
High Level RTOS Scheduler Modeling for a Fast Design Validation

Fabiano Hessel, César Marcon, Tatiana Santos
†

PPGCC - FACIN – PUCRS - Porto Alegre, RS – Brazil

Fabiano.Hessel@pucrs.br

†
UNISC - DI - Santa Cruz do Sul, RS – Brazil

tatianas@unisc.br

Abstract

The use of higher level specification models will open new

sceneries for optimization and architecture exploration

like CPU/RTOS tradeoffs. Scheduling decision for real-

time embedded applications has a great impact on system

performance and, therefore, it is an important issue in

RTOS design. Moreover, it is highly desirable to have the

system designer able to evaluate and select the right

scheduling policy at high abstraction levels, in order to

allow faster exploration of the design space. In this paper,

we address this problem by introducing an abstract RTOS

scheduling model as well as a new approach to refine an

unscheduled high level model to a high level model with

RTOS scheduling. This approach is built on the top of the

standard SystemC kernel and enables the system designer

to quickly evaluate different scheduling policies and make

the best choice in early design stages. Furthermore, we

present a case study where our model is used to simulate

and analyze a telecom system.

1. Introduction

The utilization of embedded processors for real-time

embedded applications has been growing rapidly in recent

years. 90% of recent System-on-chip (SoC) designs

include at least one processor [1]. In this scenario, more

and more tasks, traditionally performed by specific but

inflexible hardware, will now be executed by software on

dedicated programmable processors [2]. However,

running multiple tasks on the same processor requires

some Operating System (OS) support, in order to perform

efficient task scheduling.

Real-Time OS (RTOS) scheduler achieves more

deterministic scheduling of tasks where certain priorities

need to be followed. This ensures that tasks are scheduled

for execution according to their completion deadlines. The

scheduling policy used by the RTOS scheduler has a great

impact in the overall system performance. Nevertheless,

validate different scheduling policies at low abstraction

levels remains quite high cost.

Raising the abstraction level is widely used as an

interesting alternative to enable faster exploration of the

design space at early stages. The correctness of real-time

applications is determined by the combination of the

computation result and time properties. These aspects

make real-time applications different from any other, as it

is not possible to analyze them statically at compile time.

The actual timing properties need to be checked at run

time through target specific code implementation.

In general, although high level simulations are not

cycle accurate, it provides enough information to design

decisions with a high confidence. Represent the

scheduling behavior through a high level model is not

trivial due to the lack of information. As a consequence,

the timing properties of the system design changes from

the high level model to implementation, and the designer

has to tune code delays or task priority assignments at a

final stage of system design, which is both error prone and

time consuming task.

In this paper, we introduce a high level RTOS

scheduling model. The main goal is to provide an efficient

approach to abstract the dynamic scheduling behavior and

adjust the scheduling policy at higher abstraction levels.

This approach is provided while maintaining the

standard kernel of SystemC unchanged, by means of a set

of specification rules, and a support library built on the

top of the SystemC standard library. This is possible

thanks to an abstraction technique at transaction level,

which can integrate any new scheduling policy that can be

abstracted over the underlying simulation kernel.

Transaction Level (TL) is an emergent description

level for system level design [3][4]. TL Modeling (TLM)

is sufficient to represent the events ordering and efficient

for fast high level evaluation. In order to capture the TL

dynamic scheduling behavior, we introduce a set of

refinement steps to generate a TLM with RTOS

scheduling from an unscheduled TLM. This is necessary

because using a detailed RTOS is a contra sense, as the

system model is highly abstract.

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

This remaining of this paper is organized as follows:

Section 2 presents some related work; Section 3 presents

the abstract RTOS model; Section 4 describes the

scheduling model refinement; Experimental results with a

telecom system that consists of fifty tasks with four

priority levels are the subject of Section 5; and finally,

Section 6 presents conclusions and future work.

