasonable to estimate that ELHbit and ELVbit have the

same value. Therefore, ELHbit and ELVbit are represented

simply by ELbit. Furthermore, for large tile dimensions,

ECbit is negligible w.r.t. ELbit.

Equation (2) computes the dynamic energy consumed

by a single bit traversing the NoC, from tile i to tile j,

where corresponds to the number of routers through

which the bit passes.

(2) EBitij = ERbit + (- 1) ELbit

Let i and j be the tiles to which ca and cb, are respec-

tively mapped. Then, the dynamic energy consumed by a

ca cb communication is given by EBitab = wab EBitij.

Equation (3) gives the total amount of NoC dynamic en-
ergy consumption (EDyNoC) for CWM, computing this for

all bits of all communications (y) occurring in the NoC.

(3) EDyNoC(CWM) =

y

1i

(i)E abBit , ca,cb C

The total NoC energy consumption (ENoC) using

CWM corresponds to EDyNoC(CWM), since CWM is a model

that does not carry timing information. It should be clear

from this reasoning that CWM is inappropriate to compute

static energy consumption.

Let wabq be the total amount of bits of a packet pabq

Pab, going from core ca to core cb. Then, the dynamic en-

ergy consumed by the q-th packet of a ca cb communica-

tion is given by EBitabq = wabq EBitij. Hence, equation (4)

gives EDyNoC for CDCM and kabi represents the number of

packets of the i-th communication from core ca to core cb.

(4) EDyNoC(CDCM) =
abi

abq

k

1q

y

1i

(i)BitE ca,cb C

The static power of each router (PSRouter) is propor-

tional to the number of gates that compose the router and

that can be estimated by electrical simulation. With n rep-

resenting the number of tiles, equation (5) computes NoC
static power consumption (PstNoC).

(5) PStNoC = n PSRouter

The total packet delay of the wormhole routing algo-

rithm is composed by the routing delay and by the packet
delay. The routing delay is the time necessary to create the

communication path, which is determined during the traf-

fic of the first flit, where the header of the packet is

placed. The packet delay depends on the number of re-

maining flits. Let nabq be the number of flits of the q-th

packet from ca to cb, obtained by dividing wabq by the link

width. Let be the period of a clock cycle, and let tr be

the number of cycles needed for taking a routing decision

inside a router. Also, let tl be the number of cycles needed

to transmit a flit through a link (between tiles or between

an IP core and a router). The routing delay (dRijq) and the

packet delay (dPijq) of the q-th packet from i to j, are rep-

resented in Equations (6) and (7), considering that a

packet goes through routers without contention. Conten-

tions can only be determined at execution time.

(6) dRijq = ((tr + tl) + tl)

(7) dPijq = (tl (nabq - 1))

The total packet delay (dijq), obtained from the sum of

(dRijq) and (dPijq), is expressed by Equation (8).

(8) dijq = ((tr + tl) + tl nabq)

The application execution time (texec) is obtained from

both the computation of all tiq and dijq, and the contention

time. Static energy consumption is proportional to PstNoC

and to texec. Thus, equation (9) computes NoC static en-
ergy consumption (EstNoC).

(9) EStNoC = PStNoC texec

Finally, equation (10) gives the overall static plus dy-

namic energy consumption at the NoC (ENoC) for CDCM.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

(10) ENoC(CDCM) = EStNoC + EDyNoC(CDCM)

4. Communication Algorithms Comparison

The FRW framework implements a simulated anneal-

ing search method to obtain mapping solutions for CWM

and CDCM. Moreover, it can also execute an exhaustive

search method to compare the quality of solutions against

an absolute optimum solution, for small NoCs. Both algo-

rithms, CWM and CDCM, start from an initial mapping,

evaluate the mapping cost, and search for a new mapping

that reduces the computed cost, until reaching a stop con-

dition. For both algorithms, the mapping cost is stored in-

side cost variables of CRG edges and vertices. The sum of

all cost variables determines the mapping objective func-

tion. Initially, all cores of C are randomly mapped onto

the set of tiles and all cost variables are set to 0.

