
Requirements, Primitives and Models for Systems Specification

César Augusto Missio Marcon, Ney Laert Vilar Calazans, Fernando Gehm Moraes
Pontifícia Universidade Católica do Rio Grande do Sul (FACIN-PUCRS)

Av. Ipiranga, 6681 - Prédio 30 / BLOCO 4 - 90619-900 - Porto Alegre – RS – BRASIL
{marcon, calazans, moraes}@inf.pucrs.br

Abstract
This paper presents a metamodel, called RPM, which

is proposed to systematize and encompass many models of
computation. RPM is based on the decomposition of a
computational system model into its requirements,
primitives and models of computation. A taxonomy for
telecom computational systems is proposed and related to
the RPM metamodel. The goal of the paper is to pave the
way for a codesign CAD system with heterogeneous
specification. Such systemic specification is to be mapped
into one or more homogeneous descriptions.

1. Introduction
Computational systems are defined here as those

formed by a composition of hardware and software.
Today, many computational systems are implemented as
embedded systems, often using a system on a chip (SoC)
approach. The growing complexity of such systems leads
to the increase of the abstraction level where activities like
specification; design and validation are guided. The main
goal is to render manageable the complexity of the design
process of products based on these systems, by reducing
time-to-market figures.

Computer aided design (CAD) systems congregate
methods and tools that the designer employs to trace the
design path from specification to physical implementation.
CAD systems are based on an underlying set of models of
computation (MOCs [9]) used for modeling, validation
and synthesis stages of the design.

Understanding how MOCs are used, how different
MOCs relate to each other and how MOCs related to
computational systems are important issues in dominating
the design process. In order to provide a framework for the
reasoning about MOCs, this work proposes the RPM
metamodel (Requirements, Primitives and MOCs). RPM
is useful in the process of choosing MOCs to employ
during systems modeling. It can also be used for reasoning
about the relationship and interfacing between different
MOCs. This work also introduces a new taxonomy for
telecom computational systems based on a set of criteria
derived from the RPM characteristics. The major goal of
this work is to allow the construction of system level CAD
systems capable to deal with heterogeneous descriptions of

computational systems, where each subsystem may be
modeled using several distinct MOCs.

This paper is organized as follows. Section 2
introduces the RPM metamodel proposal. Section 3
suggests a new taxonomy for telecom systems, and uses
the telecom systems classification for a RPM case study.
Section 4 presents conclusions and future work.

2. The RPM Metamodel
A metamodel is a formalism that represents

relationships among models. Here, the interest is to
represent the process of computational systems model
construction. Figure 1 illustrates the RPM metamodel,
comprising modeling requirements (or just requirements),
modeling primitives (or just primitives) and MOCs. These
concepts, with their relationship, define the construction
process of computational system models. Each one of the
concepts is further discussed in the next Sections. RPM
captures the fact that a model of a system comes from the
set of requirements that are fulfilled by primitives. These
primitives are used to select existing MOCs or propose
new ones that allow modeling the primitive's composition.
Finally, MOCs separately or in conjunction with others
serve to formalize the system classes features, allowing the
computational systems modeling.

. . .Requirement 1

Primitive 2 . . .

. . .MOC 1

Computational System Model

Requirement 2 Requirement 3 Requirement i

Primitive 1

MOC 2 MOC 3 MOC k

Computational System Specification

Characterized by requirements

Fulfilled by primitives

Used for composing MOCs

Employed to model computational systems

Primitive j

Figure 1 – Elaboration of Computational System
Models

2.1 Modeling Requirements
Intuitively, a modeling requirement can be defined as a

need, either to express intrinsic features, or to describe

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

classes of structures or behaviors often found in systems
(e.g., the concurrency in a communication protocol).

This Section proposes a set of modeling requirements,
grouped according to characteristics in two classes,
desirable features and constraints. Constraints are the set
of requirements that satisfy the need of expressing intrinsic
features such as total circuit area. Constraints are strong
requirements that limit the system implementation domain.
Desirable features are requirements that express classes of
structures or behaviors often found in systems. These
requirements are our main interest since they are the bases
of RPM metamodel construction.

Abstraction reduces the computational system design
complexity. The designer employs several levels of
abstraction, adding information, as the design is refined.

