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ABSTRACT 

The goal of this paper is to evaluate the performance of 
embedded digital systems generated from a system level 
description language. The target language is SDL, which is 
automatically synthesized with a codesign tool, resulting in 
VHDL and C descriptions. The codesign tool is responsible 
for software, hardware and communication synthesis. Two 
case studies are presented, exploring area and delay results. 
The results concern only the hardware synthesis, since the 
goal is to compare the performance of systems generated 
from hand coded HDL descriptions against a synthesized 
HDL. The analysis of the advantages and drawbacks of this 
automatic hardware design flow and the evaluation of the 
commercial tools integration are also reported. 

1 Introduction 

Embedded systems requirements are getting 
increasingly complex. This complexity requires modem 
design methodologies to prototype such systems, viewing 
the time-to-market reduction. In general, embedded systems 
are built with hardware and software parts developed 
concomitantly, a method usually named codesign. Coware 
N2C [l], Ptolemy [2], SEA [4], VCC [SI, Seamless [6] and 
the work described in [7] are typical environments 
supporting codesign. These environments start from a 
system level specification with languages like SDL 
(Specification and Description Language) [8], Esterel [3], 
Java and C/C++ extensions. . .  

A typical codesign flow starts with an informal 
specification of the whole system, generally in natural 
language. This specification contains requirements and 
constraints. It enables the elaboration of the system level 
description, which depicts functionality as a hierarchical 
mixed datdcontrol flow diagram, and can be written in one 
of the above-cited languages. 

The second step in the design flow consists in the 
refinement of the system level communication model, 
including protocol selection. Some design alternatives are 
examined to identify those meeting the system constraints, 
and the architectural choices are made. Once the 
architecture is determined, the functional specification is 
mapped into an abstract architectural model. At this stage, 
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the system can be viewed as a technology independent 
multiprocessor architecture mixed with hardware 
components. 

The third step comprises hardwarekoftware 
partitioning and scheduling. Partitioning is the mapping of 
functional subsystems onto abstract processes. Scheduling 
defines the exact start time of each process. The software 
part is described in high-level programming language and 
the hardware part is written as HDL code. Besides the 
software-only functions, the software part includes low- 
level device drivers for interfacing with hardware 
components and eventually an OS synthesis step. In the 
same manner, the hardware part contains the interfaces and 
components to communicate with the software. 

The fourth step comprises software, interface and 
hardware synthesis. The main difference between input and 
output descriptions in this step is that the. output 
descriptions are targeted to a specific architecture, including 
the choice of processor(s), of low-level communication, and 
hardware modules interfaces. At this stage, the architectural 
model is detailed and the clock-cycle validation is obtained 
through RTL co-simulation. 

The design flow proposed in this work is illustrated in 
Figure 1. It starts with a system level description in SDL. 
This description is alternatively obtained using three SDL 
environments, Telelogic TAU SDLTM [9], Cinderella SDLTM 
[lo] and ObgectGeodeTM [l 11. These environments allow 
system validation through MSC Message Sequence Chart) 
high level simulation. The goal of choosing more than one 
environment is to compare these tools and evaluating the 
portability of SDL descriptions. The tools produce SDL 
textual descriptions, which are input to ArchimateTM [12], a 
codesign environment performing semi-automatic 
hardware-software partition, hardware and software 
synthesis and communication refinement. Archimate 
intemal format is called BEEF. The synthesis steps generate 
C descriptions for software part and RTL VHDL 
descriptions for the hardware part. The final step is 
prototyping, where hardware is obtained through Leonard0 
SpectrumTM [13] and FoundationTM [14] tools. The software 
synthesis is not considered here, since our goal is to analyze 
the advantages and drawbacks of hardware flow description 
only. The systems are targeted to Xilinx Virtex FPGAs. 
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Figure 1 - Design flow. 

System level descriptions allow faster system 
validation and technology independence, when compared to 
RTL abstraction. From the available system level 
languages, this work focuses on SDL. The goal is to 
compare SDL synthesized hardware to hand-coded VHDL 
descriptions. Comparison considers area and delay figures. 
It is also possible to identify problems related to the SDL 
underlying model and/or to the codesign synthesis tool. 