Given a mapping function, let tiles i and j be the re-

spective images of cores ca and cb in this function. For the

CWM algorithm, each total number of bits in all packets

of ca cb communications (wab) is associated to the cost

variable of the corresponding vertices and edges of CRG.

These start at i, follow the path defined by the XY rout-

ing algorithm and end at j. Equation (3) is the objective

function of CWM, used to evaluate the cost of each map-

ping. The cost variable of each CRG edge is used to com-

pute the dynamic energy of a link by multiplying wab by

ELbit. The cost variable of each CRG vertex is used to

compute the dynamic energy of a router by multiplying

wab by ERbit. The sum of all cost variables of CRG results

in EDyNoC. This procedure is illustrated in Figure 2. CWM

aims to find mappings reducing EDyNoC.

CDCG improves CWM, as it considers computation

time and packet ordering. Dependent packets cannot be

concurrent. However, independent packets can occur at

the same time, and may consequently lead to package con-

tention, if they share the same communication resource.

Packet contention implies larger texec, leading to increased

EStNoC. The CDCM algorithm searches for mappings that

minimize the sharing of communication resources for

concurrent packets. To allow this, each CRG edge and

vertex are associated to a cost variable list, where each

element of the list represents a packet that contains the

number of bits, the absolute time interval that the packet is

occupying the NoC resource, the source and target tiles.

The CDCM algorithm starts with all vertices pointed

by the Start vertex (Figure 1(b)). Pointing to a CDCG

vertex implies that the packet enclosed into the vertex

may be executed onto the CRG. A vertex execution marks

all of its output edges as free. A vertex can only be exe-

cuted if all of its input edges are free. The algorithm

searches for all free vertices following all paths, until all

paths reach the End vertex. This procedure computes the

time of each dependent path in the CRG. To execute a

CDCG vertex that encloses the q-th packet onto the CRG,

all bits of the q-th packet of ca cb communication (wabq)

are associated with the corresponding vertices and edges

of CRG, starting from i, following the XY routing algo-

rithm, and ending in j.

When two or more packets compete for the same re-

source, all concurrent packets have to be contained into

router input buffers. Therefore, from the contention point

until reaching the target tile, contention time is added to

the elapsed time, enabling to estimate the total packet de-

lay more accurately. This procedure is illustrated in Figure

3 and Figure 4, where the communication weight of A F

is stored into the buffer of router 1. The cost variable list

of CRG edges and vertices computes the dynamic energy

of links and routers by multiplying wabq by ELbit and by

ERbit, respectively. For a given mapping, the sum of all

cost variables generates the value EDyNoC. When all pack-

ets of CDCG are executed into CRG texec is obtained,

enabling to compute ENoC through equation (10), the ob-

jective function to evaluate the mapping cost. The goal of

CDCM is to find mappings that minimize ENoC.

For both, CWM and CDCM algorithms, if the map-

ping cost achieved with a new mapping is smaller than the

previously stored, the current mapping and cost are saved

for further comparison. If the stop condition has not been

reached, a new mapping is chosen and cost re-evaluated.

CWM and CDCM are able to estimate EDyNoC accu-

rately, since this value depends only on the bit traffic

along the NoC. The essential difference between the mod-

els is that CWM is not appropriate to estimate texec, due to

the absence of task computation time and the impossibility

of evaluating packet contention. The main advantages of

CWM are (i) easy extraction of application core graph

(CWG), since this can be done by simulation techniques;

and (ii) low computational complexity. The automatic ex-

traction of the CDCM application core graph is a hard

task, since simulations only allow extracting possible

message orderings, and not the required message depend-

ence. As a consequence, CDCGs are described by hand,

increasing the error susceptibility. The greater complexity

of CDCM is observed on its algorithmic implementation,

which increases computation time and memory usage

w.r.t. CWM. However, CDCM captures the message or-

dering, and thus allows estimating the absolute execution

time, and consequently the EStNoC. The main drawback of

CDCM evaluation is that in real embedded applications,

the number of packets between cores is much larger than

the number of cores. Since each vertex of CDCG repre-

sents a packet exchanged between two cores and each ver-

tex of CWG represents a core, CDCGs are larger than

CWGs. A comparison between the CPU time required by

CDCM and CWM algorithms is presented in Section 5.