Modularity allows system description by breaking
them in a set of subsystems, based on: high cohesion and
low coupling. Cohesion is acquired by the grouping of
related structures and coupling is given by intermodule
dependency.

Hierarchy is the capacity to repeatedly break
subsystems into its constituent parts, each part being a
subsystem in itself. Hierarchy is strongly related to
abstraction and modularity concepts. If a (sub)system is
formed by a set of non-overlapping subsystems these
define a hierarchy level. Further subdividing each
subsystem leads to another set of subsystems, defining a
lower level of hierarchy.

Concurrency is the capacity of representing flows of
parallel events. This work associates flows of parallel
events with the process concept, defined in Section 2.2.
Concurrent systems are those with more than one flow of
parallel events, which can mutually influence each other.

Communicability is the capacity of exchange
information among subsystems or with the environment.

Dynamicity is the capability of a system to modify its
behavior. Dynamicity involves creation and elimination of
memory and processing resources. In general, dynamic
behavior is associated with software systems, while
hardware systems are characterized by static behavior.

Stateability is the capacity of a system being
represented by a set of “situations”, called states. A state is
associated with a time interval, the period that the system
is in one of its possible distinct situations. To change this
situation is called to modify the state of the system in
which it will remain during another time interval.

Determinism expresses a guarantee that starting from a
given state a system will always give the same response to
the same stimuli. Determinism allows foreseeing
sequences of output signals if sequences of inputs are
known. Although a deterministic behavior is generally
desirable, the capability of expressing non-determinism
can potentially increase the power of models.

Real time operation establishes a maximum response

time to any or to a significant subset of inputs to the
system. This work subdivides real time systems (RTS) in 3
classes. A non-real time system (NRTS) is one where
execution time is not dictated by input events. They
operate at a given rate and provide results whenever they
are ready. In essence, variation of its execution time may
not have side effects on the expected external system
behavior. Non-critical real time systems (NCRTS) are
systems whose operation time is dictated by input events,
but the execution time is not relevant for the system
available resources. These systems can perform several
operations until they need to answer to some input event.
Critical real time systems (CRTS) are systems whose
operation time is dictated by time events and the time
constraints are near to technological limits. The
performance of the designed is a determinant factor.

An exception is a deviation of the most common
expected system behavior. Design errors or relations
between the system and the environment, such as external
interrupts may cause exceptions. Exception handling is an
important requirement when dealing with non-
determinism.

Reliability implies a precise behavior during operation
time [8]. Average reliability for communication systems
are achieved by using mechanisms to avoid information
loss (e.g. unbounded FIFOs). High degrees of reliability
can be achieved by the use of redundancy.

2.2 Modeling Primitives
A Modeling primitive is a basic element that isolated

or together with other primitives is capable of satisfying
the needs of system modeling. The extraction of necessary
and sufficient primitives is a challenge, and is a basis for
sound MOC construction. Excessive number of primitives
makes MOCs too complex. Using less primitives than
necessary eliminate the models capacity to represent
systems behavior.

A value v is a graphical representation that only has
meaning together with other elements. A unit u is a
representation that allows characterizing its associated
elements (e.g. bits). The composition of value and unit
allows characterizing primitives both qualitatively and
quantitatively. Sets of composition and/or derivation rules
enable the specialization of new primitives. In this context,
the process of building primitives is called specialization.
Primitives are hierarchically defined in terms of
composition relations, derivation or dependence as stated
in Figure 2.

Composition relations contain information to produce
a new primitive. Derivation relations tell that the derived
primitive is a more specialized case of the element that it
derives. Dependence relations carry the information of the
set of primitives, which depends on a new primitive
creation.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

A pair (v, u) composes physical primitives
representing some physical aspect of the computational
system, such as speed. The study of these primitives for
MOCs construction is not treated here, since this work
focus on behavioral models. Although time is a physical
primitive, it is not treated so, because RPM uses it as an
ordering element for events and their derived or composed
primitives. Behavioral primitives include all primitives
derived, composed or dependent on the mathematical
elements, or another behavioral primitives previously
defined and without physical information.

Value Unit

State

State Composition

MATHEMATICAL ELEMENTS

PRIMITIVES

Legend:
x y: x composes y
x
x

y: x derives y
y: x depends on y

Synchronous State
Transition

Clock

Signal

Inputs Outputs

Hierarchy Concurrency Process

Time Area Speed Power …

State Transition Event

Figure 2 – Constructive process of primitives
The time t is a primitive composed by (v, u) (e.g. 4 ns).

