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Abstract 

 
The use of higher level specification models will open new 

sceneries for optimization and architecture exploration 

like CPU/RTOS tradeoffs. Scheduling decision for real-

time embedded applications has a great impact on system 

performance and, therefore, it is an important issue in 

RTOS design. Moreover, it is highly desirable to have the 

system designer able to evaluate and select the right 

scheduling policy at high abstraction levels, in order to 

allow faster exploration of the design space. In this paper, 

we address this problem by introducing an abstract RTOS 

scheduling model as well as a new approach to refine an 

unscheduled high level model to a high level model with 

RTOS scheduling. This approach is built on the top of the 

standard SystemC kernel and enables the system designer 

to quickly evaluate different scheduling policies and make 

the best choice in early design stages. Furthermore, we 

present a case study where our model is used to simulate 

and analyze a telecom system. 

 

1. Introduction 
 

The utilization of embedded processors for real-time 

embedded applications has been growing rapidly in recent 

years. 90% of recent System-on-chip (SoC) designs 

include at least one processor [1]. In this scenario, more 

and more tasks, traditionally performed by specific but 

inflexible hardware, will now be executed by software on 

dedicated programmable processors [2]. However, 

running multiple tasks on the same processor requires 

some Operating System (OS) support, in order to perform 

efficient task scheduling. 

Real-Time OS (RTOS) scheduler achieves more 

deterministic scheduling of tasks where certain priorities 

need to be followed. This ensures that tasks are scheduled 

for execution according to their completion deadlines. The 

scheduling policy used by the RTOS scheduler has a great 

impact in the overall system performance. Nevertheless, 

validate different scheduling policies at low abstraction 

levels remains quite high cost. 

Raising the abstraction level is widely used as an 

interesting alternative to enable faster exploration of the 

design space at early stages. The correctness of real-time 

applications is determined by the combination of the 

computation result and time properties. These aspects 

make real-time applications different from any other, as it 

is not possible to analyze them statically at compile time. 

The actual timing properties need to be checked at run 

time through target specific code implementation. 

In general, although high level simulations are not 

cycle accurate, it provides enough information to design 

decisions with a high confidence. Represent the 

scheduling behavior through a high level model is not 

trivial due to the lack of information. As a consequence, 

the timing properties of the system design changes from 

the high level model to implementation, and the designer 

has to tune code delays or task priority assignments at a 

final stage of system design, which is both error prone and 

time consuming task. 

In this paper, we introduce a high level RTOS 

scheduling model. The main goal is to provide an efficient 

approach to abstract the dynamic scheduling behavior and 

adjust the scheduling policy at higher abstraction levels. 

This approach is provided while maintaining the 

standard kernel of SystemC unchanged, by means of a set 

of specification rules, and a support library built on the 

top of the SystemC standard library. This is possible 

thanks to an abstraction technique at transaction level, 

which can integrate any new scheduling policy that can be 

abstracted over the underlying simulation kernel. 

Transaction Level (TL) is an emergent description 

level for system level design [3][4]. TL Modeling (TLM) 

is sufficient to represent the events ordering and efficient 

for fast high level evaluation. In order to capture the TL 

dynamic scheduling behavior, we introduce a set of 

refinement steps to generate a TLM with RTOS 

scheduling from an unscheduled TLM. This is necessary 

because using a detailed RTOS is a contra sense, as the 

system model is highly abstract. 
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This remaining of this paper is organized as follows: 

Section 2 presents some related work; Section 3 presents 

the abstract RTOS model; Section 4 describes the 

scheduling model refinement; Experimental results with a 

telecom system that consists of fifty tasks with four 

priority levels are the subject of Section 5; and finally, 

Section 6 presents conclusions and future work. 

 

2. Related Work 
 

Kohout [5] describes the Real-time Task Manager as a 

processor extension that minimizes the drawbacks 

associated with RTOSs by supporting, in hardware, 

common RTOS operations that are bottlenecks to system 

performance. Adomat [6] proposes an exclusive external 

hardware module designed to perform RTOS functions. 

This model improves performance, but it does not allow 

existing RTOSs to easily take advantage of its offerings. 

Wang [7] proposes a high level abstract model and 

synthesizes an operating system based on device drivers. 

Yi [8] proposes a virtual synchronization technique for a 

single processor. It runs only application tasks on the 

Instruction Set Simulator and models the RTOS in the 

cosimulation backplane. 