2. Related Work

Kohout [5] describes the Real-time Task Manager as a

processor extension that minimizes the drawbacks

associated with RTOSs by supporting, in hardware,

common RTOS operations that are bottlenecks to system

performance. Adomat [6] proposes an exclusive external

hardware module designed to perform RTOS functions.

This model improves performance, but it does not allow

existing RTOSs to easily take advantage of its offerings.

Wang [7] proposes a high level abstract model and

synthesizes an operating system based on device drivers.

Yi [8] proposes a virtual synchronization technique for a

single processor. It runs only application tasks on the

Instruction Set Simulator and models the RTOS in the

cosimulation backplane.

Cortadella [9] presents an approach to combine static

scheduling and dynamic scheduling in software synthesis.

Tomiyama [10] describes a technique for modeling fixed-

priority preemptive multi-tasking systems. This model

does not support different scheduling algorithms, and

inter-task communication.

Gauthier [11] proposes a method for automatic

generation of application-specific OS and correspondent

application software for a given target processor.

Desmet [12] proposes a high level model of a System-

on-Chip Operating System. It is used for modeling,

simulation and analysis of the system, besides the

implementation through gradual refinements. The focus of

this work is on task concurrency issues. However, this

system requires own proprietary simulation engine and a

manual system model creation.

Gonzales [13] presents an abstract RTOS model using

master-slave timed SystemC, which allows to model and

analyze the behavior of a complex system that has a

RTOS application running on a multiprocessor.

Gerstlauer [14] describes an RTOS model, which is

effectively a set of commonly used RTOS services, to

extend the original ability of SpecC language to handle

the interleaved execution behavior of dynamic schedulers.

The adaptation of this model to another System Level

Design Language may be a hard and complex task, due to

lack of support to model common services as preemption

and true multitask execution.

The abstract RTOS model proposed here is similar to

Gonzales and Gerstlauer approaches. However, our

approach is more generic, since it does not limit to master-

slave library or a specific SLDL. Our approach is built on

the top of the SystemC library, but it can be directly

integrated into any system-level design flow. The

distinguishing contribution of our approach is that the

support is provided without change the standard kernel.

Due to this aspect, we have a powerful and flexible high

level RTOS model tailored to validation and design space

exploration aspects.

3. RTOS Model

SystemC lacks support to model the dynamic real-time

behavior commonly found in embedded software.

Typically, SystemC does not provide mechanisms to

preempt and resume threads during execution time. In

order to allow the aforementioned problem, we developed

a RTOS model with some language extensions, and a set

of specification rules.

The RTOS model is incorporated into the RTOS TL

library and can be parameterized in terms of task

parameters. This issue is very useful to represent different

application classes (e.g. computation-intensive). The

library provides RTOS models with different scheduling

algorithms. Also, our RTOS model supports both periodic

and non-periodic real-time task models. The RTOS model

provides two major categories of services: OS

management and Task management. Figure 1 shows the

interface of the RTOS model.

void sc_rtos_init();
void sc_rtos_reset();
void sc_rtos_task_suspend(id);
void sc_rtos_task_resume(id);
void sc_rtos_task_kill(id);
void sc_task_create(id, priority, period, bcet, wcet, deadline);
void sc_task_notify(id);
void sc_task_end(id);
void sc_task_wait(delay);
void sc_task_end_cycle(id);

Figure 1. API of the RTOS model

OS management services are responsible to the

initialization of the RTOS. The sc_rtos_init initializes the

relevant RTOS data structures and starts the multitasking

scheduling. The sc_rtos_reset reinitializes the RTOS and

it is very useful for validation purposes. In order to allow

the preemption and resume tasks during execution time,

we introduced two primitives: sc_rtos_task_suspend and

sc_rtos_task_resume. These primitives receive the task

identification as parameter.

Task management services are responsible to make the

interface between the kernel and the system application.

The main goal is to provide to the designer an easy way to

describe an application class as a set of tasks.

