
Models for Embedded Application Mapping onto NoCs: Timing Analysis

César Marcon, Márcio Kreutz, Altamiro Susin
GME – Instituto de Informática – UFRGS

Av. B. Gonçalves, 9500 - Porto Alegre, RS, Brazil

{marcon, kreutz, susin}@inf.ufrgs.br

Ney Calazans
PPGCC – Faculdade de Informática – PUCRS

Av. Ipiranga, 6681 - Porto Alegre, RS, Brazil

calazans@inf.pucrs.br

Abstract

Networks-on-chip (NoCs) are an emergent
communication infrastructure, which can be designed to
deal with growing system complexity and technology
evolution. The efficient use of NoCs needs techniques for
application cores mapping, allowing reducing the message
latency and consequently the overall execution time. To
obtain mappings that fulfill the requirements during high-
level design, appropriate models for NoCs and application
cores become mandatory. High abstraction levels modeling
may lead to unreliable estimates. On the other hand,
detailed models may imply complex algorithms and high
computational effort, with unacceptable computation time
to get satisfactory results. NoC modeling for latency
estimation requires capturing some infrastructure
characteristics like topology and routing policies.
Application cores models have to capture the application
behavior, in terms of computation and/or communication.
For instance, communication weighted models (CWM) and
communication dependence model (CDM) consider only
application communication aspects. However, the
communication dependence and computation model
(CDCM) consider both aspects of an application. This work
compares these three models, according to their algorithm
complexity and accuracy to model the application
performance. We show that depending on the application
characteristics, one of the models can be more suitable
than the others.

1 Introduction

New technologies allow that many millions of

transistors be integrated onto a single chip and thus enable

the implementation of complex systems-on-chip (SoCs).

These systems need special communication resources to

handle very tight design requirements. Many designers

propose to change from the mainstream synchronous design

paradigm to a globally asynchronous and locally

synchronous (GALS) design paradigm [1]. GALS design

method divide the application into synchronous domains

placed inside a limited region, which is usually called tile.

An asynchronous communication resource provides the

communication between these tiles. A network-on-chip

(NoC) is an infrastructure essentially composed by a set of

routers interconnected by point-to-point communication

channels. NoCs are easily adapted to implement systems

based on the GALS paradigm. NoC channels can be

designed to provide an asynchronous communication

protocol between synchronous domains. In addition, NoCs

provide high scalability, reusability, reliability, and efficient

energy consumption [2].

Consider a SoC implemented with GALS paradigm,

composed by n cores and employing a NoC as

communication infrastructure. The application-mapping

problem consists in finding an association of each core to a

tile (a mapping) such that some cost function is minimized.

In general, this mapping problem allows n! possible

solutions. Given future SoCs with hundreds of tiles [3],

exhaustive search into all solutions’ space will rapidly

become unfeasible. Thus, the optimal implementation of

such SoCs requires efficient mapping strategies and sound

application models. Some mapping strategies have been

proposed. For example, [4] and [5] propose two different

strategies with the same application model. We call this

model communication weighted model (CWM), since it

takes into account the overall volume of communication

between each pair of cores. [6] compares CWM with

communication dependence model (CDM), since CDM

considers also the communication timing. [7] compares

CWM with communication dependence and computation
model (CDCM), which considers the communication timing

and also the computation quantity. CDM and CDCM can

lead to a better mapping than the ones achieved with CWM.

However, it still needs to be verified the exact strength and

weaknesses of each model in capturing applications

behaviors, as well as their algorithm complexity. To clarify

these issues, this paper evaluates the modeling effect in the

application-mapping task, aiming to reduce the overall

execution time of an application running on a mesh NoC

architecture.

The remaining of the paper is organized as follows.

Section 2 discusses related work. Section 3 defines

application models for the mapping problem. Section 4

describes and compares algorithms and models. Section 5

presents experimental results and Section 6 presents some

conclusions.

2 Related Work

Hu and Marculescu [4] propose a model called

application characterization graph (APCG), which is a

way of capturing the communication weight of a given

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

application. Murali and De Micheli [5], propose a model

similar to that in [4], which is represented by a structure

called core graph. Both works, whose models are classified

here as CWM, are used to achieve mappings that minimize

some design constraints, like energy consumption and

average communication delay.

