
PROTOTYPING OF EMBEDDED DIGITAL SYSTEMS FROM SDL
LANGUAGE: A CASE STUDY

Cksar A. M. Marcon, Fabian0 Hessel, Alexandre M. Amory, Luis H. L. Ries,
Fernando G. Moraes, Ney L. K Calazans

{marcon, hessel, amory, ries, moraes, calazans) @inJpucrs. br

ABSTRACT

The goal of this paper is to evaluate the performance of
embedded digital systems generated from a system level
description language. The target language is SDL, which is
automatically synthesized with a codesign tool, resulting in
VHDL and C descriptions. The codesign tool is responsible
for software, hardware and communication synthesis. Two
case studies are presented, exploring area and delay results.
The results concern only the hardware synthesis, since the
goal is to compare the performance of systems generated
from hand coded HDL descriptions against a synthesized
HDL. The analysis of the advantages and drawbacks of this
automatic hardware design flow and the evaluation of the
commercial tools integration are also reported.

1 Introduction

Embedded systems requirements are getting
increasingly complex. This complexity requires modem
design methodologies to prototype such systems, viewing
the time-to-market reduction. In general, embedded systems
are built with hardware and software parts developed
concomitantly, a method usually named codesign. Coware
N2C [l], Ptolemy [2], SEA [4], VCC [SI, Seamless [6] and
the work described in [7] are typical environments
supporting codesign. These environments start from a
system level specification with languages like SDL
(Specification and Description Language) [8], Esterel [3],
Java and C/C++ extensions. . .

A typical codesign flow starts with an informal
specification of the whole system, generally in natural
language. This specification contains requirements and
constraints. It enables the elaboration of the system level
description, which depicts functionality as a hierarchical
mixed datdcontrol flow diagram, and can be written in one
of the above-cited languages.

The second step in the design flow consists in the
refinement of the system level communication model,
including protocol selection. Some design alternatives are
examined to identify those meeting the system constraints,
and the architectural choices are made. Once the
architecture is determined, the functional specification is
mapped into an abstract architectural model. At this stage,

I .

&7803-76552/02/$17.00020M IEEE 133

the system can be viewed as a technology independent
multiprocessor architecture mixed with hardware
components.

The third step comprises hardwarekoftware
partitioning and scheduling. Partitioning is the mapping of
functional subsystems onto abstract processes. Scheduling
defines the exact start time of each process. The software
part is described in high-level programming language and
the hardware part is written as HDL code. Besides the
software-only functions, the software part includes low-
level device drivers for interfacing with hardware
components and eventually an OS synthesis step. In the
same manner, the hardware part contains the interfaces and
components to communicate with the software.

The fourth step comprises software, interface and
hardware synthesis. The main difference between input and
output descriptions in this step is that the. output
descriptions are targeted to a specific architecture, including
the choice of processor(s), of low-level communication, and
hardware modules interfaces. At this stage, the architectural
model is detailed and the clock-cycle validation is obtained
through RTL co-simulation.

The design flow proposed in this work is illustrated in
Figure 1. It starts with a system level description in SDL.
This description is alternatively obtained using three SDL
environments, Telelogic TAU SDLTM [9], Cinderella SDLTM
[lo] and ObgectGeodeTM [l 11. These environments allow
system validation through MSC Message Sequence Chart)
high level simulation. The goal of choosing more than one
environment is to compare these tools and evaluating the
portability of SDL descriptions. The tools produce SDL
textual descriptions, which are input to ArchimateTM [12], a
codesign environment performing semi-automatic
hardware-software partition, hardware and software
synthesis and communication refinement. Archimate
intemal format is called BEEF. The synthesis steps generate
C descriptions for software part and RTL VHDL
descriptions for the hardware part. The final step is
prototyping, where hardware is obtained through Leonard0
SpectrumTM [13] and FoundationTM [14] tools. The software
synthesis is not considered here, since our goal is to analyze
the advantages and drawbacks of hardware flow description
only. The systems are targeted to Xilinx Virtex FPGAs.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

-formal system s p e c i f i c a t i a

Figure 1 - Design flow.

System level descriptions allow faster system
validation and technology independence, when compared to
RTL abstraction. From the available system level
languages, this work focuses on SDL. The goal is to
compare SDL synthesized hardware to hand-coded VHDL
descriptions. Comparison considers area and delay figures.
It is also possible to identify problems related to the SDL
underlying model and/or to the codesign synthesis tool.