Cortadella [9] presents an approach to combine static 

scheduling and dynamic scheduling in software synthesis. 

Tomiyama [10] describes a technique for modeling fixed-

priority preemptive multi-tasking systems. This model 

does not support different scheduling algorithms, and 

inter-task communication.  

Gauthier [11] proposes a method for automatic 

generation of application-specific OS and correspondent 

application software for a given target processor. 

Desmet [12] proposes a high level model of a System-

on-Chip Operating System. It is used for modeling, 

simulation and analysis of the system, besides the 

implementation through gradual refinements. The focus of 

this work is on task concurrency issues. However, this 

system requires own proprietary simulation engine and a 

manual system model creation. 

Gonzales [13] presents an abstract RTOS model using 

master-slave timed SystemC, which allows to model and 

analyze the behavior of a complex system that has a 

RTOS application running on a multiprocessor. 

Gerstlauer [14] describes an RTOS model, which is 

effectively a set of commonly used RTOS services, to 

extend the original ability of SpecC language to handle 

the interleaved execution behavior of dynamic schedulers. 

The adaptation of this model to another System Level 

Design Language may be a hard and complex task, due to 

lack of support to model common services as preemption 

and true multitask execution. 

The abstract RTOS model proposed here is similar to 

Gonzales and Gerstlauer approaches. However, our 

approach is more generic, since it does not limit to master-

slave library or a specific SLDL. Our approach is built on 

the top of the SystemC library, but it can be directly 

integrated into any system-level design flow. The 

distinguishing contribution of our approach is that the 

support is provided without change the standard kernel. 

Due to this aspect, we have a powerful and flexible high 

level RTOS model tailored to validation and design space 

exploration aspects. 

 

3. RTOS Model 
 

SystemC lacks support to model the dynamic real-time 

behavior commonly found in embedded software. 

Typically, SystemC does not provide mechanisms to 

preempt and resume threads during execution time. In 

order to allow the aforementioned problem, we developed 

a RTOS model with some language extensions, and a set 

of specification rules. 

The RTOS model is incorporated into the RTOS TL 

library and can be parameterized in terms of task 

parameters. This issue is very useful to represent different 

application classes (e.g. computation-intensive). The 

library provides RTOS models with different scheduling 

algorithms. Also, our RTOS model supports both periodic 

and non-periodic real-time task models. The RTOS model 

provides two major categories of services: OS 

management and Task management. Figure 1 shows the 

interface of the RTOS model. 

void sc_rtos_init(); 
void sc_rtos_reset(); 
void sc_rtos_task_suspend(id); 
void sc_rtos_task_resume(id); 
void sc_rtos_task_kill(id); 
void sc_task_create(id, priority, period, bcet, wcet, deadline); 
void sc_task_notify(id); 
void sc_task_end(id); 
void sc_task_wait(delay); 
void sc_task_end_cycle(id); 

Figure 1. API of the RTOS model 

OS management services are responsible to the 

initialization of the RTOS. The sc_rtos_init initializes the 

relevant RTOS data structures and starts the multitasking 

scheduling. The sc_rtos_reset reinitializes the RTOS and 

it is very useful for validation purposes. In order to allow 

the preemption and resume tasks during execution time, 

we introduced two primitives: sc_rtos_task_suspend and 

sc_rtos_task_resume. These primitives receive the task 

identification as parameter. 

Task management services are responsible to make the 

interface between the kernel and the system application. 

The main goal is to provide to the designer an easy way to 

describe an application class as a set of tasks. 
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3.1. Task Model 
 

Tasks are modeled to hold all necessary information to 

execution. Each task is implemented as a PosixThread, 

allowing preemption and resume by the scheduler. The 

sc_task_create primitive is used to characterize the 

execution of the task. It defines the task parameters such 

as identification, priority, period, deadline, Worst-Case 

Execution Time (WCET), and Best-Case Execution Time 

(BCET). In addition, this primitive assigns the task to the 

scheduler, which assigns idle status as the initial task state. 

Several others standard RTOS primitives are included 

in the model like task notify (sc_task_notify), task 

termination (sc_task_end), and task suspension 

(sc_task_wait). We also introduced the sc_task_end_cycle 

primitive to model periodic tasks. This primitive notifies 

the scheduler that a task finished its computation in the 

current cycle. 

