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Abstract
The goal of this paper is to evaluate the performance of digital systems generated from a high-level

description language. The target language in this work is SDL. The SDL description is automatically

synthesized with a codesign tool, resulting in a VHDL description. The codesign tool is responsible for

software, hardware and communication synthesis. The presented results concerns only the hardware synthesis,

since the goal is to compare the performance of systems generated from manual VHDL descriptions against a

synthesized VHDL. Two case studies are presented, exploring area and delay results.

1 Introduction
Embedded systems requirements are getting increasingly complex. This complexity requires modern design

methodologies to prototype such systems in a competitive time-to-market. In general, embedded systems are
constructed with hardware and software parts, leading to a design environment implementing the hardware and
software concomitant design, or just codesign. Coware n2c [1], Ptolemy [2] and Seamless [3] are typical
environments supporting such a codesign scheme. These environments start from a system-level specification
with languages like SDL, C/C++/SystemC, Esterel and Java.

Figure 1 shows a typical codesign flow. The flow starts with an informal specification of the whole system,
generally in natural language. This specification forms the basis for analyzing the system requirements and for
the high-level description of the system functionality. From the informal specification a first high-level formal
description is generated. This description depicts systems functionality, in most cases, as a hierarchical mixed
data/control flow diagram, and can be written in one of the above-cited languages. System-level simulation or
formal verification achieves validation and exploration of algorithms and systems functionality.

Formal system specification

Hardware descriptionSoftware description

Formal verification
Behavioral simulation

Software synthesis Hardware synthesisInterface synthesis

Memory and processor
implementation

Hardware components
implementation

Compilation Physical synthesis

System description (internal format)

Scheduling and partitioning
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Figure 1 – Hardware/software integrated design flow.

The second step consists in the refinement of high-level inter-module communication, including protocol
selection. Some design alternatives are examined to identify those that meet the system constraints, and the
architectural choices are made, generally guided by the user. Once architecture is decided, the functional
specification is mapped into an abstract architectural model. This model may include one or more processors
and others components. At this stage, the system can be viewed as technology independent multiprocessor
architecture mixed with hardware components.
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The third step comprises hardware/software partitioning and scheduling. Partitioning is the mapping of
functional subsystems onto abstract processes. Scheduling defines the exact start time of each process. The
software part is described in high-level programming language and the hardware part is an HDL description.
Besides the software-only functions, the software part includes low-level device drivers for interfacing with
hardware components. In the same manner, the hardware part contains the interfaces and components to
communicate with the software. At this level, the system is validated through functional co-simulation.

The fourth step comprises software, interface and hardware synthesis. The main difference between input
and output descriptions in this step is that the output descriptions are targeted to a specific architecture,
including the choice of processor(s), communication model, and hardware modules interfaces. In this stage, the
architectural model is detailed and the clock-cycle validation is obtained through RTL co-simulation.

The system can then be validated through physical co-simulation. After these steps, occurs the prototyping.
From the available system level languages, this work focuses on SDL (Specification and Description

Language) [4]. The reason to use such language is the particular interest of the authors in the domain of telecom
applications. SDL is widely used to specify such systems. SDL is an object-oriented language defined by ITU
(International Telecommunication Union) [4], which allows to specifying systems in a hierarchical way. The
system specification starts from a construction called system, where functional blocks are inserted. A block is a
component composed by one or more processes an/or other blocks. A process contains a sequential behavior
and concurrency is modeled by a set of processes.

The codesign flow proposed in this work starts from an SDL system specification. This specification is
done using three SDL environments, Telelogic TAU SDL� [5], Cinderella SDL� [6] and ObgectGeode� [7].
The objective of choosing more than one environment is the evaluation of the state-of-art of these tools and the
evaluation of the portability of SDL descriptions. These environments allow system validation by high level
simulation. The hardware-software partition is done manually. The hardware synthesis, software synthesis and
communication refinement are accomplished with Archimate� [8], which generates C descriptions for software
parts and RTL VHDL descriptions for hardware parts. The final step is the prototyping. The hardware
description is accomplished with Leonardo Spectrum� [9] for logic synthesis and Foundation� [10]
environment for physical synthesis. The software synthesis is not considered here, since our goal is to analyze
the advantages and drawbacks of hardware flow description only. The whole systems are targeted on Xilinx
Virtex Family FPGAs.

This work is organized as follows. Section 2 illustrates two digital system case studies. The results obtained
are showed in section 3. Finally, some conclusions and directions for future work are presented in Section 4.

2 Case Studies
This Section presents the characteristics of two case studies starting form a SDL specification and going to

until the FPGA physical synthesis step.
The first case study is an academic example, Polygon, of an algorithm to fill non-concave polygons. The

goal of this case study is the exploration of the heavy traffic of messages among system modules. The algorithm
receives a set of coordinates, representing a polygon, and generates the horizontal lines to fill the polygon. The
Polygon example is typically a dataflow-oriented asynchronous system.