This paper is organized as follows. Section 2 discusses
the SDL underlying model, emphasizing its usage in digital
systems. Section 3 illustrates two digital system case
studies. The obtained results are discussed in section 4.
Finally, some conclusions and directions for future work are
presented in Section 5 .

2 SDL Underlying Model

SDL is an object-oriented language standardized by
ITU-T [8], which allows the hierarchical description of
systems. The description starts from a construction called
system, where functional blocks are inserted. A block is a
component composed by one or more processes and/or
other blocks. A process contains a sequential behavior and
concurrency is modeled by a set of processes.

2.1 Process Model

The 2.100 ITU-T standard defines that the SDL
underlying model is EFSMs (Extended Finite State

Machines), where all processes are ESFMs. A more
generally accepted terminology to EFSM is to call it a Non-
deterministic Finite Automaton (NFA) [151. For each
process, a finite number of states, inputs and outputs
determine its behavior. Non-determinism capability allows
representing spontaneous transitions, which are transitions
without any signal causing them. This is useful to describe
unpredictable system characteristics. An NFA allows that
each state may consume and generate multiple signals.
However, in SDL only one input signal can be consumed
(evaluated) at each instant. This means that each input
signal consumed corresponds to one state transition in an
SDL description.

2.2 Communication Model

The concurrency model used in SDL allows
independent and asynchronoys processes operation. There
is no guaranteed relative ordering of operations in distinct
processes, except the ordering created by explicit
synchronization among processes through the use of shared
signals. Shared signal events are then the means by which a
precise ordering of events in distinct process can be
achieved.

134

The communication between processes is reliable. It is
assured that the receiving process will consume every
signal produced by a sender process. However, it is not
guaranteed that the ordering of the signals generated by all
processes is the same of their consumption. This model is
adequate to describe events without precise ordering, like
systems that can have their normal flow interrupted.
Handshaking or unlimited queues (in practice bounded
queues) are used to implement the communication model.
For both cases, each SDL state results in a set of protocol
communication signals and area overhead to implement the
protocol. This characteristic may cause large
communication overhead, which can penalize the
implementation.

2.3 Synchronous Modeling Proposal for SDL

The SDL model for processes assumes single input
signal consumption for each SDL state. SDL provides a
construction, called SAVE, to describe processes that
exchange more than one signal event during an SDL state.
This construction stores signal events that may be available
in instants where the process is not able to consume them,
as illustrated in Figure 2. The SAVE construction
represented graphically by a parallelogram, stores signal A
value to be consumed in the next sate.

The SDL code showed in Figure 2 illustrates that, if the
process is in state SO, it may deal with two situations. The
first is B occurring before A, the second is A occurring
before B. To avoid losing the A value, if it occurs before B,
the SAVE construction is used to temporarily store its
contents to be evaluated by another state.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

.i

Figure 2 - SDL SAVE construction.

The main drawback of SAVE is area and delay
overhead. The SDL standard recommends reducing the use
of SAVE. This is the reason why some synthesis tools do
not support this construction, including Archimate. To
overcome this problem, an approach to simulate SAVE in
synchronous systems is proposed.

This approach, illustrated in Figure 3, assumes that
each SDL state represents a clock cycle. Therefore, all
signals inside a single clock period can be generated
without relative ordering, as long as they remain stable
during the clock transition, which is exactly what is
expected in a synchronous system. What determines state
transition is a clock event, instead of any other input signal
event. In the example illustrated in Figure 3, any transition
of signals A or B will be stored respectiGely in varA or
varB local process variables. Even with this approach, the
SDL concurrency model implies a communication overhead
for synchronous systems.

(+) (+) (+I
Figure 3 - An approach to simulate SAVE construction.

3 Case Studies

This Section presents the characteristics of two case
studies, used as benchmarks in the next Section. Both
systems were described in SDL and VHDL languages.
VHDL descriptions were implemented in FPGAs. The first
case study is an industrial application and the second is an
academic example.