 
3.2. Scheduler Model 
 

At high abstraction levels (e.g. system level) we are 

not interested in the exact task functionality, but rather 

than that, we need to be able to determine how long it 

takes to compute the tasks interactions. From this point of 

view, the first task of the RTOS is to determine which 

process runs next. The task management, performed by 

the scheduler, is the most important function in the RTOS 

model. Our scheduler model assumes that all tasks are 

independent threads. Each task is characterized by a set of 

parameters (deadline, period, priority, WCET, and 

BCET). Moreover, a task may be preempted by a higher 

priority task. 

The task states used in our scheduler model is similar 

to the classical task states used in the operating system 

domain, as depicted in Figure 2. Therefore, according to 

the scheduler model, tasks may be in one of the four basic 

status of scheduling: ready, executing, idle or preempted. 

There is at most one task executing at any time. If 

there is no useful work to be done, just the scheduling task 

works. As stated before, our model assumes that all tasks 

are in the idle state at the beginning (sc_task_create). 

Each task stays as idle while it does not enter in a new 

execution period, except if the task was preempted. A task 

goes into the ready state when all required data is 

available or when it enters in a new execution period, 

remaining ready until it is allowed to run. A task goes into 

the executing state when it receives a run command from 

the scheduler. As stated above, the task will receive this 

command only when it has all data required, it is ready to 

run, and the scheduler selects the task as the next one to 

run. Once the task has finished its computation in the 

current cycle, it sends a message to the scheduler 

(sc_task_end_cycle) and goes to the idle state. 

 
 

Idle Ready 

Preempted Executing 

Ti ends 

cycle 

Ti received data, 

Ti new period 

Ti chose 

to run 

Ti resumed, 

Ti gets data 

Ti preempted, 

Ti needs data 

Initial 

state 

 

Figure 2. Classical scheduling state of tasks 

The task goes to the preempted state when it requests a 

data that is not available (sc_rtos_task_suspend). A task 

can also be preempted by a higher priority one. In both 

cases, the task will remain preempted until receive a 

resume command from the scheduler (sc_task_resume). 

When a non-periodic task finished its execution, it sends a 

terminate message to the scheduler (sc_task_end). In this 

case, the scheduler kills the task (sc_rtos_task_kill). 

The scheduler is modeled as a SystemC thread process 

that runs continually. When an executing task goes to idle 

or ready states, the scheduler selects a new candidate to 

run among all ready tasks. However, if there is not a 

candidate task, the scheduler just waits until the next 

ready task is available. For instance, our scheduler 

implements First Come First Served (FCFS), Round 

Robin, Rate Monotonic (RM) and Earliest Deadline First 

(EDF) scheduling algorithms [15]. 

 

4. Scheduling Model Refinement 
 

From the application point of view, the major task of 

the RTOS is to determine the execution order of the tasks. 

The scheduler handles this order and it is usually modeled 

around a priority-based preemptive policy. The input of 

our model is a non-hierarchical unscheduled model that is 

refined into a RTOS based multi-task model.  

 
4.1. RTOS-Kernel Model Instantiation 
 

The refinement process starts just after the 

instantiation of each Processing Element (PE) that 

composes the abstract architecture. From this one, a 

RTOS model interface is selected in the RTOS TL library 

and a run time environment is created for each PE. Hence, 

the run time environment initializes the internal data 

structures for the RTOS, and implements the Application 

Programming Interface (API), which manages the 

interactions between the abstract application model and 

the RTOS kernel. After this step, the scheduling 

refinement environment creates a RTOS main task for 

each existing task. Those main tasks are the only ones 
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available for the RTOS model to schedule at system start 

time. 

 
4.2. Task Creation 
 

The main function of the task creation step is to 

translate all behavior tasks in the application specification 

model into RTOS-based ones. This is the most important 

and timing consuming step of the scheduling refinement. 

Initially, each task behavior inside the PE is checked to 

see whether it is not a hierarchical task. If such behavior is 

observed, the task is flatted, and a new one is created. The 

same approach is used when the task behavior contains 

parallel processes. 

The second step will insert the sc_task_create 

primitive into the task behavior for the creation itself. This 

primitive activates the task, and assigns ready to the 

scheduler. Finally, the sc_task_end or sc_task_end_cycle 

(for periodic tasks) are inserted in the main body of the 

task. In order to allow preemption and resume by the 

scheduler, each task is implemented in SystemC as a 

PosixThread. 