This paper is organized as follows. Section 2 discusses 
the SDL underlying model, emphasizing its usage in digital 
systems. Section 3 illustrates two digital system case 
studies. The obtained results are discussed in section 4. 
Finally, some conclusions and directions for future work are 
presented in Section 5 .  

2 SDL Underlying Model 

SDL is an object-oriented language standardized by 
ITU-T [8], which allows the hierarchical description of 
systems. The description starts from a construction called 
system, where functional blocks are inserted. A block is a 
component composed by one or more processes and/or 
other blocks. A process contains a sequential behavior and 
concurrency is modeled by a set of processes. 

2.1 Process Model 

The 2.100 ITU-T standard defines that the SDL 
underlying model is EFSMs (Extended Finite State 

Machines), where all processes are ESFMs. A more 
generally accepted terminology to EFSM is to call it a Non- 
deterministic Finite Automaton (NFA) [ 151. For each 
process, a finite number of states, inputs and outputs 
determine its behavior. Non-determinism capability allows 
representing spontaneous transitions, which are transitions 
without any signal causing them. This is useful to describe 
unpredictable system characteristics. An NFA allows that 
each state may consume and generate multiple signals. 
However, in SDL only one input signal can be consumed 
(evaluated) at each instant. This means that each input 
signal consumed corresponds to one state transition in an 
SDL description. 

2.2 Communication Model 

The concurrency model used in SDL allows 
independent and asynchronoys processes operation. There 
is no guaranteed relative ordering of operations in distinct 
processes, except the ordering created by explicit 
synchronization among processes through the use of shared 
signals. Shared signal events are then the means by which a 
precise ordering of events in distinct process can be 
achieved. 
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The communication between processes is reliable. It is 
assured that the receiving process will consume every 
signal produced by a sender process. However, it is not 
guaranteed that the ordering of the signals generated by all 
processes is the same of their consumption. This model is 
adequate to describe events without precise ordering, like 
systems that can have their normal flow interrupted. 
Handshaking or unlimited queues (in practice bounded 
queues) are used to implement the communication model. 
For both cases, each SDL state results in a set of protocol 
communication signals and area overhead to implement the 
protocol. This characteristic may cause large 
communication overhead, which can penalize the 
implementation. 

2.3 Synchronous Modeling Proposal for SDL 

The SDL model for processes assumes single input 
signal consumption for each SDL state. SDL provides a 
construction, called SAVE, to describe processes that 
exchange more than one signal event during an SDL state. 
This construction stores signal events that may be available 
in instants where the process is not able to consume them, 
as illustrated in Figure 2. The SAVE construction 
represented graphically by a parallelogram, stores signal A 
value to be consumed in the next sate. 

The SDL code showed in Figure 2 illustrates that, if the 
process is in state SO, it may deal with two situations. The 
first is B occurring before A, the second is A occurring 
before B. To avoid losing the A value, if it occurs before B, 
the SAVE construction is used to temporarily store its 
contents to be evaluated by another state. 
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Figure 2 - SDL SAVE construction. 

The main drawback of SAVE is area and delay 
overhead. The SDL standard recommends reducing the use 
of SAVE. This is the reason why some synthesis tools do 
not support this construction, including Archimate. To 
overcome this problem, an approach to simulate SAVE in 
synchronous systems is proposed. 

This approach, illustrated in Figure 3, assumes that 
each SDL state represents a clock cycle. Therefore, all 
signals inside a single clock period can be generated 
without relative ordering, as long as they remain stable 
during the clock transition, which is exactly what is 
expected in a synchronous system. What determines state 
transition is a clock event, instead of any other input signal 
event. In the example illustrated in Figure 3, any transition 
of signals A or B will be stored respectiGely in varA or 
varB local process variables. Even with this approach, the 
SDL concurrency model implies a communication overhead 
for synchronous systems. 

