
Session T2F

TEACHING COMPUTER ORGANIZATION AND ARCHITECTURE WITH
HANDS-ON EXPERIENCE

Ney Laert W a r Calazans’, Fernando Gehm Moraes’. C&ar Augusta Missio Marcon’

Abstract - This work describes part of a novel approach
employed at the authors’ institution in the lastfive years,
which comprises the teaching of computer organization/
architectwe through the eflective implementation of
processors and computers. The context of the courses is
presented firsf, including a comparison of two hardware
courses tracks in Computer Science and Computer
Engineering curricula. Previous publications have described
the structure of courses dealing with the minimal
implementation of a working processor. Here, the emphasis
is on subsequent courses, which take the minimol
implementation and guide the students through the
necessary steps to addperformance. such ospipelining, and
functionality, such as memory management and basic IO
subsystems.

Index Terms - Computer Organization and Architecture
Teaching Methods. Undergraduate Curriculum, Hardware.
Digital System Prototyping

INTRODUCTION

Computer’ organization is defined as the discipline that
studies the computer while an electronic apparatus, whilst
computer architecture is the discipline that studies the
computer as the abstract machine defined by the
organization. Then, computer organization is often seen as
the electronics engineer view of a computer, while computer
architecture is often thought as the assembly programmer
view of the computer. In practice, separating computer
organization from architecture is a hard and useless task.

A deep understanding of computer organization and
architecture is mandatory for the more technical Information
Technology (IT) degrees such as Computer Science and
Computer Engineering. However, traditional cumcula often
rely upon a dichotomy between theory and practice of
computer construction. Examples are the curricula where
computer organization and architecture courses are based on
excellent books like that of Patterson and Hennessy [I].

The authors of the present work have proposed and
implemented a teaching approach that is based on the
integration of theory and practice of computer construction
[2][3]. This approach differs in several aspects from the
traditional one. It dictates that students should learn how
computers work not only by studying their inner details, but
also by concomitantly building processors and colrputers or
embedded systems. Students are exposed the earliest the

possible to computer construction activities, typically
starting at the third period of academic activities.
Consequently, the computer organization and architecture
courses must rely strongly upon lab courses andior lab
activities.

Two relatively recent technological advances allow the
new approach to become a reality in the classroom. First,
there is the availability of cheap, powerful hardware
prototyping platforms based on reconfigurable hardware
such as FPGAs and CPLDs. A good example of the
profusion of available hardware aids is the list maintained by
Gnccione [4]. Next comes the existence of easy to use,
powerful, free andlor commercial computer aided design
tools for high-level design entry, validation and
implementation. Examples of these tools are the current
simulators and synthesizers based on Hardware Description
Languages (HDLs).

The traditional approach is not devoid of practical
aspects though. Many such courses employ assembly
language tools, conveying the view of computer architecture
intricacies through the use of assemblers, architecture
simulators, compilers or even assembly programming of real
life processors [I]. Others advocate the use of organization
simulators to clarify concepts such as pipelining or cache
control [5] . However, none of these conduct the students
through the process of building an original processor from
scratch. In the authors’ view, this is the best way to teach
cornputer organization and architecture so that the acquired
knowledge persists longer and the interface between
hardware and software becomes absolutely clear.

The mvel approach has also its pitfalls. At least two
restrictions can be stated against it. First, learning modem
techniques and tools employed in building computers takes
long. Next, what is constructed in the context of
undergraduate courses is necessarily far from what is
available as state of the art processors or computers. A
discussion and an assessment of the students’ opinion
pointed out that the new approach is nonetheless a rather
good one [3].