The five SDL processes to implement the polygon-filling algorithm, is shown in Figure 2: (i) the processes
delta_x and delta_y perform a subtraction; (ii) the displac_y process does a comparison; (iii) the displac_x

process executes a division and (iv) point_gen is a process that generates horizontal lines to fill the polygon.

The second case study is an industrial application, called DropInsert. The DropInsert is a telecom system
that manipulates an E1 frame [11], dropping and inserting data and/or voice channels from/to 32 time slots
(each E1 slot contains 8 bits). The operating frequency is 2048 kHz. This system is characterized by being part
of the physical level of OSI reference model. Voice transmission implies real time operation. DropInsert needs
to evaluate one bit in less than 490 ns, meaning the implementation is not time-critical for the available devices.
The E1 protocol is essentially asynchronous, the first time slot is used to synchronize the frame operation. The
DropInsert implementation of this control-flow asynchronous protocol is synchronous. Thirty concurrent
processes were employed to implement DropInsert. Half of these processes are essentially related to bit
manipulation.
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Figure 2 – Polygon-filling algorithm.

3 Results
This Section presents results obtained from DropInsert and Polygon case studies. Both systems are used to

analyze the SDL to VHDL translation automatically performed by Archimate. The DropInsert system has two
VHDL descriptions: (i) Manual and (ii) Automatic. The polygon system has three VHDL descriptions: (i)
Manual; (ii) Single_process and (iii) Five_processes. In both case studies, the manual descriptions of
DropInsert and Polygon were implemented using traditional digital system tools like manual design entry
followed by HDL simulator and hardware synthesis tools. The co-synthesis tool automatically generated the
other descriptions from SDL. The difference between Single_process and Five_processes Polygon description
is the number of SDL processes.

3.1 SDL to VHDL Translation

The DropInsert system was originally described with Cinderella SDL [6]. In order to evaluate SDL
portability, the Cinderella description was used as an entry for two other SDL environments, Telelogic TAU
SDL [5], and ObgectGeode [7]. It was observed that the graphical representation is not the same and the
generated textual description, used by the co-design tool, was slightly different among the tools. In addition,
TAU SDL is the only tool generating an acceptable code by Archimate. This fact shows SDL is partially
portable.

The VHDL code generated by the co-synthesis tool [8] has the following basic template:
The entity of each module description depends on the protocol selected in the co-synthesis process. For

handshake protocol, for example, a SDL channel is represented by send, acknowledge and data ports in VHDL.
Each entity has just one input interface (set of ports necessary to implement a given protocol) and may have
several output interfaces. The number of output interfaces depends on the number of target process (see process
delta_y in Figure 2, which sends data to two processes). This entity’s implementation depends on the codesign
tool and is not related to the SDL model. The constraint of one input interface generates an input serialization
leading to a communication overhead, reducing the performance.

SDL data types used to describe digital systems are: (i) integer to carry data and (ii) non-valued signals to
represent events. SDL integer is translated to VHDL integer and SDL non-valued signals is translated to VHDL
bit data type. In hardware, it is sometimes interesting to restrict the range of data values, to optimize the
implementation, e.g. 8-bit buses to carry ASCII characters. As SDL does not support this kind of range limited
data types, the resulting VHDL description uses the full integer range (32 bits in VHDL), resulting in area
overhead.

An SDL process is translated to one entity/architecture in VHDL. Two VHDL processes represent the
architecture: a combinational and a sequential process. These two processes implement the state machine (FSM)
that represents the system behavior. This FSM is generally very large due to the number of input signals
implemented with asynchronous protocol. For example, there are 15 states in the FSM of delta_x SDL process,
depicted in Figure 2, to implement a subtraction. Just one of these states is used to execute the operation and
others are used to implement the handshake protocol. This fact also leads to an overhead in area and speed.
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Due to the large number of signals in the sensitivity list of combinational VHDL processes, the hardware
synthesis tool requires a long time to synthesize the modules. For example, the same SDL process delta_x,

which implements a subtraction, has a sensitivity list with 12 signals, being 5 defined as integer.

3.2 Code Generation Analysis

The goal of this Section is to compare some quantitative metrics like number of lines, number of processes
and code style. These parameters are used to illustrate the complexity of the generated description, not for
performance measurements. Table 1 and Table 2 present the number of VHDL lines and VHDL sequential
processes in each description.

Table 1 - Quantitative metrics for the Polygon benchmark.

Polygon synthesis
Manual Single process Five processes

Number of lines 473 520 2239
Number of processes 14 1 5

Table 2 - Quantitative metrics for the DropInsert benchmark.