The time primitive allows establishing a total order of
elements that are referenced by it.

State is one of the possible situations that a system can
be. In [4], the authors formalize the concept of states as
equivalence classes of processes. Nevertheless, this
concept is unsuitable to derive state composition,
hierarchy and concurrency concepts. In the context of this
work, a state q is a label that will be treated as a primitive
derived from (and identified by) a numerical value.

Event is a primitive that carries the information of a
value v in an instant of time t. This work adopts the formal
analysis proposed in [4] that represents an event as a pair
(t, v). Given a set of all instants of times T and a set of all
values V, an event e is defined as an element of the
Cartesian product T x V.

A signal s is a primitive composed by a set of n events
that define, at every moment, the signal value. Hence, a
signal can be analyzed in a behavioral form as an entity on
which a sequence of events occurs. Inputs i and outputs o
are primitives derived from s, with i = {e1, e2, ..., el}, and
o = {el+1, ..., en}. The set of all inputs i is represented by I
and the set of all outputs o is represented by O. A clock is
derived from the input primitive and is characterized by
being a signal composed by events with periodic time tags.

A process P is a computational system behavior that
maps the input alphabet to the output alphabet. P is
defined as a set of relations between inputs and outputs.

State transition is a primitive derived from the event
primitive and dependent on the state primitive. In

asynchronous systems, events and transitions are closely
related, since the occurrence of an event can cause a state
transition. However, in synchronous systems, the
occurrence of events will only be evaluated at the
occurrence of a synchronism signal event. The essential
difference between events and transitions is that not all
events cause a transition, but all transitions are caused by
some event(s).

Let Q be the set of all states of a system,
Q = {q1, q2, ..., qn}, and let ΦΦΦΦ be the powerset of Q. The
state composition C is a subset of ΦΦΦΦ. Given that the system
behavior can be partially represented by Q, two behavioral
primitives can be derived from C: hierarchy and
concurrency. In a 2-level hierarchical representation, the
pair (q1i, q2j) implements C, where q1i is the i-th state of
level 1 and q2j is the j-th state of level 2. Generalizing the
concept, in an m-level hierarchy, C is implemented by one
m-tuple (q1i, q2j, ..., qmk). A system is named hierarchical
if at least one state is hierarchical.

Under the C point of view, a concurrent system is
perceived in the same way as a hierarchical system.
However, in purely hierarchical systems (without
concurrency), each one of the m positions of C represents
one level of the hierarchy, where all the states are
composed by sets of states. The set of states that belongs
to the state of the lowest hierarchical level is empty. In
purely concurrent systems (without hierarchy), there are
no transitions between states that are part of each one of
the m distinct positions of an m-tuple. Thus, each position
of the tuple is composed by an unconnected set of states.

2.3 Requirements and Primitives
Table 1 represents the relationship between primitives

and requirements. Table 1 is partially outlined in Figure 3.
Table 1 – Relation between requirements and

primitives

R e q u ire m en ts

P rim itive s

D
et

er
m

in
ism

A
bs

tra
ct

io
n

M
od

ul
ar

ity

H
ie

ra
rc

hy

C
on

cu
rr

en
cy

Co
m

m
un

ic
ab

ili
ty

D
yn

am
ic

ity

St
at

eb
ili

ty

R
ea

l t
im

e
op

er
at

io
n

Ex
ce

pt
io

n
ha

nd
lin

g

R
el

ia
bi

lit
y

T im e
S ta te
S ig n a l
C lo c k
P ro ce ss
S ta te T ran sitio n
H iera rc h y
C o n c u rre nc y

2.4 Models of Computation
Single MOCs are those created by the composition of

primitives only. Composite MOCs are those created by
single MOCs composition or derivation. Any MOC is

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

produced by the aggregation of specific primitives,
providing a formal structure for modeling a significant
amount of computational systems classes. Figure 3
presents a few single MOCs, some composite MOCs and
the relationship between MOCs and primitives.