This work describes Dart of this novel amroach to teach ..
computer organization and architecture through the analysis,
simulation, design and effective construction of processors.
Previous work, described in [Z] and [3] have focused on the
first steps of the approach, where a minimal implementation
of a processor is addressed. The emphasis of this paper is on
subsequent steps, which enhance the efficiency of the

-
’ Faculdade de lnformdtiea - Pontificia Universidade Cat6lica do Rio Grsnde do SUI (PUCRS) - Porto Alcgre - B R A Z l I - % l 9 - ~ ~ Prrrh

moraes@inf.pucrs.br ’ rnarcon@inf.pucrs.br
0-7803-7444-4/02/$17.00 0 2002 IEEE November 6-9,2002. Boston, MA

3Znd ASEEIEEE Frontiers in Education Conference
TZF-15

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

Session T2F

processor and add functionality to it to build a minimal followed by a Section about a course on building a minimal
computer implementation. The next Section describes the computer implementation using the enhanced processor. The
context and the structure of the implemented courses. set of tools employed to enable the approach in the two
Follows a Section that discusses a course where the students courses is discussed in a subsequent Section, and the text
are expected to improve the processor performance, ends by presenting a set of conclusions and future work.

1 2 3 4 5 6 7 8 9

D l o i t a l Track

I r 6 7 10 ' I

I I
I C o m p u t e r Engineering Digital Track I

FIGURE 1
COMPUTER SCIENCE ANDCOMPUTER ENGINEERING DIGITAL HARDWARE TRACK of COURSES. ARROWS INDICATE PREREQUISITES.

COURSES CONTEXT AND STRUCTURE

The approach proposed here has been adopted since 1997 in
a Computer Science curriculum. Its success led the authors
to apply it to a newly proposed Computer Engineering
curriculum, with strong emphasis in automation, either
industrial automation or other kinds such as home and office
automation. The structure of the digital hardware track of
courses for both curricula appears in Figure I and is the
subject of this Section.

In both curricula there is a basic core destined to
provide the main concepts of computer organization and
architecture. This core is essentially the same and
corresponds to the five first semesters of each curriculum.
The minor differences of the courses in this period arise
from the differing needs for the two kinds of professionals to
be formed. Computer scientists need a stronger hasis in
programming, justifying a dedicated course to assembly
language programming. On the other hand, the physics
courses in the first semester are different although both
cover the same subjects namely electricity and
electromagnetic phenomena. Computer engineers need a
deeper knowledge of such subjects, justifying a more
demanding course.

The prerequisites for the main courses on semesters 3 to
5 are an introduction to Digital Circuits, a course on
Algebraic Structures and another on Physics. These courses
provide the student with traditional combinational and

0-7803-7444-4/02/$17.00 0 2002 IEEE
32"* ASEEOEEE Frontiers in Education Conference

TZF-16

sequential logic design techniques, lattice and Boolean
algebra theory, and a brief account of circuits, electronics,
electromagnetic phenomena and instrumentation,
respectively. Another required course in both curricula is
Microprocessors, which again are different in each
curriculum. In Computer Science, the Microprocessor A
course is an overview of state of the art processors and their
characteristics. Important aspects of this course are the
distinction between the so-called generic processors and
digital signal processors, and the comparative discussion of
modem architectures such as Intel Pentium, Power-PC,
MIPS and SPARC, among others. On the other hand, the
Microprocessor B course in Computer Engineering
reinforces the use of microprocessors as embedded
processors, to account for the automation emphasis of the
curriculum. This means that inputnutput issues, reactive and
real-time processing are stressed, justifying also the use of
the Analog Electronics course as a prerequisite.

In both curricula, it is possible to take elective courses
on selected advanced topics on digital systems. Examples of
such topics include programmable logic, electronic design
automation, embedded systems, microelectronics and so on.

Thus, in both cases, the student is exposed during the
whole cuniculum to digital hardware issues regarding
hisiher future profession. This is one of the objectives of this
teaching proposal. The next paragraphs of this Section
present an account of the specific courses on computer
organization and architecture.