3.1 DropInsert Benchmark

The DropInsert is a telecom system that manipulates an
El multiframe (h4F) [17], dropping and inserting data
andor voice channels. MF is a structure made up of two
sub-multiframes (SMF). An SMF contains 8 frames; each

frame has 32 slots and each slot has 8 bits, for a total of 256
bits per frame. The basic structure of a MF is depicted in
Figure 4. The first slot of each frame contains MF control
information. The rest of the slots (1 to 31) are responsible
for carrying voice and data. As the frame repetition rate is
8KHz, the basic frequency of an El frame is 2048 KHz.

Figure 4 - Basic El Multiframe structure.

This system is part of the physical level of OS1
reference model. Voice transmission implies real time
operation. DropInsert needs to evaluate one bit in less than
490 ns, meaning the implementation is not time-critical for
most devices. Because El frames may carry data, it is
necessary to guarantee reliable communication. The El
protocol is essentially asynchronous, the first time slot is
used to synchronize the frame operation. The DropInsert
implementation of this control-flow protocol is
synchronous, using the method proposed in Section 2.3.
Thirty concurrent VHDL processes were employed to
implement DropInsert in the hand coded description. Half
of these processes are essentially related to bit
manipulation.

3.2 Polygon Filling Benchmark

The second case study is an academic example of an
algorithm to fill non-concave polygons. The algorithm
receives a set of coordinates, representing a polygon, and
generates the horizontal lines to fill it. Figure 5 illustrates a
polygon and a filling table data structure that stores the
horizontal line coordinates. The Y coordinate is used as an
index for the filling table. For example, row Y4 of the filling
table has the & (begin) and & (end) coordinates of a
horizontal line used to fill the line of the polygon. The
input image can have thousands of polygons, and
consequently, the same number of filling tables is created,
This behavior involves a large amount of memory accesses.
Distinct from the DropInsert system, Polygon is typically a
dataflow-oriented system.

135

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

x,

-+
MinY

Y4
...

MaxY

Filling Table

m
Figure 5 - Example of polygon and filling for the polygon-

filling benchmark.

The polygon filling benchmark was partitioned in five
SDL processes. The main feature of this particular partition
is the great number of messages exchanged between
processes. These processes are illustrated in Figure 6. The
delta-x and delta2 processes perform subtractions. The
displac-y process does comparisons. The displac-x process
executes divisions. The pointxen process generates
horizontal lines to fill the polygon.

al-1 02-1 cil ci3 ci2 ci4 a2-2 64-1

uuu

m

CO1 CO2 m3

Figure 6 - SDL code for the polygon-filling benchmark.

4 Results

This Section presents results obtained from DropInsert
and Polygon case studies. Both systems are used to analyze
the integration of SDL design capture commercial tools and
the SDL to VHDL translation automatically performed by
Archimate.

The Polygon benchmark has three VHDL descriptions:
(i) Hand-coded; (ii) Singleqrocess, obtained from a single
process SDL description, without concurrency;
(iii) Fivegrocesses, explores concurrency and
communication. The DropInsert benchmark is more
complex than Polygon, having just two VHDL descriptions:
(i) Hand-coded and (ii) Automatic. In both case studies, the
hand coded descriptions of DropInsert and Polygon were
implemented using traditional digital system tools like
manual design entry followed by an HDL simulator and
hardware synthesis tools. The codesign tool automatically
generated the other VHDL descriptions from SDL.

4.1 SDL to VHDL Translation

The DropInsert benchmark was first described with
Cinderella SDL [lo]. To evaluate SDL portability, the
Cinderella description was used as an entry for two other
SDL environments, Telelogic TAU SDL [9], and
ObgectGeode [ll]. It was observed that the graphical
representation is not the same and the generated textual
description, used by the codesign tool, was slightly different
among the tools. In addition, TAU SDL is the only tool
generating input code accepted by Archimate. This fact
shows that either SDL is only partially portable, or that
Archimate accepts only a subset of SDL.