Signal

Output

Input
Clock

State

FSM

PRIMITIVES

State
transition Concurrency

AFSM

GALS

SFSM ACFSM

DF SR DE

SINGLE MOCS

COMPOSITE MOCS

D
et

er
m

in
ism

Re
lia

bi
lit

y

H
ie

ra
rc

hy
,

M
od

ul
ar

ity
,

A
bs

tra
ct

io
n

Ex
ce

pt
io

n
ha

nd
lin

g

St
at

eb
ili

ty

Co
nc

ur
re

nc
y

Co
m

m
un

ic
ab

ili
ty

Computational System

Computational System Model

Legend:
x y: x composes y
x y: x derives y

x y: y is fulfilled by x
x y: y characterize x
x y: x is employed in x

R
ea

l t
im

e
op

er
at

io
n

REQUIREMENTS

Hierarchy

Figure 3 – Metamodel example
The set of single MOCs illustrated in Figure 3 is

composed by finite state machine (FSM) [5][6][10], data
flow (DF) [2][6][9], synchronous reactive (SR) [1][4] and
discrete event (DE) [4][6]. The set of composite MOCs
illustrated in Figure 3 is composed by asynchronous FSM
(AFSM) [9], SFSM, abstract codesign FSM (ACFSM)
[9], global asynchronous local synchronous (GALS) [9].
Other single MOCs like process network (PN) [7], or
composite MOCs like hierarchical FSM (HFSM) [10] and
Control/Data Flow Graphs (CDFG) [7] are not showed.

The MOC representation capacity is affected by its
degree of specialization that reduces the amount of express
systems that it can. On the other hand, the less abstract, the
more expressive it will be, intensifying its representation
capacity. Each computational system interacts somehow
with its environment. The environment interaction
establishes an association with aspects such as the system
processed information flow, the system operation
(synchronous or asynchronous) and the system behavior.
The synchronous and asynchronous operations determine
different models to subsystem intercommunication.

Reactive, interactive and transformational are system
classifications according to the behavior criterion [1].
Reactive systems react to the environment stimuli

returning new stimuli to it. A typical MOC used to model
this behavior is the SR model [1]. Interactive systems are
constantly exchanging information with the environment.
However, in contrast with reactive systems, the main agent
of the interaction is the system instead of the environment.
Transformational systems are characterized by the low
interaction with the environment. These systems compute
the output values from the input values and then stop.

Time primitives enter in the composition of almost any
MOC. Time can be modeled in discrete or continuous
forms. The continuous form takes the information from all
the signals at every time instant, in opposition to the
discrete form, where only the instants of time with
associated events are considered.

There are two modeling classes based on MOCs
composition. The first is homogeneous modeling, where it
is necessary only one MOC to obtain sufficiency and
expressiveness for the modeling. This class is adequate for
systems composed by a single subsystem, or where the
behavior of all the subsystems is similar. The second is
heterogeneous modeling, where it is necessary the
composition of more than one MOC. Systems with low
complexity can often be modeled homogeneously, due to
the uniformity of its subsystems. When complexity grows,
heterogeneous modeling becomes a better approach.

2.5 Systems Modeling Approach
Several composite MOCs are proposed in the literature

[2][3][5][10]. These MOCs have high potential to express
some computational systems that are not easily expressed
by single MOCs. This paper proposes a Heterogeneous
System Modeling with Homogeneous Subsystem Modeling
approach (HSM2), which can fulfill the needs of many
computational systems. HSM2 is a method for systems
construction, which enables the use of simple and
expressive MOCs for subsystems, plus a set of subsystem
interoperability MOCs. This approach can be divided in
two main steps. The first one is the choice of a
representative set of MOCs for each subsystem. The
second one is the interoperability MOCs definition, not
addressed here. The advantage of this approach is the
complexity reduction, due to the simplicity of each
subsystem underlying MOC. A drawback is found in
interoperability MOCs, due to the fact that some MOCs
have opposite characteristics that many times mandate the
improvement of the interface to enable lossless
intermodule communication. This approach will be
exemplified further in Section 3.4.

3. Telecom Systems
Telecom systems can be defined as those characterized

by a behavior comprising mostly the transmission and
reception of information. The exchange of information is

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

the ultimate goal of such systems. This definition can be
useful for the telecom systems understanding, but it is not
useful to extract information for their modeling, due to its
high abstraction degree. It is thus necessary to propose
classification criteria for these systems to allow
construction of representative MOCs for each class.