November 6-9,2002, Boston, MA

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

Session T2F

The computer organization teaching was implemented
as two required courses, a 4-hour a week course on computer
organization and a ahour a week laboratory course both
taught in the 3rd semester and are more extensively
discussed in [Z] and [3]. The lecture course comprises a
study of Central Processing Unit (CPU) classical models,
comparing the stored program computer (or von Neumann
model) to the Harvard model and an introduction to
assembly language by means of a practical educational
processor. Also included as part of the teaching approach is
an introduction to a hardware description language (HDL),
currently VHDL [6]. This last characteristic enables the end
of course work to be realized, i.e. the construction of a
simulateable description of a load-store processor from
scratch in the learned HDL. The companion lab course puts
into practice all contents of the lecture course, using both
classical schematics based design and HDL design
paradigms, allied to real hardware implementations through
the use of FPGA -based fast prototyping platforms.

The Computer Architecture I and I1 courses are the main
subject of this work and are discussed in detail next.

The Computer Architecture I course contents are
distributed into rive units:

.

Unit I : Computer architecture performance evahation -
where the basics for quantitatively comparing
architectures are introduced, including the notion of
speed-up, throughput and standard defacto benchmarks
like SPEC.
Unir 2: Pipelines, general stmcture, control and
construction - here, the main performance enhancement
technique for architectures is explored in detail, paving
the way to the end of course final work.
Unit 3 Advanced computational arithmetic ~ explores
something more than the basic arithmetic structures
approached in digital circuits course, including integer
multiplication and division, arithmetic operations on
rational numbers and the study of the IEEE754 floating
point standard representation.
Unir 4. Programming and program execution support
systems - this Unit addresses the main issues related to
how a written high-level language program is processed
before it is ready to execution by the processor,
including compiling, assembly, linking and loading
procedures.
Unit 5: The relationship between architecture and high-
level language programming ~ where the hardware-
software interface is finally explored, using the high-
level language to assembly translation process to clarify
the relationship stated in the title of the Unit.

On the other hand, the Computer Architecture 11 course
is divided into three parts:

Unit I : Input and output subsystems - where the
students familiarize with the more important aspects of
making the processor communicating with the external

0-7803-7444-4/02/$17.00 0 2002 IEEE

world. This includes the discussion of classifications of
the interactions between processor and the rest of the
world (polling, interruption and DMA), and the study of
several devices and device interfaces. These range from
simple, low speed communication such as serial and
parallel, to highly demanding interfaces such as video
and fast secondary storage.
Unit 2: Memory subsystems - in this Unit, a
quantitative assessment for the need o f using memory
hierarchies in modem high-performance architectures is
explored, introducing the associated concepts of
software and hardware such as cache memory ~ t ~ ~ t u ~ e
and levels, translation look-aside buffers (TLBs) and
virtual memory.
Unit 3: Architectures for parallel processing - an
introduction to the vast world of parallel processing is
the subject of this Unit, going from ancient
classifications like the one of Flynn, to modem concepts
such as that of cluster computing. During this overview,
parallel processing paradigms, hardware for parallel
programming and software issues and tools are
presented.

It is easv to see that. unlike the lecture contents of the
computer organization courses, the computer architecture
lectures are rather conventional when compared to other
modem approaches. The difference between the traditional
approach and that proposed here is in the way the technology
and case studies taught and used in computer organization
are reused to provide the practice of the concepts in the
subsequent courses.

I t should also be clear that Computer Architecture I as
Computer Organization courses before it are restricted to
discuss the CPU inner workings, while Computer
Architecture 11 deals with what should be added to a
processor to build a complete computer. Accordingly, the
next two Sections cover the practical aspects of Computer
Architecture I and 11 courses, respectively. ,

COMPUTER A R ~ C T c T R E AND PROCESSOR
IMPLEMENTATION

There is no doubt that the most pervasive single aspect that
affects the structure of modem processor architectures is the
pipelining of instructions. The instruction sets of these
processors reflect the choice of pipelining strategies, and the
control unit and datapath organizations are directly affected
by these choices. Performance issues dictated a major
change on the processor design paradigm in the S O ' S ,
creating the RISC (Reduced Instruction Set Computer)
concept, to transcend the problems created by previous
machines, from that time on named CISC machines,
standing for Complex Instruction Set Computers. The
acronym today is outdated, since modem RISC processors
have not a reduced instruction set at all, but it is still widely
used. The main characteristics of the first RISC machines