In all approaches that use the CWM strategy, essential

information regarding the instant of time that messages are

exchanged is lost, compromising some mapping results.

The authors of [6] propose a model that captures the

communication volume and dependence. This model allows

describing applications more accurately than the previous

model, generating mappings with less overall execution

time. The same authors introduce in [7] a new model that

captures not only the communication volume and

dependence, but also the computation quantity. The joint

effect of computation and communication leads to better

mappings, because contentions can be better estimated and

then avoided.

This work evaluates application models aiming to

compare their associated complexities and algorithms.

3 Problem Formulation

The problem of mapping application cores onto NoCs is

a complex one. The designer splits the application tasks

into cores. Each core behavior can be modeled by its

computation and communication characteristics. This

Section gives a formulation of the mapping problem in

terms of graph structures and proposed models.

3.1 Graph Definitions

Definition 1: A communication weighted graph (CWG) is a

directed graph <C, W>. The set of vertices

C = {c1, c2…, cn} represents the set of cores in one

application. Let wab be the number of bits of all packets sent

from a core ca to a core cb. Then, the set of edges W is

{(ca, cb) | ca, cb C and wab 0}, and each edge is labeled

with the value wab.

W represents all communications between application

cores, and CWG informs the relative communication

volume of the application. This is similar to the definitions

of APCG [4] and core graph [5].

Definition 2: A communication dependence graph (CDG)

is a directed graph <V, D> [6]. Let C be a set of cores of a

given application and let vq = (ca, cb, wab) be the q-th
message sent from core ca to core cb with bit volume wab.

V = {v1, v2, …, vk} denotes the set of all messages between

all cores and corresponds to the set of CDG vertices. There

are also two special vertices named START and END. START

does not depend on any vertex, and no vertex depends on

END. D = {(vi, vj) | vi, vj V} represents the set of message

dependences, corresponding to the set edges.

CDG represents all core communication of a given

application. Edges are non-valued, and the edge direction

denotes that the message contained into the target vertex

depends on the origin vertex. In other words, the target

vertex is communication dependent on the origin vertex.

Definition 3: The communication dependence and
computation graph (CDCG) is a directed graph <P, D> [7].

CDCG has definition similar to CDG, the difference

consisting on the CDCG vertices (P), which contain the

computation quantity besides the messages exchanged

between each pair of application cores. Elements of P are 4-

tuples pabq = (ca, cb, taq, wabq), where ca, cb C, and pabq is

the q-th message sent from ca to cb. Messages contain wabq

bits that are transmitted after the computation time (taq) of

the originating core (ca) has elapsed.

The use of these models for solving the mapping

problem is evaluated onto a NoC with mesh topology using

wormhole, deterministic XY routing algorithm [8]. n tiles

compose an instance of this NoC. Figure 1 (a) depicts the

structure of this NoC, where each tile () contains a router

(r) and a local core (c). Figure 1 (b) shows that each router

connects up to 5 external I/O channels and each channel has

buffered inputs and unbuffered outputs. The local channel

is devoted to provide communication with the local core.

The remaining channels provide inter-router

communication.

(a)

r1,1

c1,1

1

r2,1

c2,1

2

r ,1

c ,1

r1,2

c1,2

+1

r2,2

c2,2

+2

r ,2

c ,2

2.

r1,

c1,

(-1). +1

r2,

c2,

(-1). +2

r ,

c ,

.

tiles

 t
ile

s

SOUTH CHANNEL

E
A

S
T

 C
H

A
N

N
E

L

W
E

S
T

 C
H

A
N

N
E

L

LOCAL CHANNEL

INPUT

BUFFERS

NORTH CHANNEL

router

(b)

Figure 1 – NoC mesh topology (a) and its router (b).

Definition 4: A communication resource graph (CRG) is a

directed graph < , L>, where the vertex set is the set of tiles

 = { 1, 2, …, n}, and the edge set L = {(i, j), i, j }

designates the set of routing paths from i to j.

The value n is again the total number of tiles and is

equal to the product of the two NoC dimensions, and .