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

3.1. Task Model

Tasks are modeled to hold all necessary information to

execution. Each task is implemented as a PosixThread,

allowing preemption and resume by the scheduler. The

sc_task_create primitive is used to characterize the

execution of the task. It defines the task parameters such

as identification, priority, period, deadline, Worst-Case

Execution Time (WCET), and Best-Case Execution Time

(BCET). In addition, this primitive assigns the task to the

scheduler, which assigns idle status as the initial task state.

Several others standard RTOS primitives are included

in the model like task notify (sc_task_notify), task

termination (sc_task_end), and task suspension

(sc_task_wait). We also introduced the sc_task_end_cycle

primitive to model periodic tasks. This primitive notifies

the scheduler that a task finished its computation in the

current cycle.

3.2. Scheduler Model

At high abstraction levels (e.g. system level) we are

not interested in the exact task functionality, but rather

than that, we need to be able to determine how long it

takes to compute the tasks interactions. From this point of

view, the first task of the RTOS is to determine which

process runs next. The task management, performed by

the scheduler, is the most important function in the RTOS

model. Our scheduler model assumes that all tasks are

independent threads. Each task is characterized by a set of

parameters (deadline, period, priority, WCET, and

BCET). Moreover, a task may be preempted by a higher

priority task.

The task states used in our scheduler model is similar

to the classical task states used in the operating system

domain, as depicted in Figure 2. Therefore, according to

the scheduler model, tasks may be in one of the four basic

status of scheduling: ready, executing, idle or preempted.

There is at most one task executing at any time. If

there is no useful work to be done, just the scheduling task

works. As stated before, our model assumes that all tasks

are in the idle state at the beginning (sc_task_create).

Each task stays as idle while it does not enter in a new

execution period, except if the task was preempted. A task

goes into the ready state when all required data is

available or when it enters in a new execution period,

remaining ready until it is allowed to run. A task goes into

the executing state when it receives a run command from

the scheduler. As stated above, the task will receive this

command only when it has all data required, it is ready to

run, and the scheduler selects the task as the next one to

run. Once the task has finished its computation in the

current cycle, it sends a message to the scheduler

(sc_task_end_cycle) and goes to the idle state.

Idle Ready

Preempted Executing

Ti ends

cycle

Ti received data,

Ti new period

Ti chose

to run

Ti resumed,

Ti gets data

Ti preempted,

Ti needs data

Initial

state

Figure 2. Classical scheduling state of tasks

The task goes to the preempted state when it requests a

data that is not available (sc_rtos_task_suspend). A task

can also be preempted by a higher priority one. In both

cases, the task will remain preempted until receive a

resume command from the scheduler (sc_task_resume).

When a non-periodic task finished its execution, it sends a

terminate message to the scheduler (sc_task_end). In this

case, the scheduler kills the task (sc_rtos_task_kill).

The scheduler is modeled as a SystemC thread process

that runs continually. When an executing task goes to idle

or ready states, the scheduler selects a new candidate to

run among all ready tasks. However, if there is not a

candidate task, the scheduler just waits until the next

ready task is available. For instance, our scheduler

implements First Come First Served (FCFS), Round

Robin, Rate Monotonic (RM) and Earliest Deadline First

(EDF) scheduling algorithms [15].

4. Scheduling Model Refinement

From the application point of view, the major task of

the RTOS is to determine the execution order of the tasks.

The scheduler handles this order and it is usually modeled

around a priority-based preemptive policy. The input of

our model is a non-hierarchical unscheduled model that is

refined into a RTOS based multi-task model.

4.1. RTOS-Kernel Model Instantiation

The refinement process starts just after the

instantiation of each Processing Element (PE) that

composes the abstract architecture. From this one, a

RTOS model interface is selected in the RTOS TL library

and a run time environment is created for each PE. Hence,

the run time environment initializes the internal data

structures for the RTOS, and implements the Application

Programming Interface (API), which manages the

interactions between the abstract application model and

the RTOS kernel. After this step, the scheduling

refinement environment creates a RTOS main task for

each existing task. Those main tasks are the only ones

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

available for the RTOS model to schedule at system start

time.