November 6-9.2002. Boston. MA
I ~I

32"' ASEWIEEE Frontiers in Education Conference
T2F-17

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

Session T2F

still remain however, i.e. pipelining and a load-store read the contents of this position into an internal register or
organization. The load-store denomination means that every storing a single datum in a memory position, precluding
instruction that references a memory position can only either complex memory operations,

FIGURE. 2
R8 RT LEVELDATAPATHESEXPLOREDINTI~ECOURSE. THEREFISTERSARE~NSTRUCTIONREGISTER(IR), PRCCRAMOXNIFX~SIACXP~(SP) ,
AND A REGISTER FILEWITH 16 GENERAL-PURPOSE REGISTERS. THERE ARE 18 C O N T R O L S I G N A L S T H A T C O M P O S E T H E M W O ~ ~ ~

BY THECONTROL UNIT OF THE PROCESSOR(N0T SHOWN).

The previous paragraph provides a justification for the
hands-on experiment proposed to students of the Computer
Architecture I course. Given the previous experience
acquired by students with an HDL and its use in
implementing a simple load-store processor in Computer
Organization courses, they are required to turn that processor
into a pipeline one. Every semester, a brand new architecture
is proposed in the organization course, and in the subsequent
course this architecture is to he turn into a pipeline
processor. The architecture is named Rx, where x is the
number of the proposed architecture. The students have the
choice to pick their own previous semester implementation
as starting point, or to use a fully functional implementation
provided by the instmctors.

The hasic organization of a typical processor as
specified to the students appears in Figure 2. This
architecture is always a load-store, von Neumann, multi-
cycle instruction architecture. The work is accordingly
divided into three steps. First, tmnsform the von Neumann
implementation into a Harvard machine, so that no Structural
hazards are present. Then, the students must “pipeline” the
processor, equalizing the number of cycles of all
instructions, introducing registers to store intermediate
results between the pipeline stages and changing the control
unit to make the whole a working processor. Finally, comes
the step where the students increment the architecture to
provide conflict detection and resolution capacity with
hardware support. Data hazards must be detected and solved
if possible or a bubble must be inserted in the pipeline.
Control hazards must be dctected and bubbles must be
inserted to solve them. Optionally, strategies of branch
prediction may be implemented and employed to increase
performance in the resolution of control hazards. This
ungrateful task may provide the students with an extra bonus

0-7803-7444-4/02/$17.00 0 2002 I E E E

if any speed-up is achieved with regard to the basic bubble
insertion technique.

The students are given about 50 days to complete the
practical work, and the specification is handled to them as
soon as the lecture course enters Unit 2, about pipelining.
The learning of the pipeline concepts is then simultaneously
exercised in hardware design. The students are required to
employ the learned HDL and they must also show speed-up
computations for every step of the pipelined processor
design with regard to the initial non-pipeline
implementation. Example simulations showing the original
and final performance of the architecture at the timing level
for assembly language programs is shown in Figure 3.

Along the eight first editions of the Computer
Architecture I course, the proposed processor and practical
work have evolved from a simple pre-fetch architecture to a
full-fledged Sstage pipeline processor. The structure of the
practical work is now mature, and it is no surprise that it
resembles the MIPS I architecture used in consecrated books
lke [I]. Figure 2 presents an intermediate version processor,
with an expected solution presenting a Cstage pipeline. One
interesting lesson learned by instructors and students during
the work with the R8 is why it is useful to use W a g e
pipelines instead of Cstage ones. The reason is not
immediately clear without conducting an implementation
work. The choice of a 4stage pipeline implies the need to
add another output port to the register file memory bank to
allow execution of memory store instructions, a rather
expensive hardware increase because of a single instruction.
Also, the same experiment showed why a special register
like a stack pointer could be quite expensive in hardware,
pointing to the usefulness of emulating stack pointers in
assembly language instead.