CRG edges and vertices represent physical links and tiles of

the target architecture, respectively.

Figure 2 illustrates the above definitions using a

hypothetical application with four IP cores, exchanging a

total of six messages, in a 2 2 NoC.

Figure 2(a) depicts one possible CDCG where

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

P = {pEA1 = (E, A, 10, 20), pEA2 = (E, A, 20, 15), pAF1 = (A,

F, 6, 15), …} and D = {(START, pEA1), (pEA1, pEA2), (pAB1,

pAF1), …}. Figure 2(b) depicts the correspondent CDG for

the chosen CDCG, where P = {pEA1 = (E, A, 20), pEA2 = (E,

A, 15), pAF1 = (A, F, 15), …} and the same D of CDCG.

Figure 2(c) shows a CWG, where C = {A, B, E, F}, the

edge labels are wAB = 15, wAF = 15, wBF = 40, wEA = 35,

wFB = 15 and the set W can be extracted easily from the

figure. Figure 2(d) depicts an arbitrary mapping of C onto

de NoC, corresponding to a CRG as follows: CRG = <{ 1,

2, 3, 4}, {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2),

(3, 4), (4, 3)}>.

(d)(c)

A 15

15

B

F E

15
35

40

B E

AF

3

1 2

4

(b)

START

15
BA

20
AE

40
FB

15
FA

15
AE

15
BF

END(a)

START

15
BA

tA: 6

20
AE

tE: 10

40
FB

tB: 10

15
FA

tA: 6

15
AE

tE: 20

15
BF

tF: 6

END

Figure 2 – (a) CDCG, (b) CDG, (c) CWG, (d) CRG.

3.2 Timing Models

To estimate the execution time of the application, this

section presents a timing model for XY deterministic

algorithm with wormhole routing. The total message delay
is composed by the routing delay and by the payload delay.

The routing delay is the time spent to create the

communication path, which is determined during the traffic

of the first flit. The payload delay depends only on the

number of the remaining flits. Let nab be the number of flits

of a message sent from ca to cb. Let be the period of a

clock cycle, and let tr be the number of cycles needed for

routing decision. In addition, let tl be the number of cycles

needed to transmit a flit through a link (between tiles or

between core and router). The routing delay (dRij) and the

payload delay (dPij) from i to j, are given by equations (1)

and (2), respectively, considering that a packet goes

through routers without contention. Contentions are not

expressed here, since they can only be determined by the

knowledge of the overall messages timing.

(1) dRij = ((tr + tl) + tl)

(2) dPij = (tl (nab - 1))

The total message delay (dij), obtained from the sum of

(dRij) and (dPij), is expressed by Equation (3). All

algorithms use dij to compute the latency of a message.

(3) dij = ((tr + tl) + tl nab)

4 Mapping Algorithms

We implemented an algorithm that mix simulated

annealing [9] and simulated evolution [10]. This algorithm

is called external algorithm since it works as a shell that

calls three mapping cost algorithms (ModelMapping

function), one for each model. Figure 3 depicts the external

algorithm.

1. m ap InitialR andom M apping

2. cost M odelM apping

3. if cost < savedC ost

 savedM ap m ap

 savedC ost cost

elsif cost < savedC ost + tem perature

 SaveM apping (savedM ap, savedC ost)

 savedM ap m ap

 savedC ost cost

4 . m ap R andom M apping(tem perature)

5 . tem perature tem perature – 1

6. if tem perature > 0

go to step 2

7 . savedM ap, savedC ost B estM apping

8. m ap R andom M apping(1)

9 . cost M odelM apping

10. if cost < savedC ost

 savedM ap m ap

 savedC ost cost

11. iteration iteration – 1

12. if iteration > 0

go to step 8

13. end

Figure 3 – External mapping algorithm.