DropInsert synthesis
Manual Automatic

Number of lines 1278 34.457
Number of processes 28 36

The manual VHDL descriptions were written to optimize area and execution time. In this case, the designer
is free to choose the code style, using pipelines, parallel modules, and other design techniques. In an automatic
VHDL generation the code style uses the fixed template discussed in Section 3.1. These two tables show two
facts: (i) the fixed template imposes several constraints to the generated code and (ii) these constraints imply in
a huge area and performance degradation, to be presented in Sections 3.4 and 0, respectively.

3.3 Comparison of SDL and VHDL Simulations

Waveforms are a typical output generated by a VHDL simulation. All signals are time tagged, what means
that there is a total ordering of signals. The time is one of the waveform coordinates (the other coordinate is the
signal value).

SDL descriptions have an abstract model of simulation implemented in the Message Sequence Chart (MSC)
formalism. The MSC shows the data signal exchange between processes, omitting all communication protocol
signals. There is a total ordering of signals, but the precise time of an event is not important. The vertical lines
represent the communication processes and the other lines represent the communication, carrying the value of
the signal.

VHDL simulators are, in general, implemented with the Discrete Event (DE) model. The DE model implies
scheduling all signal events in discrete instants of time. The abstraction implied by the use of the MSC model
leads to faster simulation, which is useful for high-level validation. VHDL simulations give much more detailed
information.

A system level simulation, as MSC, should be used to (i) abstract some implementation details and (ii) to
help the designer to validate the system more quickly. The first feature is fully accomplished. Due to the size of
the case studies implemented, it was not possible to evaluate the second feature, since the designers were much
more used to VHDL simulation than to MSC simulation. However, this feature is expected to become relevant
for large systems, since the waveform simulation becomes much more complicated as the system complexity
increase.

3.4 Functional Performance

Table 3 shows the number of clock cycles necessary to perform the RTL simulation on three different
Polygon implementations. It can be noted that there is a very large communication overhead due to the
asynchronous protocol and the interface serialization. As explained earlier, the SDL process model may have
several inputs, but, since there is only one input interface in the VHDL entity generated from SDL, the reception
of these signals is serialized. Table 3 also shows that when the number of processes in an SDL description
increases, the overhead associated to the protocol also increases. The performance is 15 or 30 times slower with
regard to the manual description.
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The DropInsert system results are not presented in this Table because its dimensions have not allowed the
simulation tool to operate upon the automatically synthesized code (due to memory restrictions).

Table 3 - Simulation data of different implementations for the Polygon system.

Polygon synthesis
Manual Single process Five processes

Clock cycles 30 530 900

3.5 Synthesis Performance

Table 4 presents some results obtained from the Polygon system. Logic synthesis was performed using
Leonardo Spectrum, followed by physical synthesis with Xilinx proprietary tool set, targeting a Xilinx Virtex
Family FPGA, the 300-thousand equivalent gates XCV300BG352. The first two lines contain the number of
Configurable Logic Blocks (CLBs) and the number of D flip-flops, roughly representing the area to implement
the system. The third line represents maximal operating frequency, as predicted by the physical synthesis tool.
The last line represents the necessary time to complete the synthesis on a workstation Sun Ultra10, 333 MHz
with 256 MB RAM. The last line is important to show the different descriptions complexity under the point of
view of the synthesis tool.

Table 4 - Implementation data of different versions for the Polygon system synthesis.

Polygon synthesis
Manual Single process Five processes

Number of CLBs 130 401 1008
Number of D flip-flops 133 417 1095

Operating frequency (MHz) 76.4 70.2 48.3
Time for synthesis (seconds) 33.33 123.07 354.42

Table 4 shows that the manual implementation is 30 times faster than the five processes implementation. If
the same performance is required among both implementations, the five processes implementation should
increase 30 times its clock frequency. But this is probably not possible to accomplish a working hardware,
because the maximum clock frequency estimate decreases 1.58 times in the five processes implementation.

DropInsert results are not illustrated because the available physical synthesis tools (Leonardo and
Foundation) could not synthesize all processes due to the number of states. Some processes of automatic VHDL
description have more than 500 states, which is 25 times more than the manual description. This gives a
measure of how far is the underlying SDL model of computation for hardware synchronous systems, what is
confirmed by other similar works like [12].

4 Conclusions
It is possible to enumerate some SDL language advantages, such as (i) steep learning curve, as it has a

graphical input format; (ii) easy system description; (iii) possibility to express non-determinism due to its
concurrency model; (iv) fast system simulation due to the abstract communication model. The main drawback is
the lack of constructions to express synchronous systems, like constructions to simultaneously evaluate more
than one signal transition.

Although SDL is standard, descriptions created with the available environments are only partially portable.
Automatic SDL to VHDL translation is not mature, as can be observed in the result sections. The main
problems are the performance degradation, due to the communication protocol serialization (up to 30 times
slower), and area increase (up to 8 times). These results show that much more effort is required in system-level
synthesis tools research in order to generate hardware descriptions competitive with manually implementation.
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