November 6-9.2002. Boston. MA
32”’ ASEElIEEE Frontiers in Education Conference

T2F-18

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

Session T2F

I -I - -

.

FIGURE. 3
PARTIAL FUNCTIONAL SIMULATIONS OF AN OBJECTCODEFROGRAM IN A N R X PROCESSOR O B S E ~ V E T l ~ ~ ~ D ~ V ~ ~ ~ ~ N O N ~ ~ ~ ~ l O N

An important limitation of the approach in the current
version of this course is that students work with HDL
simulators alone, without dealing directly with hardware
implementations in prototyping platforms. This is not a
limitation inherent of the laboratory setup, but rather a
matter of content maturity. The choice of an early approach
to processor design make students involve themselves very
early with convoluted concepts of computer organization
and architecture and there is no time left to explore the
issues behind a processor implementation in hardware.
Examples of problematic issues are the timing problems that
need to be addressed during pipeline processor
implementations, which can be overlooked in functional
simulation, but not in hardware prototyping. A solution to
this is currently being studied, and will involve furnishing a
controlled implementation environment where the timing
issues are hidden from students.

Nonetheless, the basic objective of the hands-on
experience is achieved namely to allow students assess the
real complexity of modern processors.

Architecture I1 can easily capitalize on hardware
implementations upon current prototyping platforms. This is
true for several simple input-output interfaces, such as serial
and or parallel communication, and even for simple audio
and video interfaces. Currently, these are just planned for
hands-on activities of hardware design and construction, due
to the lack of trained instructors available to teach the
course. However, the problem is already solved and the
activities described here will be implemented for the first
time in the second semester of2002.

The solution found to provide the students with practical
work involving hardware implementation is distinct from
that in the previous courses, since the number of distinct
subjects addressed here is much larger than there, and the
subject complexity is much lower. Thus, students are
expected to do several small practical works, with the
objective of understanding the variety of input and output
interfaces available and the justification for existing so many
of them.

Practical work tasks start with the design of simple
~~

interfaces such as hardware mouse and keyboard drivers,
evolving to simple audio and video drivers. This has already CoMPUTERMmTURE ANDCOMPmR

IMPLEMEIWATTON been tested in several editions of the elective courses in
Computer Science, those depicted in Figure 1. The result is a

Whi le the Teal hardware Of a Pipeline bit surprising to students, they learn not to take for granted
processor in the scope of the Computer Architecture I course the complexity of such low-level tasks in hardware and are
is not currently feasible, the contents of Computer able to understand details never explained in purely
0-7803-7444-4/02/$17.00 0 2002 IEEE

32"' ASEElIEEE Frontiers in Education Conference
T2F-19

November 6-9,2002. Boston, MA

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

Session T2F

theoretical courses. For example, students learn that mouse
and keyboard are not just input devices, but that they may
interact as needed with the CPU. Also, the capacity of video
memories is finally understood more thoroughly, both in
terms of storage consumption and in terms of performance
gain and/or degradation.

In fact, it is the panoply of input and output hardware
devices and interfaces working in harmony with the
processor that makes a computer. The overall complexity of
a computer system is not located in the processor alone, but
is also a result of many pieces of complex hardware easing
the input and output of data to and from the processor and
memory subsystems. This is in essence what the practice
with designing and building computer hardware elements
conveys to the students.

The set of practical works on input and output modules
hardware design has as goal to allow the integration with a
given pipeline processor design (some version of the Rx
architecture). Given a working processor it is up to the
students to build a fully working computer, although still
without an operating system or basic tools as compilers
linkers and loaders.

One interesting and difficult part of the computer
construction is the memory subsystem design, depending of
course on the degree of complexity desired to approach.
Even if complex subsystems such as the current three-level
caches are impossible to consider, one-level caches should
be enough to convey most of the issues in modem cache
design. We are currently considering the acquisition or
construction of reconfigurable hardware platforms that allow
the hardware implementation of cache controllers to take
place. These should contain at least two distinct memory
types, such as DRAM and SRAM, to allow the emulation of
cache and main memory systems to take place.