The algorithm starts with an initial random mapping

associating cores to tiles; it then evaluates the mapping

cost, executing the specific algorithm for each model; and

searches for a new mapping that reduces the computed cost,

until reaching a stop condition. For all algorithms, the

mapping cost is computed by the ModelMapping function,

which depends on the model and the infrastructure. The

external algorithm is divided in two sets of steps: (i) from

step 1 to 6 - the algorithm accepts mappings worse than

previous ones, but always, saving the best mappings in

SaveMappings list. The acceptance level and the degree of

variations between mappings are reduced with a

temperature parameter. This procedure searches for the best

mappings trying to avoid local minima. (ii) from step 7 to

13 - the second part of the algorithm starts searching for the

best mapping of the saved mappings list and tries to find a

better one by a smaller grain search method, which

produces mappings that change only one association

between tiles and cores in each execution loop.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

4.1 CWM Mapping Algorithm

The CWM algorithm is a ModelMapping function of the

external algorithm. This algorithm starts selecting a source

vertex. For each source vertex, all output edges are visited

to find the target vertex and the number of bits transmitted.

It proceeds until no unvisited vertices are left. When an

edge is visited, the number of bits transmitted, and the

source and target vertices are informed to the function that

maps them onto the NoC graph (CRGMapping function).

Figure 4 (a) depicts the ModelMapping function of CWM.

1. sourceVertex SearchSource

2. if sourceVertex = NULL

go to step 7

3. targetVertex, bits SearchTarget

4. if targetVertex = NULL

go to step 1

5. time CRGMapping(sourceVertex,

targetVertex, bits)

6. go to step 3

7. return time

for x of source to x of target

for y of source to y of target

time TimeOfResource
return time

(a) ModelMapping of CWM (b) CRGMapping

Figure 4 – (a) ModelMapping function for CWM
mapping, and (b) CRG mapping algorithm.

The effective CWG mapping onto CRG is performed

according to the XY routing algorithm, and is called

CRGMapping. It receives source and target vertices, since

it allows associating the CWG vertices with the XY

physical places, allowing computing the communication

path. Figure 4 (b) describes this algorithm. TimeOfResource

is the delay of the message according to the timing model.

CWM model enables to compute only the time spent in

the communication infrastructure. TimeOfResource cannot

compute contentions, since CWM model does not model

any kind of timing information.

4.2 CDM Mapping Algorithm

CDM improves CWM, as it considers message

dependence. Dependent messages cannot be concurrent. On

the other hand, independent messages can be sent at the

same time, and consequently may lead to contentions, if

they share a given communication resource. Message

contention implies larger execution time. The goal of CDM

algorithms is to search for mappings that minimize the

sharing of communication resources for concurrent

messages.

The ModelMapping function of CDM is implemented

by firstly setting dependences in all vertices, i.e. all

dependence paths are searched, and for all vertices found in

the paths there is a dependence list to annotate the

predecessor vertices. Each vertex has also an integer to

store its dependence level. CRG can execute vertices with

the same dependence level at the same time, because there

is no dependence relation between them. Figure 5 (a) shows

these steps, which are performed only once and are used

during all mappings.

from Start to End Vertex

search all paths

SetDependenceLevel

NoteDependeces

1. dependence 0

2. if dependence = DependenceLevel(End)

 return time

3. vertex SearchVertices(dependence)

4. if vertex = NULL

go to step 6

5. time CRGMapping(vertex)

6. go to step 3

7. dependence dependence + 1

8. go to step 2

(a) Dependence settings (b) ModelMapping of CDM

Figure 5 – ModelMapping function for CDM mapping.

The ModelMapping function uses the dependence level

to execute CDG over CRG. The algorithm stops when it

reaches the dependence level of END vertex, returning the

computed execution time. For each dependence level, all

vertices are mapped onto CRG, i.e. the message contained

into the vertex is computed into CRG according to the

CRGMapping described in Figure 4 (b). However, the

CRGMapping only receives a vertex as parameter, since the

CDG vertex contains the source and target vertices, and the

number of bits transmitted. The TimeOfResource function

computes all independent messages as concurrent. Thus, the

algorithm considers that these messages will be contained

in the routing buffers, increasing the execution time.

Because of that, mappings with many contentions can be

avoided. Figure 5 (b) depicts the CDM ModelMapping

function. When all vertices at the same dependence level

are executed, a dependence control variable is incremented

and the process is repeated.