(+) (+) (+I 
Figure 3 - An approach to simulate SAVE construction. 

3 Case Studies 

This Section presents the characteristics of two case 
studies, used as benchmarks in the next Section. Both 
systems were described in SDL and VHDL languages. 
VHDL descriptions were implemented in FPGAs. The first 
case study is an industrial application and the second is an 
academic example. 

3.1 DropInsert Benchmark 

The DropInsert is a telecom system that manipulates an 
El multiframe (h4F) [17], dropping and inserting data 
andor voice channels. MF is a structure made up of two 
sub-multiframes (SMF). An SMF contains 8 frames; each 

frame has 32 slots and each slot has 8 bits, for a total of 256 
bits per frame. The basic structure of a MF is depicted in 
Figure 4. The first slot of each frame contains MF control 
information. The rest of the slots (1 to 31) are responsible 
for carrying voice and data. As the frame repetition rate is 
8KHz, the basic frequency of an El  frame is 2048 KHz. 

Figure 4 - Basic El Multiframe structure. 

This system is part of the physical level of OS1 
reference model. Voice transmission implies real time 
operation. DropInsert needs to evaluate one bit in less than 
490 ns, meaning the implementation is not time-critical for 
most devices. Because El frames may carry data, it is 
necessary to guarantee reliable communication. The El 
protocol is essentially asynchronous, the first time slot is 
used to synchronize the frame operation. The DropInsert 
implementation of this control-flow protocol is 
synchronous, using the method proposed in Section 2.3. 
Thirty concurrent VHDL processes were employed to 
implement DropInsert in the hand coded description. Half 
of these processes are essentially related to bit 
manipulation. 

3.2 Polygon Filling Benchmark 

The second case study is an academic example of an 
algorithm to fill non-concave polygons. The algorithm 
receives a set of coordinates, representing a polygon, and 
generates the horizontal lines to fill it. Figure 5 illustrates a 
polygon and a filling table data structure that stores the 
horizontal line coordinates. The Y coordinate is used as an 
index for the filling table. For example, row Y4 of the filling 
table has the & (begin) and & (end) coordinates of a 
horizontal line used to fill the line of the polygon. The 
input image can have thousands of polygons, and 
consequently, the same number of filling tables is created, 
This behavior involves a large amount of memory accesses. 
Distinct from the DropInsert system, Polygon is typically a 
dataflow-oriented system. 
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Figure 5 - Example of polygon and filling for the polygon- 

filling benchmark. 

The polygon filling benchmark was partitioned in five 
SDL processes. The main feature of this particular partition 
is the great number of messages exchanged between 
processes. These processes are illustrated in Figure 6. The 
delta-x and delta2 processes perform subtractions. The 
displac-y process does comparisons. The displac-x process 
executes divisions. The pointxen process generates 
horizontal lines to fill the polygon. 
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Figure 6 - SDL code for the polygon-filling benchmark. 

4 Results 

This Section presents results obtained from DropInsert 
and Polygon case studies. Both systems are used to analyze 
the integration of SDL design capture commercial tools and 
the SDL to VHDL translation automatically performed by 
Archimate. 

The Polygon benchmark has three VHDL descriptions: 
( i )  Hand-coded; (ii) Singleqrocess, obtained from a single 
process SDL description, without concurrency; 
(iii) Fivegrocesses, explores concurrency and 
communication. The DropInsert benchmark is more 
complex than Polygon, having just two VHDL descriptions: 
( i )  Hand-coded and (ii) Automatic. In both case studies, the 
hand coded descriptions of DropInsert and Polygon were 
implemented using traditional digital system tools like 
manual design entry followed by an HDL simulator and 
hardware synthesis tools. The codesign tool automatically 
generated the other VHDL descriptions from SDL. 

4.1 SDL to VHDL Translation 

The DropInsert benchmark was first described with 
Cinderella SDL [lo]. To evaluate SDL portability, the 
Cinderella description was used as an entry for two other 
SDL environments, Telelogic TAU SDL [9], and 
ObgectGeode [ll].  It was observed that the graphical 
representation is not the same and the generated textual 
description, used by the codesign tool, was slightly different 
among the tools. In addition, TAU SDL is the only tool 
generating input code accepted by Archimate. This fact 
shows that either SDL is only partially portable, or that 
Archimate accepts only a subset of SDL. 