4.1 Energy and Timing Analysis

This Section shows the application of algorithms

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

CWM and CDCM to the example application mappings of

Figure 1. The CWM evaluation does not capture the dif-

ferences between the two mappings. However, CDCM

evaluation shows that these mappings imply different exe-

cution times and distinct energy consumption estimates.

Figure 2 illustrates how the internal model of the

CWM algorithm represents the energy for the two map-

pings of Figure 1(c, d). For illustration purposes, the ex-

ample assumes that ERbit = ELbit = 1 10-12J/bit. The

mapping of CWG onto CRG results that each vertex and

edge of CRG is annotated with ERbit and ELbit energies,

respectively. For instance, the execution of E A com-

munication of Figure 1(a) onto the mapping of Figure 2(a)

implies 35 10-12J of energy consumption, which is com-

puted in tiles 4 and 2, and in the link between these tiles.

Applying equation (3), over all communications of Figure

1(a), EDyNoC results in 390 10-12J for both mappings.

Energy consumption = 390 10-12J

85 65

3570

EF

AB

15 55 35 0

30

0

0

0

21

3 4

70 35

6585

AF

EB

30 40 0 35

0

0

0

30

21

3 4

(a) (b)

Figure 2 – Mappings for Figure 1(c, d) - estima-
tion of energy consumption obtained with CWM.

Energy = 400 10-12J

Execution time = 100 ns

Energy = 399 10-12J

Execution time = 90 ns

15(A B):[10,26]
40(B F):[11,52]
*15(A F):[46,69]
15(F B):[83,99]

40(B F):[14,55]
*15(A F):[56,72]
15(F B):[80,96]

15(A B):[9,24]
15(A F):[45,60]

40(B F):[13,53]
*15(A F):[55,70]

0

0

0
15(A B):[7,23]
20(E A):[14,35]
15(E A):[60,76]
15(A F):[43,59]

0

21 15(A B):[6,21]
20(E A):[16,36]
15(E A):[62,77]
15(A F):[42,57]B

15(A B):[12,27]
40(B F):[10,50]
15(F B):[85,100] A

20(E A):[11,32]
15(E A):[57,73]

E 20(E A):[10,30]
15(E A):[56,71]

20(E A):[13,33]
15(E A):[59,74]

15(F B):[82,97]

40(B F):[16,56]
*15(A F):[58,73]
15(F B):[79,94]

F

43

15(A B):[13,29]
40(B F):[11,52]
15(F B):[73,89]

15(A B):[10,26]
40(B F):[14,55]
15(A F):[46,62]
15(F B):[70,86]

40(B F):[13,53]

0

0

0
20(E A):[11,32]
15(E A):[57,73]

21

15(A B):[6,21]
20(E A):[16,36]
15(E A):[62,77]
15(A F):[42,57]

B

15(A B):[15,30]
40(B F):[10,50]
15(F B):[75,90] E

F

15(A B):[7,23]
20(E A):[14,35]
15(E A):[60,76]
15(A F):[43,59]

A

20(E A):[10,30]
15(E A):[56,71]

20(E A):[13,33]
15(E A):[59,74]15(A B):[12,27]

15(F B):[72,87]

40(B F):[16,56]
15(A F):[48,63]
15(F B):[69,84]

15(A B):[9,24]
15(A F):[45,60]

0

43

(a) (b)

Figure 3 – Figure 1(c, d) mappings, using CDCM.
To evaluate CDCM mappings, consider the same pa-

rameters stated before, tr = 2 clock cycles, tl = 1 clock cy-

cle, = 1 ns, one-bit sized flits, and unbounded router

buffers. Figure 3 shows the same mappings illustrated be-

fore, now evaluated with CDCM. Each edge and each ver-

tex is annotated with the number of bits in a given time in-

terval. For instance, in Figure 3(a) tile 4 is annotated with

20(E A):[11,32] and 15(E A):[57,73] which means

that there are two packets from E to A. The first packet

has 20 bits and occupies router 4 during the interval from

11 ns to 32 ns. This interval is obtained by adding the E

computation time tE1 = 10 ns with 1 ns of the link time.