4.3 CDCM Mapping Algorithm

CDCM improves CDM by adding the tasks computation

time. It changes the algorithm focus. While CDM tries to

avoid contentions by a pessimistic approach - “if messages

are not dependent, either the mapping avoids resource

sharing or messages will cause contentions”, CDCM can

more effectively compute the exact time slice of each

message. Thus, even independent messages can concur for

the same resource without causing contentions, because

resources are shared at different moments of time.

The CDCM ModelMapping function is implemented by

firstly setting the dependences level of each vertex,

similarly to CDM. However, there is no list of

dependences, since the dependence knowledge is only

necessary to compute the dependence levels. Dependence

levels with computation time define a total ordering of

messages.

The CDCM ModelMapping function is similar to that of

CDM, depicted in Figure 5 (b). The only difference is in the

accounting of task computation time. The main difference

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

between CDCM and CDM algorithms relies on the

TimeOfResource function. Because of the exact knowledge

of message time slice, message contentions are only

computed if the messages concur for a same resource at the

same time. This approach reduces the number of “false”

possible contentions, enabling the algorithm to explore

mappings reducing contentions that really will occur.

4.4 Algorithms Comparison

The essential difference between the models is that

CWM and CDM is not able to estimate application

execution time. CWM cannot evaluate message contention

either. The main advantages of CWM are (i) easy extraction

of application core graph (CWG), since it can be done by

simulation techniques; and (ii) low computational

complexity. The automatic extraction of CDM and CDCM

core graphs are harder tasks, since simulations only allow

extracting possible message orderings, but not the desired

message dependence information. Therefore, CDGs and

CDCGs are normally described by hand, increasing error

susceptibility.

The main drawback of CDM and CDCM algorithms is

that in real embedded applications, the number of messages

exchanged between cores is much larger than the number of

cores. Since vertices of CDG and CDCG represent message

exchanges between cores and each vertex of CWG

represents just a core, CDGs and CDCGs are naturally

larger than CWGs.

CWM algorithms are less complex, because this only

informs direction and quantity of bits transmitted. CDM

and CDCM algorithms are more complex, since they have

to deal with message dependences. However, the CDM

algorithm is the most complex one, because its pessimistic

approach needs to compute lists of dependences for all

vertices, and these lists have to be recomputed each time a

vertex is evaluated.

When a message has more bits than the lower level

protocols allows, it is broke into several packets. Messages

with more than one packet can be interleaved, in the NoC

resources making difficult high-level contention estimation,

even for models like CDCM. On the other hand, the

pessimistic approach of CDM tends to avoid this kind of

contentions, since the associated algorithm searches for

mappings that avoid the concurrency of all independent

messages, and dependent messages cannot have interleaved

packets.

5 Experimental Results

In order to compare the models, hypothetical

applications with special characteristics were used as

benchmarks. The chosen application characteristics are

computation versus communication and message

dependence versus message concurrency. The applications

comprise create two set of benchmarks whose purposes are

to evaluate the models accuracy in finding mappings that

reduce the overall execution time. One set compares

computation versus communication and another one

compares dependence versus concurrency. The benchmarks

contain applications that vary all characteristics from 0% to

100%. Both benchmarks include 9 applications, with an

average of 18 vertices, and were built over the CDCM

model, since CDM and CWM can be automatically

extracted from CDCM with an auxiliary tool. The

hypothetical applications aim to evaluate a large range of

characteristics combinations, which can be matched with

real applications. An assumption is that if the characteristics

of a real application matches the characteristics of a

hypothetical one, the best model found during the mapping

process also matches. Therefore, the designer has just to

evaluate the characteristics of its application to choose the

best model for its purpose.

5.1 Concurrence and Dependence Evaluation

It is not trivial to determine how much an application is

message concurrent or message dependent. Since there are

many variables involved to quantify these characteristics,

this work proposes a heuristics that proportionally relate

graph dependence (gd) with graph concurrency (gc).

Let n be the number of vertices of an application graph,

and let vd(v) be the list of vertices that vertex v depends on.

Then, gd is computed with by the sum of the vd of all n
vertices as depicted by Equation (4).

(4) gd =

n

i
ivvd

1

)(

Let cc(v) be the set of all concurrency combinations of

vertex v, i.e. all combinations of vertices that may execute

concurrently with vertex v. Equation (5) depicts CC, which

is the set union of the ccs of all n vertices. The value gc is

the cardinality of CC. We assume this because CC
represents all possible concurrence combinations. Equation

(6) shows the computation of gc.