The VHDL code generated by the co-synthesis tool 
[12][16] has the following basic template: 

The entity of each synthesized description (module) is a 
function of the selected communication protocol. For 
the handshake protocol an SDL channel is represented 
by send, acknowledge and data ports in VHDL. Each 
entity has just one input interface, with a set of ports 
necessary to implement a given protocol, and may have 
several output interfaces. The number of output 
interfaces depends on the number of target processes, 
such as process de l ta2  in Figure 6, which sends data to 
two processes. The constraint of one input interface 
generates an input serialization, leading to a 
communication overhead, which in turn reduces 
performance. This entity implementation depends on 
the codesign tool and it is strongly related to the SDL 
model, which allows just a single input consumption at 
each state. 
SDL data types used to describe digital systems are 
integer to carry data and non-valued signals to 
represent events. SDL integer type is translated to 
VHDL integer and SDL non-valued signals are 
translated to VHDL bit data type. In hardware, it is 
interesting to restrict the range of data values, to 
optimize the implementation, e.g. 8-bit buses to carry 
ASCII characters. Archimate does not support this kind 
of range limited data types. This results in a VHDL 
description using the full integer range (32 bits in 
VHDL), generating large area penalty. 
An SDL process is translated to one entity/architecture 
in VHDL. Two VHDL processes represent the 
architecture: a combinational and a sequential process. 
These two processes implement the FSM that 
represents the system behavior. This FSM is generally 
very large due to the number of states induced by the 
serialization protocol. For example, there are 15 states 
in the FSM of delta-x SDL process, depicted in Figure 
6, to implement a subtraction. Just one of these states is 
used to execute the operation, the others are needed to 
implement the handshake protocol. This fact also leads 
to an overhead in area and speed, and corroborates the 
idea that SDL is not appropriated to describe 
synchronous digital systems. 
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Due to the large number of signals in the sensitivity list 
of combinational VHDL processes, the hardware 
synthesis tool requires a large amount of time to 
synthesize the modules, and the area and delay 
obtained are not optimized. For example, the same 
SDL process delta-x, which implements a subtraction, 
has a sensitivity list with 12 signals. This problem 
could be reduced if Archimate translated the 
combinational parts to concurrent assignments instead 
a single process. 

4.2 Comparison of SDL and VHDL Verification 

Waveforms are a typical output generated by a VHDL 
simulation. All signals are time tagged, what means that 
there is a total ordering of signals. The time is one of the 
waveform coordinates, the other coordinate is the signal 
value. 

SDL descriptions have an abstract model of simulation 
implemented in the MSC formalism as shown in Figure 7. 
The MSC shows the data signal exchange between 
processes, omitting all communication protocol signals. 
There is a total ordering of signals, but the precise time of 
an event is not important. The vertical lines represent the 
processes and the other lines represent the communication, 
carrying the signal values. In this example, there are two 
processes: data and add. The data process has one state 
called waiting while the add process has two states called 
recvl and recv2. Initially, the data process sends two 
signals, called datal and data2 with value 1 and 2 
respectively, to the add process. This cause in the add 
process a state transition from recvl to recv2. After that, the 
add process answers to data sending a signal called res with 
value 3 

Hand Single 
Coded process 

process data rocess add [-I 

Five 
processes 

Figure 7 - MSC formalism simulation. 

VHDL simulators are, in general, implemented with 
the Discrete Event (DE) model. The DE model implies 
scheduling all signal events in discrete instants of time. The 
abstraction implied by the use of the MSC model leads to 
faster simulation, which is useful for high-level validation. 

On the other hand, VHDL simulations give much more 
detailed information. 

An MSC simulation is used to abstract some 
implementation details and to help the designer to validate 
the system more quickly. These features are expected to 
become relevant for large systems, as waveform analysis 
becomes unfeasible as system complexity increases. 