The link from 4 to 2 is annotated with the same two

packets, each one delayed by the router delay.

Figure 4 depicts the CDCM algorithm execution over

the mapping of Figure 3(a), showing a timing diagram that

illustrates all computations and all packet deliveries. Dur-

ing A F and B F packets transmission some conten-

tions occur, since they compete for the same resources at

the same time. When the B F packet uses the router of

tile 1, the A F packet is contained into the input buffer

of 1. This contention implies that the packet is delayed

until the B F packet is transmitted to tile 3. The effect

of this delay is observed in the router variables of 1 and

the variables of the link between the 3 router and IP core

F. These variables are marked with ‘*’ in Figure 3(a).

6 147

7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (ns)
75 80

15(A B):6

40(B F):10
20(E A):10

15(E A):20
15(A F):6
15(F B):6

Packets

6 14

10 39

10 19

20

6

Legend:

7

Computation delay

Packet delay

Routing delay

Contention delay

144

14

85 90 95 100

7

7

6

76

10

10

20

6

6

Figure 4 – Timing for Figure 3(a) mapping.
Figure 5 shows the timing diagram corresponding to

the mapping depicted in Figure 3(b). It is possible to ob-

serve that this mapping avoids contention, since there are

no packets competing for the same link at the same time.

Changing the mapping of Figure 3(a) to that of Figure

3(b) implies an execution time reduction of 11.1%, from

100 ns to 90 ns. As there are different execution times for

both mappings, the consumed static energy is different,

too. For instance, consider PstNoC=0.1 10-12J/ns. Applying

equation (10), ENoC can be obtained for both mappings,

showing that mapping (a) consumes 1 % more energy

than (b). This difference cannot be computed by CWM,

since it just captures the effects of dynamic energy.

6 147

7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

15(A B):6

40(B F):10
20(E A):10

15(E A):20
15(A F):6
15(F B):6

Packets

6 14

10 39

10 19

20

6

Legend: Computation delay

Packet delay

Routing delay

147

14

85 90

7

7

10

Time (ns)

6

10

20

10

6

6

Figure 5 – Timing for Figure 3(b) mapping.

5. Experimental Results

Table 1 summarizes the characteristics of 18 applica-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

tions mapped onto 8 different NoC sizes. There are 4 em-

bedded applications (a distributed Romberg integration,

an 8-point Fast Fourier Transform, and 2 image applica-

tions for object recognition and image encoding) with

some variations, for a total of 8 embedded applications.

The remaining applications are benchmarks randomly

generated by a proprietary system, which is similar to

TGFF [9]; however, the system describes benchmarks

through CDCGs, representing message dependence and

bit volume of each message. The NoC size is the number

of CRG vertices, the number of cores corresponds to the

number of CWG vertices, and the number of packets of all

cores equals the number of CDCG vertices.

Table 1 – Summary of NoC/application features.
NoC size Number of

cores

Number of packets

of all cores

Total volume of bits during

application execution

3 x 2 5; 6; 6 43; 17; 43 78,817; 174; 49,003

2 x 4 5; 7;8 16; 33; 18 1,600; 23,235; 5,930

3 x 3 7; 9; 9 16; 18; 32 1,600; 1,860; 43,120

2 x 5 8; 9; 10 24; 51; 22 2,215; 23,244; 322,221

3 x 4 10; 12; 14 15; 25; 88 3,100; 2,578,920; 115,778

8 x 8 62 344 9,799,200

10 x 10 93 415 562,565,990

12 x 10 99 446 680,006,120

For each application, the best mapping achieved with

the CWM algorithm is compared to the best mapping

achieved with the CDCM algorithm, and the results are

summarized in Table 2. For both models exhaustive

search (ES) and simulated annealing (SA) were applied,

depending on the NoC size. ETR gives the average execu-
tion time reduction, and ECS denotes the average energy
consumption saving, for a given technology, when map-

pings achieved with the CDCM algorithm are compared to

the ones achieved with the CWM algorithm. ECS0.35 col-

umn refers to ECS values obtained from 0.35 technol-

ogy, and ECS0.07 column refers to ECS values obtained by

estimating 0.07 technology [8].