TOOLS

The current tools employed to make the approach proposed
here viable include commercial electronic design automation
(EDA) tools, commercial FPGA-based fast prototyping
platforms and in-house educational software. The EDA tools
employed are Xilinx Foundation for hardware design capture
and synthesis (possible migration to Xilinx ISE is under
consideration), Aldec's Active-HDL simulator (migration to
Menthor ModelSim is under consideration). The XESS
XS40-010 plus the XST-I input and output extension hoards
form the prototyping platform. Although this platform has
been quite useful, its limitation to allow dealing with some
computer architecture issues like cache implementation and
its size limitation to allow a full-fledged computer to he
implemented has led to considering other solutions. One
good candidate to fulfill current and future needs of all
courses is the proposition presented in [7], due to its
flexibility.

CONCLUSIONS AND F m m m WORK

Implementing processors and computers as part of the
process of taking computer organization and architecture
courses is an approach that has now been under application
for five years, with clear advantages to the learning process.
Several unclear intricacies of computers are revealed to and
understood by students that design their own hardware. The
use of prototyping platforms more powerful than those
currently available is expected to lead to greater integration
of the learning and implementation processes. The interface
and integration with other subjects such as compiler
construction and operating systems is a very desirable
feature of the proposed method, and it may capitalize in the
existence of functional nearly complete computers built
along several courses.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the continued
support of Xilinx, Inc. The authors are also grateful to the
Brazilian support institutions CNPq and FAPERGS that
through the years have financed their research work, making
possible the developments reported here. The authors are
also in great debt with Aline Mello, a former student of the
digital hardware courses who implemented reconfigurable
assembler and simulatorprograms for the processors used as
case studies in several courses.

REFERENCE5

[I] Patterson, D. A. and Hennessy, J. L. "Computer organization and
design: the hardwarclsoCtware interface". Morgan Kaufmann
Publishers, Inc. San Mateo, CA,. 2nd Edilion, 1998. 964pages.

Calazans, N. L. V. and Moraes, F. G. VLSl Hardware Design by
Compvter Science Students: How early can they stan? How Car can
they go? In: 1999 FRONTIERSINEDUCATION CONFERL?NCE,k
Juan. IEEE Computer Society Press, 1999. pp. 1 3 ~ 6 - 1 2 - 1 3 6 1 7 .

Calazans, N. L. V. and Moraes, F. G. Integrating the Teaching of
Computer Organization and Architecture with Digital Hardware
Design Early in Undergraduate Courses. IEEE Tronsaclions on
Education, Piscataway, Y. 44, n. 2, pp. 109-1 19,2001.

Guccione, S. List of FPGA-based Computing Machines. Av;ulable at:
http:llwww.io.comi-guccione/HW_listhtml.

Grinbacher, H. Teaching Computer ArchitecturelOrganization using
Simulators, In: 1998 Frontiers in Education Confierence,T-AR
Session SZC, pp. 1107-1 112, November 1998 Available at'
http:llCainuay.ecn.purdue.edui-fid.

[2]

[3]

141

[5]

[6] S. Mazor and P. Langstraat. "A guide to VHDL". Kluwer Academic
Publishers. Nonuell, MA, 1992.

[7] Eduardo Bezem, Marianne Pouchet, Ney Cal-s, Fernando Moraes,
Michael Gough. An adaptable educational platform for engineering
and IT laboratory based courses. Approved for publication at2002
Frontiers in Educotion Conference.

0-7803-7444-4/02/$17.00 0 2002 IEEE
3Znd ASEE/IEEE Frontiers in Education Conferenee

TZF-20

November 6-9.2002, Boston, M A

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:28:46 UTC from IEEE Xplore. Restrictions apply.

http:llwww.io.comi-guccione/HW_listhtml
http:llCainuay.ecn.purdue.edui-fid