3.1 Classification Criteria
The analysis of several telecom systems provided a

basis to propose a set of criteria that characterize such
systems. The criteria set is expected to be sufficient to
define suitable MOCs to a large amount of systems. The
set comprises six main criteria, explained next.
1. Environment interaction – similarly to MOCs,

telecom systems can be classified by its interaction with
the environment in transformational, reactive or
interactive. For example, reactive systems verifiability is
usually easier than interactive systems verifiability, due
to the fact that reactive systems are, in general, in a
stable situation when it receives inputs.

2. Real time operation (RTO) – several telecom systems
are characterized by its RTO. An example of a NRTS is
an Internet service like the transmission of an e-mail
message. NRTS allow several degrees of freedom for
implementation. They can be implemented in hardware
or software without problem. An example of NCRTS is a
telephone system, interacting with the user, where the
associated time is in the order of seconds. An example of
CRTS is an ATM switch, where the switching of the data
must occur at nanosecond rates.

3. Encompassed Layer(s) of the OSI-RM – the OSI
layers are associated with issues like execution time and
environment interaction. The higher OSI-RM systems
layer, the more abstract the primitive of the underlying
MOC can be. Lower OSI-RM layers have to operate at
high speed, and in most cases this implies CRT systems.

4. Complexity – this is a mostly subjective criterion, but
it gives an idea of how difficult the problem and how
complex it’s underlying MOC must be. Complexity is a
criterion that is directly related to modularity, hierarchy,
abstraction, concurrency and communicability.

5. Reliability – most telecom systems need to operate
with an average reliability degree, but for special cases
high reliability degree is necessary.

6. Synchronous/asynchronous operation mode – many
telecom applications are characterized by synchronous
communication, like SDH or E1 systems. These systems
are better modeled by synchronous MOCs. Other
telecom system applications are characterized by
asynchronous communication, similar to ATM systems
or the Ethernet protocol. Systems like these are better
modeled by MOCs with asynchronous attributes.

3.2 Telecom Classes Proposal
This Section summarizes in Table 2 a classification for

telecom systems according to the above criteria.
Table 2 – Summary of telecom systems classification

Class
Criterion 1 2 3 4 5 6 7

Environment
interaction

I I I R I, T * *

Real time
operation

CRT CRT CRT,
NCRT

NRT CRT,
NCRT

NRT CRT

OSI-RM L L L, M H H * *
Complexity L, M L, M H H H M, H H
Reliability M M L L M M H
Operation mode S A * * * S *
Legend:
R - reactive; I - interactive; T - transformational; * - undefined
S - synchronous; A - asynchronous; H - high; M - middle; L - low

Typical circuits of these classes are:
Class1 - SDH or E1 protocol interfaces;
Class2 - High speed asynchronous circuits as ATMs;
Class3 - Compression/decompression of images;
Class4 - Circuits that interact with the users of the

communication media such as occurs in TV;
Class5 - Circuits that interact with other circuits of the

communication media;
Class6 - Computer connection systems;
Class7 - Some circuits used in military applications.

3.3 Relation Among Classes and RPM
Telecom subsystems must be associated with the MOC

that expresses its behavior. This can be obtained by two
approaches. The first starts from the previous knowledge
of the system specification underlying MOCs. These
MOCs can be obtained through the case studies of
implemented systems; The second starts from the
extraction of the associated subsystem requirements
obtaining the primitives that fulfill them, consequently
obtaining the MOCs composed by those primitives, such
as detailed in the RPM construction. This work adopts the
second approach. Due to the complexity of telecom
systems, two levels are inserted between the computational
system and the requirements of RPM, as it is illustrated in
the grey area of Figure 4. The classification criteria give
the relation between telecom classes and MOCs.

RPM applied on telecom classes enables the deduction
of suitable MOCs for each classified telecom system.
These MOCs are obtained through the classification
criteria summarized in Table 2. This Section illustrates a
Class1 example. The Class1 criteria can be related to a set
of requirements. Interactivity establishes an association
with communicability. CRT operation is related to RTO
and concurrency. Low layer of OSI is associated to
communicability and statebility. Low or middle complexity

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

leads to primitives with low or middle degree of
abstraction, communicability, concurrency, and hierarchy.
Synchronous mode operation is related to determinism.