(5) CC = cc(v1) cc(v2) … cc(vn)

(6) gc = / CC /

The adopted heuristics estimates concurrency and

dependency percentages through the application of

Equation (7). Note that in (7) the increase of concurrency

implies the decrease of dependence and vice-versa.

(7) gd_gc = %100*
gdgc

gd

Equations (4), (6) and (7) are exemplified in Figure 6

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

and Table 1, which present a simple example of

hypothetical application graph. Figure 6 shows a

hypothetical application composed by six vertices V = {V1,

V2, V3, V4, V5, V6} representing messages, besides START

and END special vertices. In the right side of each vertex,

there is a list of dependences. For instance, vertex V5

depends on vertices START, V1 and V3, and vertex END

depends on the execution of all vertices described in the

graph. When its dependences are solved the application

execution is finished.

END

START

V2V1

V4

V6

V3

V5

START, V1

START START

START, V1

START, V1, V3 START, V1, V2, V4

START, V1, V2, V3, V4, V5, V6

Figure 6 – Comparison of concurrency versus
dependence of a hypothetical application graph.

Table 1 illustrates the concurrency combinations of all

vertices of Figure 6.

Table 1 – Concurrence combinations of all vertex of the
hypothetical application graph showed in Figure 6.

cc(V1) { (V1,V2) }

cc(V2) { (V2,V3,V4), (V2,V4,V5), (V1,V2), (V2,V3), (V2,V4), (V2,V5) }

cc(V3) { (V2,V3), (V3,V4), (V3,V6), (V2,V3,V4) }

cc(V4) { (V2, V4), (V3,V4), (V4,V5), (V2,V3,V4), (V2,V4,V5), }

cc(V5) { (V5,V6), (V4,V5), (V2,V4,V5) }

cc(V6) { (V3,V6), (V5,V6) }

3

0

78
68

59

47

30
22

14

3

-5

5

15

25

35

45

55

65

75

0 12,5 25 37,5 50 62,5 75 87,5 100

CWM

CDM / CDCM

Latency reduction (%)

gd_gc

Figure 7 – Average latency reduction achieved with
mappings of CWM, CDM and CDCM models, when
concurrency and dependence variations are concerned.

Applying Equation (5) gives CC = {(V1,V2), (V2,V3),

(V2,V4), (V2,V5), (V3,V4), (V3,V6), (V4,V5), (V5,V6),

(V2,V3,V4), (V2,V4,V5) }. Next, applying Equation (6)

gc = / CC / = 10. In addition, applying Equation (4)

gd = 20, is obtained. Finally, applying Equation (7) gives

gd_gc = 66,67%. The interpretation is that this application

is more dependent than concurrent. Using a benchmark

with applications that do not consider computation and

varies the dependence from 0% to 100%, and the opposite

situation for concurrency, the results of Figure 7 are

obtained.

Without considering computation, CDM and CDCM

lead to identical results. However, it is possible to observe

that CDM and CDCM, when compared to CWM, present a

linear increase in latency reduction with the increase of

dependence. All models have similar results only with

applications with gd_gc lower than 12,5%.

5.2 Computation and Communication Evaluation

In order to comparatively evaluate computation and

communication, all vertices of the hypothetical applications

were assigned with an amount of message bits and an

amount of computation time. We use a heuristic based on a

Normal distribution, avoiding that the relation between

these application characteristics be masked by discrepant

values.

Let si be the i-th sample, be the medium value of the

samples computed by Equation (8), and be the deviation

assumed (we consider 30%), which is computed by

Equation (9). Then, Equation (10) computes the average of

the considered samples ().

(8)
n

n
s

i
i

1

(9) - = * 0.7 and += * 1.3

(10)
nis

n
s

i

i
i

1//

1

The graph computation time (gct) is obtained by

applying Equation (10), considering that each sample is

equal to the computation time of each vertex.