4.3 Functional Performance Analysis 

This Section analyzes the effects of the communication 
and concurrency models over functional performance. 
Table 1 shows the number of clock cycles necessary to 
perform the RTL simulation on three different Polygon 
implementations. 

Table 1 - Simulation data of different implementations for 
the Polygon system. 

Clock cycles Xf 30 I 530 I 900 

The use of modularity is a well-known method to 
manage design complexity. So, it is reasoliable to expect 
that modularity usage in SDL would not penalize 
performance. However, comparing Singlejrocess and 
Fivegrocesses implementations, it can be noted that 
increasing the number of processes led to a performance 
reduction. When the number of processes in an SDL 
description increases, the overhead associated to the 
handshake protocol also increases. Comparing automatic 
VHDL with hand coded VHDL description, it can be 
observed that it is necessary 15 to 30 times more clock 
cycles to do the same job. The asynchronous protocol and 
the interface serialization are responsible for this 
communication overhead. 

4.4 Synthesis Performance Analysis 

Table 2 presents some results obtained from the 
Polygon benchmark, targeted to the 300,000 equivalent 
gates XCV300BG352. The first two lines contain the 
number of Configurable Logic Blocks (CLBs) and the 
number of D flip-flops, roughly representing the area to 
implement the system. The third line shows maximum 
operating frequency estimation. The last line displays the 
CPU time to complete the synthesis on a Sun UltralO, 333 
MHz/256 MB RAM. 

Table 2 - Polygon benchmark synthesis data. 
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Table 1 shows that hand coded implementation is 30 
times faster than the Fivegrocesses  implementation. If the 
same performance level is to be attained for both 
implementations, the Fivegrocesses  should have its clock 
frequency increased 30 times. Besides this, Table 2 show8 
that automatic synthesis penalizes area (3 to 7 times) and 
operating frequency (up to 1.58). 

DropInsert results are not shown because the available 
physical synthesis tools could not synthesize all processes 
due to the excessive number of states. Some processes of 
the automatic generated VHDL description have more than 
500 states, which is 25 times more than the hand coded 
description. This gives a measure of how far is the 
underlying SDL model of computation from synchronous 
systems, a result similar to what is reported in [ 181. 

5 Conclusions 

It is possible to enumerate some SDL language 
advantages for hardware design, such as: 

Steep leaming curve, as it has graphical as well as 
textual input formats; 
Easy system description, due to a relatively small 
number of languages primitives; 
Possibility to express non-determinism due to its 
concurrency model; 
Fast system verification due to the abstract 
communication model used in MSC simulation. 
However, the SDL communication model is unsuitable 

to represent many classes of embedded systems, due to the 
lack of constructions to express synchronous processes, like 
the possibility to simultaneously evaluate more than one 
signal transition at each SDL state. The communication 
model directly affects the choice of the number of processes 
to implement a system, compromising design modularity. 
Using many communicating processes may strongly 
compromise the quality of the hardware implementation. 

The SDL specification using multiple commercial 
environments revealed that available tools are not fully 
compatible, although all claim to be compliant to the ITU-T 
SDL standard. This is particularly true in the case of SDL 
graphical format. This incompatibility is not observed when 
dealing with VHDL tools. 

The Archimate automatic translation of SDL to VHDL 
generates an implementation that end up using much more 
area and operates at a considerably lower frequency than 
the equivalent hand coded design. There are two reasons for 
this: 

The main reason is the SDL communication model. To 
represent this model, Archimate groups all process 
inputs into a single input, with a serial protocol 
identifying each input; 
The VHDL generated by Archimate reflects the same 
structure of the input SDL description, i.e., a set of 

0 

process, mostly without optimization. 
These results show that much more effort is required in 

higher-level synthesis tools research in order to generate 
hardware descriptions competitive with hand coded 
implemented systems. The authors suggest that hardware 
parts of computational systems be described with HDLs, 
leaving SDL to describe software and the communication 
between asynchronous subsystems. 
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