. . .Requirement 1

Primitive 2 . . . Primitive j

. . .MOC 1

Computational System Model

Requirement 2 Requirement 3 Requirement i

Primitive 1

MOC 2 MOC 3 MOC k

Telecom System Specification

Sorted in classes

. . .Class 1 Class 2 Class 3 Class n

Criterion 2 . . . Criterion mCriterion 1

Characterized by requirements

Classified by criteria

Fulfilled by primitives

Used for composing MOCs

Employed to model computational systems

Figure 4 – Construction of Computational System
Models

Associating these requirements with primitives, as
presented in Table 1, it is possible to verify that hierarchy
and concurrency primitives are less important primitives to
compose MOCs for Class1 systems. On the other hand,
signal and state primitives are very important. RPM shows
that MOCs can be deducted from primitives, as outlined in
Figure 4 and Figure 5. DE and FSM are adequate for an
abstract representation of this problem class. DE includes
the notion of physical time, what makes it adequate for the
hardware modeling [5]. FSM is adequate for the sequential
modeling and for systems with low complexity and few
processes, because it does not intrinsically support the
hierarchy and concurrency requirements [1].

3.4 HSM2 Application Example
This Section presents an application example of HSM2

approach for telecom system. This example is a system
composed by 3 subsystems: User, Control and Comm. The
User subsystem implements the system interface that
interacts with the user. The Control subsystem implements
the core functions. Comm subsystem implements the
communication with other systems. In this example, each
subsystem is being modeled by its MOC, which appears
between parentheses in Figure 5.

User
(SR)

Inputs
Outputs

Users Control
(FSM)

Comm
(DF)

Figure 5 – An example of HSM2 approach
The absence of this approach would probably force the

use of a more complex MOC to fulfill all subsystem

requirements with only one MOC. This MOCs complexity
usually leads to a reduction of the system performance.

4. Conclusions and Future Work
It is essential to obtain MOCs that are at the same time

representative and simple enough to avoid unnecessary
computational costs. This may occur when the primitives
of the MOC force the over-specification of a system. The
RPM metamodel coupled with the HSM2 approach may
assist in the design of computational systems, reducing the
system complexity and increasing the expressiveness,
through the association of the subsystems of a system, with
the requirements, primitives and MOCs. The telecom
classification allows a better choice of MOCs to use in
modeling such systems and to better decompose them.

The RPM Metamodel and the HSM2 approach are the
more abstract levels of an ongoing effort to implement a
codesign system. This system is planed to have as design
entry heterogeneous language specifications with different
underlying models. During the design flow, the
specifications are converted into intermediate descriptions
guided by the designer. These descriptions will represent
the successive refinements of the system model using
different languages, each one designed to support different
MOCs. The interaction with the intermediate languages is
to be achieved by the support of the heterogeneous MOCs
given by the HSM2 approach.

5. References
[1] A. Benveniste et al – The Synchronous Approach to

Reactive and Real-Time Systems. Proc. of the IEEE, 1991.
[2] B. Bhattacharya et al – Parameterized dataflow modeling

for DSP systems. IEEE Trans. on Signal Proces., 2001.
[3] J. Buck et al – Heterogeneous modeling and simulation of

embedded systems in El Greco. CODES, May 2000.
[4] S. Edwards et al – Design of Embedded Systems: Formal

Models, Validation and Synthesis. Proc. of the IEEE, 1997.
[5] A. Girault et al – Hierarchical Finite State Machines with

Multiple Concurrency Models. IEEE Trans. on CAD of
Integrated Circuits and Systems, June 1999.

[6] A. A. Jerraya et al – System-Level Synthesis, pp.103-136,
Kluwer Academic Publishers, 1999.

[7] L. Lavagno et al – Embedded System Codesign: Synthesis
and Verification. Kluwer Academic Publishers, 1995.

[8] R. S. Pressman – Software Engineering: A Practitioner's
Approach. McGraw-Hill, Fifth Edition, 2000.

[9] M. Sgroi et al – Formal Models for Embedded System
Design. IEEE Design & Test of Computers, April 2000.

[10] V. Sklyarov – Hierarchical Finite-State Machines and Their
Use for Digital Control. IEEE Trans. on VLSI Syst. 1999.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:27:30 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