Since it is not possible to precisely estimate the time

spent by the communication before mapping, we use a

heuristics based on probabilistic traffic evaluation and NoC

size. To define the probabilistic parameters, a practical

observation was used. Quality mappings aimed at latency

reduction obtain, in average, communication paths, which

take less 20% of the average communication time (mtc).

The mtc value is computed by the average size of paths and

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

the time spent in each path according to Section 3.2. The

reduction to less than 20% happens because cores with high

communication rate are placed in neighbor tiles.

Let fs be a function that calculates the number of flits

according to the number of bits, and let wij be the number of

bits transmitted from core i to core j. Then, to estimate the

time caused by communication between these cores (tij), we

apply Equation (11).

(11) tij = fs(wij)* mtc * 0.2

The time spent by graph communication (tgc) is

obtained by applying Equation (10), considering that each

sample is equal to the time spent by the message

communication, described in each vertex.

Similarly, to display dependence versus concurrency,

we use Equation (12) to estimate the relative percentage

between communication and computation.

(12) tgc_gct = %100*
tgcgct

tgc

In computation versus communication comparison, all

hypothetical applications of the benchmark are adjusted to

have around 50% dependency and 50% concurrency. Figure

8 shows the results for computation versus communication

variations.

3

15

24
28 27

32 31 32

3233
3938

53
48

26

6

0

10

20

30

40

50

60

12,5 25 37,5 50 62,5 75 87,5 100

CWM

CDM

CDCM

Latency reduction (%)

tgc_gct

Figure 8 – Average latency reduction achieved with
mappings of CWM, CDM and CDCM models, when
computation and communication are concerned.

As it can be observed in Figure 8, the maximum latency

reduction is achieved for balanced applications – 50%

communication and 50% computation - using CDCM. This

justifies the model efficiency to capture the expressiveness

of computations in the application. However, when the

application is dominated either by communication or by

computation, the results for CDM and CDCM are similar.

This happens because in both situations, communication

volume drives the mapping algorithm, and both models

capture the communication behavior with similar

expressiveness.

6 Conclusions and Future Work

This paper addresses the problem of mapping

applications onto NoCs, based on different models to

express application behavior. Three models were compared

– CWM, CDCM and CDM – each having different

capacities to express the relationship among several

applications characteristics, such as communication versus

computation and dependence versus concurrence. A model

to estimate the relative dominance of an application

characteristic over another is proposed and justified.

A set of experiments were conducted, based on

hypothetical benchmarks. The proposed relative dominance

models was used to show how the merits of application

models (CDM, CDCM, CWM) can be evaluated. The

experiments exemplify the optimization of latency, but the

proposed models can be extended to deal with other

communication parameters.

As future improvements, the authors expect to evaluate

typical embedded applications, such as multimedia. The

authors believe that this has the potential to obtain insights

on important characteristics of application behavior.

References

[1] A. Iyer and D. Marculescu. Power and performance
evaluation of globally asynchronous locally synchronous
processors. ISCA, pp.158-168, May 2002.

[2] W. Dally and B. Towles. Route packets, not wires: on-
chip interconnection networks. DAC, pp.684-689, June

2001.

[3] S. Kumar et al. A network on chip architecture and design
methodology. ISVLSI, pp.105-112, April 2002.

[4] J. Hu and R. Marculescu. Energy-aware mapping for tile-
based NoC architectures under performance constraints.

ASP-DAC, pp.233-239, January 2003.

[5] S. Murali and G. De Micheli. Bandwidth-constrained
mapping of cores onto NoC architectures. DATE, pp.896-

901, February 2004.

[6] C. Marcon et al. Time and Energy Efficient Mapping of
Embedded Applications onto NoCs. ASP-DAC, January

2005.

[7] C. Marcon et al. Exploring NoC Mapping Strategies: An
Energy and Timing Aware Technique. DATE, pp. 502-

507, March 2005.

[8] F. Moraes et al. HERMES: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip.

Integration, the VLSI Journal, v. 38, n. 1, p. 69-93,

October 2004.
[9] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Science 220

pp.671-680, 1983

[10] L. Fogel. Intelligence through Simulated Evolution: Forty
Years of Evolutionary Programming, Wiley-Interscience,

July 1999.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:02:23 UTC from IEEE Xplore. Restrictions apply.