4.2. Task Creation

The main function of the task creation step is to

translate all behavior tasks in the application specification

model into RTOS-based ones. This is the most important

and timing consuming step of the scheduling refinement.

Initially, each task behavior inside the PE is checked to

see whether it is not a hierarchical task. If such behavior is

observed, the task is flatted, and a new one is created. The

same approach is used when the task behavior contains

parallel processes.

The second step will insert the sc_task_create

primitive into the task behavior for the creation itself. This

primitive activates the task, and assigns ready to the

scheduler. Finally, the sc_task_end or sc_task_end_cycle

(for periodic tasks) are inserted in the main body of the

task. In order to allow preemption and resume by the

scheduler, each task is implemented in SystemC as a

PosixThread.

4.3. Synchronization Model

The RTOS synchronization model provides services to

synchronize concurrent and cooperative tasks, supporting

mechanisms that handle inter-processor and intra-

processor synchronization problems. Our model

implements two main primitives: sc_task_wait and

sc_task_notify.

The sc_task_wait primitive makes the current task to

wait until another task invokes the sc_task_notify

primitive or the end of a given time slice. When one of

these events happens, the task goes to the idle state. The

task is then inserted into a wait task list, becoming

disabled for scheduling purposes. The sc_task_notify call

wakes up a single task that is waiting for data

synchronization.

When tasks execute input/output operations, such as

send/receive, they need to notify the RTOS scheduler. We

implemented this notification by using these same two

primitives. An abstract receive operation is implemented

on lower levels as a receive function aggregated to a

sc_task_wait call, meaning that the task is waiting for

input data. Similarly, an abstract send operation is

implemented on lower abstraction levels as a send

function aggregated to a sc_task_notify call. Furthermore,

the sc_task_notify allows the scheduler to wake up the

tasks that are waiting for the sent data.

4.4. Preemption and Synchronizations

Refinement

Typically, in high level simulations, wait statements

are used to model delays, allowing timing advances

estimations in those simulations. In our approach,

however, the preemption refinement will replace the wait

statements used to model the delays into the

corresponding RTOS calls. Hence, the sc_task_wait is

used, and it implements a wrapper around the wait

statement that allows the RTOS kernel to reschedule and

to switch tasks.

An important issue is relative to the occurrence of an

external interruption. In this event, the execution of a

given task can stop, changing the pre-scheduled tasks

order. The preemption modeling, in this case, is extremely

relevant to assure the accuracy of the model in terms of

response time results. Thus, the RTOS kernel uses the

sc_rtos_task_suspend and sc_task_resume primitives to

model interrupt preemptions. The accuracy of the

preemption results is limited by the granularity of the task

delay at the high level models.

Also, in our proposed approach, the synchronization

refinement replaces the high level synchronization

primitives with RTOS services. This is necessary in order

to keep the internal task state of the RTOS model updated.

When a given task executes input/output operations, it

needs to notify the RTOS scheduler. In this case, an

abstract input/output operation wraps the SLDL

primitives. The sc_task_notify allows the scheduler model

to wake up the tasks that are waiting for receive/send data.

5. Case Study

The telecommunication industry has been growing fast

in the last few years, especially with the recent

development of new technologies such as VOIP (Voice

over IP) and wireless devices. Thus, several products

already in the market have to be updated in order to

aggregate different new features. One of the most popular

systems in this market place is the digital Private Branch

Exchange (PBX). PBX systems are known as a soft real-

time system and therefore an application for using our

proposed approach.