 
4.3. Synchronization Model 
 

The RTOS synchronization model provides services to 

synchronize concurrent and cooperative tasks, supporting 

mechanisms that handle inter-processor and intra-

processor synchronization problems. Our model 

implements two main primitives: sc_task_wait and 

sc_task_notify. 

The sc_task_wait primitive makes the current task to 

wait until another task invokes the sc_task_notify 

primitive or the end of a given time slice. When one of 

these events happens, the task goes to the idle state. The 

task is then inserted into a wait task list, becoming 

disabled for scheduling purposes. The sc_task_notify call 

wakes up a single task that is waiting for data 

synchronization. 

When tasks execute input/output operations, such as 

send/receive, they need to notify the RTOS scheduler. We 

implemented this notification by using these same two 

primitives. An abstract receive operation is implemented 

on lower levels as a receive function aggregated to a 

sc_task_wait call, meaning that the task is waiting for 

input data. Similarly, an abstract send operation is 

implemented on lower abstraction levels as a send 

function aggregated to a sc_task_notify call. Furthermore, 

the sc_task_notify allows the scheduler to wake up the 

tasks that are waiting for the sent data. 

 

 

 

4.4. Preemption and Synchronizations 

Refinement 
 

Typically, in high level simulations, wait statements 

are used to model delays, allowing timing advances 

estimations in those simulations. In our approach, 

however, the preemption refinement will replace the wait 

statements used to model the delays into the 

corresponding RTOS calls. Hence, the sc_task_wait is 

used, and it implements a wrapper around the wait 

statement that allows the RTOS kernel to reschedule and 

to switch tasks. 

An important issue is relative to the occurrence of an 

external interruption. In this event, the execution of a 

given task can stop, changing the pre-scheduled tasks 

order. The preemption modeling, in this case, is extremely 

relevant to assure the accuracy of the model in terms of 

response time results. Thus, the RTOS kernel uses the 

sc_rtos_task_suspend and sc_task_resume primitives to 

model interrupt preemptions. The accuracy of the 

preemption results is limited by the granularity of the task 

delay at the high level models. 

Also, in our proposed approach, the synchronization 

refinement replaces the high level synchronization 

primitives with RTOS services. This is necessary in order 

to keep the internal task state of the RTOS model updated. 

When a given task executes input/output operations, it 

needs to notify the RTOS scheduler. In this case, an 

abstract input/output operation wraps the SLDL 

primitives. The sc_task_notify allows the scheduler model 

to wake up the tasks that are waiting for receive/send data. 

 

5. Case Study 
 

The telecommunication industry has been growing fast 

in the last few years, especially with the recent 

development of new technologies such as VOIP (Voice 

over IP) and wireless devices. Thus, several products 

already in the market have to be updated in order to 

aggregate different new features. One of the most popular 

systems in this market place is the digital Private Branch 

Exchange (PBX). PBX systems are known as a soft real-

time system and therefore an application for using our 

proposed approach. 

The product used in this case study is the model 

Digistar XT-130, mainly used in commercial 

environments. The most important issue here is that all 

system was ad hoc designed to support the real-time 

requirements. As a consequence, a monolithic system was 

generated, where application tasks and OS are strongly 

coupled. 

Moreover, it would be necessary to use a RTOS that 

supports the current as well as the new required features, 

in order to aggregate the later with few efforts. Systems 

IEEE Computer Society Annual Symposium on VLSI(ISVLSI'07)
0-7695-2896-1/07 $20.00  © 2007

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:55:59 UTC from IEEE Xplore.  Restrictions apply. 



like this, however, are generally found only when 

developed with modular designs. A swap between a 

monolithic to a modular design can imply functionality 

reduction, mainly in real-time functions. As consequence, 

more time is required to evaluate the system, reducing the 

industry profits and possibly resulting market losses. 

As alternative, we propose our approach to enable the 

fast evaluation of different dynamic scheduling policies, 

allowing the designer to select the optimal scheduler 

policy at the early design stages. 

This PBX is a complex system composed by more than 

fifty processes, with four priority levels. Around 20% of 

these processes have real-time requirements. Since the 

most part of the code is developed in C/C++ and 

assembly, we proposed a partitioning where system 

processes are divided as follows: 92% software elements; 

6% assembly routines (treated as IP components); and 2% 

hardware elements. The hardware parts are mapped into 

Altera FPGA. The software elements are mapped into 

abstract processors. IP modules and software parts are 

mapped into AM186ES (AMD 80186) microprocessor 

and ADSP2185M (Analog Devices) DSP. 