Table 2 – Average energy and execution time re-
ductions for CWM and CDCM.

Algorithm NoC size ETR ECS0.35 ECS0.07

3 x 2 36 % 0,50 % 15 %

2 x 4 27 % 0,43 % 13 %

3 x 3 39 % 0,55 % 17 %

2 x 5 42 % 0,72 % 23 %

3 x 4 42 % 0,71 % 22 %

8 x 8 38 % 0,6 % 19 %

10 x 10 46 % 0,8 % 25 %
Simulated an-

nealing only
12 x 10 48 % 0,86 % 26 %

Average 40 % 0,65 % 20 %

First, for small NoC sizes (up to 3x4 or 2x5), both ES

and SA methods reached the same results. For larger NoC

sizes (8x8, 10x10 and 12x10), it is not possible to find op-

timum mappings with ES within a reasonable time. The

ETR column shows that the CDCM algorithm results in

40% average reduction of execution time when compared

to the CWM algorithm. The ECS0.35 column illustrates a

very small energy consumption saving, since the leakage

current is not as important for this technology. However,

for deep-submicron technologies, there is a significant re-

duction in energy consumption (20% in average), as ob-

servable in column ECS0.07. In addition, Table 2 shows a

slight trend of energy consumption saving and execution

time reduction when the NoC size increases.

The computational complexity of the CWM algorithm

is proportional to the number of communications between
cores (NCC) and the computational complexity of CDCM

algorithm is proportional to the number of dependences
and packets of all cores (NDP). In real embedded applica-

tions, NDP is larger than NCC. However, the increase in

CPU time with the increase of the NDP/NCC ratio is ap-

proximately linear with a small slope. The worst case for

CDCM took only 23% more CPU time than for CWM.

6. Conclusions and Future Work

This paper addressed the problem of mapping applica-

tions onto NoCs. A communication dependence and com-

putation model (CDCM) has been introduced and com-

pared to the communication weighted model (CWM). As

a conclusion CDCM is able to reduce the application exe-

cution time and energy consumption when compared to

CWM. Experimental results show an average of 40% in

execution time reduction. CDCM also reduces energy

consumption. For a 0.07 technology, an average of 20%

in energy savings is obtained. Moreover, CDCM presents

only a moderate increase in computational cost, when

compared to CWM, with better mapping results.

References

[1] A. Iyer and D. Marculescu. Power and performance
evaluation of globally asynchronous locally synchro-
nous processors. ISCA, pp.158-168, May 2002.

[2] W. Dally and B. Towles. Route packets, not wires: on-
chip interconnection networks. DAC, Jun. 2001.

[3] S. Kumar et al. A network on chip architecture and de-
sign methodology. ISVLSI, pp.105-112, Apr. 2002.

[4] J. Hu and R. Marculescu. Energy-aware mapping for
tile-based NoC architectures under performance con-
straints. ASP-DAC, pp.233-239, Jan. 2003.

[5] S. Murali and G. De Micheli. Bandwidth-constrained
mapping of cores onto NoC architectures. DATE,

pp.896-901, Feb. 2004.

[6] T. T. Ye; L. Benini and G. De Micheli. Analysis of
power consumption on switch fabrics in network routers.

DAC, pp.524-529, Jun. 2002.

[7] T. T. Ye; L. Benini and G. De Micheli. Packetization
and routing analysis of on-chip multiprocessor net-
works. JSA, vol. 50, issues 2-3, pp.81-104, Feb. 2004.

[8] D. Duarte et al. Impact of scaling on the effectiveness of
dynamic power reduction schemes. ICCD, Sep. 2002.

[9] R. Dick, D. Rhodes and W. Wolf. TGFF: task graphs
for free. CODES/CASHE, pp.97–101, Mar. 1998.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