The product used in this case study is the model

Digistar XT-130, mainly used in commercial

environments. The most important issue here is that all

system was ad hoc designed to support the real-time

requirements. As a consequence, a monolithic system was

generated, where application tasks and OS are strongly

coupled.

Moreover, it would be necessary to use a RTOS that

supports the current as well as the new required features,

in order to aggregate the later with few efforts. Systems

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

like this, however, are generally found only when

developed with modular designs. A swap between a

monolithic to a modular design can imply functionality

reduction, mainly in real-time functions. As consequence,

more time is required to evaluate the system, reducing the

industry profits and possibly resulting market losses.

As alternative, we propose our approach to enable the

fast evaluation of different dynamic scheduling policies,

allowing the designer to select the optimal scheduler

policy at the early design stages.

This PBX is a complex system composed by more than

fifty processes, with four priority levels. Around 20% of

these processes have real-time requirements. Since the

most part of the code is developed in C/C++ and

assembly, we proposed a partitioning where system

processes are divided as follows: 92% software elements;

6% assembly routines (treated as IP components); and 2%

hardware elements. The hardware parts are mapped into

Altera FPGA. The software elements are mapped into

abstract processors. IP modules and software parts are

mapped into AM186ES (AMD 80186) microprocessor

and ADSP2185M (Analog Devices) DSP.

For each abstract processor a custom RTOS kernel was

generated at the highest abstraction level, using our

approach. The abstract RTOS and the system description

was refined and targeted to the final architecture.

The abstract channels are refined (communication

synthesis step) into shared memory protocol for

processors communication, and handshake protocol for

FPGA and microprocessor communication. There is no

communication between FPGA and DSP processes.

Table 1 depicts the code size (in bytes) achieved for

RTOS and the rest of application for both processors.

Table 1. Code size comparison (in bytes)

 AMS186ES DSP

C/C++ 457,976 16,356

Assembly 22,233 27,453

Scheduling Algorithm 7,456 2,489

The PBX model was exercised by testbench vectors

extracted from commercial PBX operations during high

activity (ten minutes of operation time). The three

AM186ES simulations, illustrated in Table 2, show the

advantages achieved by high description levels.

Table 2. AMS simulation analysis

Simulation Model Simulation Time

TL simulation 30 min

RTL simulation 11h 43 min

Cosimulation 185h 5 min

It is clear that the TL model takes only a small fraction

of the simulation time, when compared to the RTL and

cosimulation ones. One may observe that the TL model

does not have the same level of detail as the RTL model

and therefore it is not highly accurate. However, global

results are always coherent with RTL level simulation.

Besides, the time saved using our approach makes it very

attractive, especially when the designer needs a fast

answer to make a design decision.

Furthermore, we used profile techniques, with the

testbench vectors, to estimate the WCET and the BCET of

each process. These elements are the entry of each process

in TL simulation. Therefore, WCET, BCET, and the

execution period replace the process behavior, allowing

faster simulation with reasonable accuracy, as RTL

simulation confirms. For TL and RTL simulation, the

remaining of the system is considered as testbench. On the

other hand, the cosimulation considers the joint operation

of three simulators (two C/C++ simulators and one VHDL

simulator). For these experiments, we used two different

scheduling policies: EDF and RM.

Table 3 shows the number of context switches

achieved by each scheduling policy as well as the number

of RTL constraints fail. The later means the number of

times that the real-time processes that did not achieve

their deadline in TL simulation and, therefore, must be as

low as possible.

Table 3. AMS186ES scheduling analysis

Algorithm Context switches RTL constraints fail

EDF 6,315 558

RM 6,280 14,850

The number of context switches is similar in both

scheduling algorithms, with less than 1% of difference

between EDF and RM. However, EDF algorithm is

remarkably better, when comparing the number of RTL

constrains fail. In this case, the Earliest Deadline First

algorithm generated only 3% of the total number of

failings produced by Rate Monotonic.