For each abstract processor a custom RTOS kernel was 

generated at the highest abstraction level, using our 

approach. The abstract RTOS and the system description 

was refined and targeted to the final architecture. 

The abstract channels are refined (communication 

synthesis step) into shared memory protocol for 

processors communication, and handshake protocol for 

FPGA and microprocessor communication. There is no 

communication between FPGA and DSP processes. 

Table 1 depicts the code size (in bytes) achieved for 

RTOS and the rest of application for both processors. 

Table 1. Code size comparison (in bytes) 

 AMS186ES DSP 

C/C++ 457,976 16,356 

Assembly 22,233 27,453 

Scheduling Algorithm 7,456 2,489 

 

The PBX model was exercised by testbench vectors 

extracted from commercial PBX operations during high 

activity (ten minutes of operation time). The three 

AM186ES simulations, illustrated in Table 2, show the 

advantages achieved by high description levels. 

Table 2. AMS simulation analysis 

Simulation Model Simulation Time 

TL simulation 30 min 

RTL simulation 11h 43 min 

Cosimulation 185h 5 min 

 

It is clear that the TL model takes only a small fraction 

of the simulation time, when compared to the RTL and 

cosimulation ones. One may observe that the TL model 

does not have the same level of detail as the RTL model 

and therefore it is not highly accurate. However, global 

results are always coherent with RTL level simulation. 

Besides, the time saved using our approach makes it very 

attractive, especially when the designer needs a fast 

answer to make a design decision. 

Furthermore, we used profile techniques, with the 

testbench vectors, to estimate the WCET and the BCET of 

each process. These elements are the entry of each process 

in TL simulation. Therefore, WCET, BCET, and the 

execution period replace the process behavior, allowing 

faster simulation with reasonable accuracy, as RTL 

simulation confirms. For TL and RTL simulation, the 

remaining of the system is considered as testbench. On the 

other hand, the cosimulation considers the joint operation 

of three simulators (two C/C++ simulators and one VHDL 

simulator). For these experiments, we used two different 

scheduling policies: EDF and RM. 

Table 3 shows the number of context switches 

achieved by each scheduling policy as well as the number 

of RTL constraints fail. The later means the number of 

times that the real-time processes that did not achieve 

their deadline in TL simulation and, therefore, must be as 

low as possible. 

Table 3. AMS186ES scheduling analysis 

Algorithm Context switches RTL constraints fail 

EDF 6,315 558 

RM 6,280 14,850 

 

The number of context switches is similar in both 

scheduling algorithms, with less than 1% of difference 

between EDF and RM. However, EDF algorithm is 

remarkably better, when comparing the number of RTL 

constrains fail. In this case, the Earliest Deadline First 

algorithm generated only 3% of the total number of 

failings produced by Rate Monotonic. 

Therefore, considering context switching, real-time 

deadline and the low algorithm complexity, we chose EDF 

as the scheduler policy for AM186ES operation. The 

majority of DSP tasks are time slices scheduled by a timer 

interrupt. The total size of AM186ES RTOS is three times 

larger than the ADSP2185M, due to other additional 

features, like memory management. 

The final delay in the real implementation was higher 

compared with TL specification. This difference is due to 

inaccuracies of execution time estimated in the high level 

model. As discussed before, these inaccuracies are 

expected in such high level of abstraction and the small 

amount of time required to development and simulation 

makes them entirely acceptable. Moreover, when 

compared to the large complexity required for the 

implementation of the PBX system, the scheduling 

refinement environment enables early and efficient 
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evaluation of the dynamic scheduling policies, and 

enables a fast exploration of the design space. 

 

6. Conclusions and Future Work 
 

This paper addressed the issue of high level RTOS 

model simulation. We proposed a new approach to 

quickly evaluate different scheduling policies, providing a 

way to abstract the dynamic scheduling behavior and 

adjust each one of them at higher abstraction levels. 

Moreover, we presented a scheduling environment that 

refines an unscheduled TLM into TLM with RTOS 

scheduling. 

Our main contribution in the design flow is primarily 

the automation of the scheduling refinement process that 

facilitates a fast evaluation of different scheduling policies 

at high abstraction levels. The environment is written for 

SystemC, but it can be applied to any C/C++ design flows. 

Experiments showed the usefulness of this approach in a 

telecom system design. 

Future work includes implementing the RTOS 

interfaces for commercial real-time operational systems 

and techniques to handle resource allocation problems. 
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