Therefore, considering context switching, real-time

deadline and the low algorithm complexity, we chose EDF

as the scheduler policy for AM186ES operation. The

majority of DSP tasks are time slices scheduled by a timer

interrupt. The total size of AM186ES RTOS is three times

larger than the ADSP2185M, due to other additional

features, like memory management.

The final delay in the real implementation was higher

compared with TL specification. This difference is due to

inaccuracies of execution time estimated in the high level

model. As discussed before, these inaccuracies are

expected in such high level of abstraction and the small

amount of time required to development and simulation

makes them entirely acceptable. Moreover, when

compared to the large complexity required for the

implementation of the PBX system, the scheduling

refinement environment enables early and efficient

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

evaluation of the dynamic scheduling policies, and

enables a fast exploration of the design space.

6. Conclusions and Future Work

This paper addressed the issue of high level RTOS

model simulation. We proposed a new approach to

quickly evaluate different scheduling policies, providing a

way to abstract the dynamic scheduling behavior and

adjust each one of them at higher abstraction levels.

Moreover, we presented a scheduling environment that

refines an unscheduled TLM into TLM with RTOS

scheduling.

Our main contribution in the design flow is primarily

the automation of the scheduling refinement process that

facilitates a fast evaluation of different scheduling policies

at high abstraction levels. The environment is written for

SystemC, but it can be applied to any C/C++ design flows.

Experiments showed the usefulness of this approach in a

telecom system design.

Future work includes implementing the RTOS

interfaces for commercial real-time operational systems

and techniques to handle resource allocation problems.

References

[1] H. Jones. Analysis of the relationship between EDA

Expenditures and Competitive Positioning of IC Vendors

for 2003. http://www.edac.org/resources_profitability.jsp.

[2] W. Wolf. High-Performance Embedded Computing.

Morgan Kaufman. 2006.

[3] T. Grotker, S. Liao, G. Martin and S. Swan. System

Design with SystemC. Kluwer Academic Publishers. 2002.

[4] L. Cai and D. Gajski. Transaction Level Modeling: An

Overview. CODES+ISSS, pp. 19-24, 2003.

[5] P. kohout, B. Ganesh and B. Jacob. Hardware Support

for Real-time Operating Systems. CODES+ISSS, pp. 45-

51, 2003.

[6] J. Adomat, J. Furunäs, L. Lindh and J. Stärner. Real-

Time Kernel in Hardware RTU: A step towards

deterministic and high performance real-time systems. 8th

Euromicro Workshop on Real-Time Systems, pp. 164-

168, 1996.

[7] S. Wang and S. Malik. Synthesizing Operating System

Based Device Drivers in Embedded Systems.

CODES+ISSS, pp. 37-44, 2003.

[8] Y. Yi, D. Kim and S. Ha. Virtual Synchronization

Technique with OS Modeling for Fast and Time-accurate

Cosimulation. CODES+ISSS, pp. 1-6, 2003.

[9] J. Cortadella. Task generation and compile time

scheduling for mixed data-control embedded software.

DAC, 2000.

[10] H. Tomiyama, Y. Cao and K. Murakami. Modeling

fixed-priority preemptive multi-task systems in SpecC.

SASIMI, 2001.

[11] L. Gauthier, S. Yoo and A. Jerraya. Automatic

generation and targeting of application-specific

operating systems and embedded system software. IEEE

Transaction on CAD, 2001.

[12] D. Desmet, D. Verkest and H. DeMan. Operating

System based Software Generation for System-on-Chip.

DAC, 2000.

[13] M. Gonzales and J. Madsen. Abstract RTOS

Modeling for Multiprocessor System-on-Chip.

International Symposium on SoC, 2000.

[14] A. Gerstlauer, H. Yu and D. Gajski. RTOS Modeling

for System Level Design. DATE, 2003.

[15] A. Silberschatz and P. Galvin. Operating System

Concepts. John Wiley & Sons Inc, 2000.

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00 © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