The VHDL code generated by the co-synthesis tool
[12][16] has the following basic template:

The entity of each synthesized description (module) is a
function of the selected communication protocol. For
the handshake protocol an SDL channel is represented
by send, acknowledge and data ports in VHDL. Each
entity has just one input interface, with a set of ports
necessary to implement a given protocol, and may have
several output interfaces. The number of output
interfaces depends on the number of target processes,
such as process de l ta2 in Figure 6, which sends data to
two processes. The constraint of one input interface
generates an input serialization, leading to a
communication overhead, which in turn reduces
performance. This entity implementation depends on
the codesign tool and it is strongly related to the SDL
model, which allows just a single input consumption at
each state.
SDL data types used to describe digital systems are
integer to carry data and non-valued signals to
represent events. SDL integer type is translated to
VHDL integer and SDL non-valued signals are
translated to VHDL bit data type. In hardware, it is
interesting to restrict the range of data values, to
optimize the implementation, e.g. 8-bit buses to carry
ASCII characters. Archimate does not support this kind
of range limited data types. This results in a VHDL
description using the full integer range (32 bits in
VHDL), generating large area penalty.
An SDL process is translated to one entity/architecture
in VHDL. Two VHDL processes represent the
architecture: a combinational and a sequential process.
These two processes implement the FSM that
represents the system behavior. This FSM is generally
very large due to the number of states induced by the
serialization protocol. For example, there are 15 states
in the FSM of delta-x SDL process, depicted in Figure
6, to implement a subtraction. Just one of these states is
used to execute the operation, the others are needed to
implement the handshake protocol. This fact also leads
to an overhead in area and speed, and corroborates the
idea that SDL is not appropriated to describe
synchronous digital systems.

136

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

Due to the large number of signals in the sensitivity list
of combinational VHDL processes, the hardware
synthesis tool requires a large amount of time to
synthesize the modules, and the area and delay
obtained are not optimized. For example, the same
SDL process delta-x, which implements a subtraction,
has a sensitivity list with 12 signals. This problem
could be reduced if Archimate translated the
combinational parts to concurrent assignments instead
a single process.

4.2 Comparison of SDL and VHDL Verification

Waveforms are a typical output generated by a VHDL
simulation. All signals are time tagged, what means that
there is a total ordering of signals. The time is one of the
waveform coordinates, the other coordinate is the signal
value.

SDL descriptions have an abstract model of simulation
implemented in the MSC formalism as shown in Figure 7.
The MSC shows the data signal exchange between
processes, omitting all communication protocol signals.
There is a total ordering of signals, but the precise time of
an event is not important. The vertical lines represent the
processes and the other lines represent the communication,
carrying the signal values. In this example, there are two
processes: data and add. The data process has one state
called waiting while the add process has two states called
recvl and recv2. Initially, the data process sends two
signals, called datal and data2 with value 1 and 2
respectively, to the add process. This cause in the add
process a state transition from recvl to recv2. After that, the
add process answers to data sending a signal called res with
value 3

Hand Single
Coded process

process data rocess add [-I

Five
processes

Figure 7 - MSC formalism simulation.

VHDL simulators are, in general, implemented with
the Discrete Event (DE) model. The DE model implies
scheduling all signal events in discrete instants of time. The
abstraction implied by the use of the MSC model leads to
faster simulation, which is useful for high-level validation.

On the other hand, VHDL simulations give much more
detailed information.

An MSC simulation is used to abstract some
implementation details and to help the designer to validate
the system more quickly. These features are expected to
become relevant for large systems, as waveform analysis
becomes unfeasible as system complexity increases.

4.3 Functional Performance Analysis

This Section analyzes the effects of the communication
and concurrency models over functional performance.
Table 1 shows the number of clock cycles necessary to
perform the RTL simulation on three different Polygon
implementations.

Table 1 - Simulation data of different implementations for
the Polygon system.

Clock cycles Xf 30 I 530 I 900

The use of modularity is a well-known method to
manage design complexity. So, it is reasoliable to expect
that modularity usage in SDL would not penalize
performance. However, comparing Singlejrocess and
Fivegrocesses implementations, it can be noted that
increasing the number of processes led to a performance
reduction. When the number of processes in an SDL
description increases, the overhead associated to the
handshake protocol also increases. Comparing automatic
VHDL with hand coded VHDL description, it can be
observed that it is necessary 15 to 30 times more clock
cycles to do the same job. The asynchronous protocol and
the interface serialization are responsible for this
communication overhead.

4.4 Synthesis Performance Analysis

Table 2 presents some results obtained from the
Polygon benchmark, targeted to the 300,000 equivalent
gates XCV300BG352. The first two lines contain the
number of Configurable Logic Blocks (CLBs) and the
number of D flip-flops, roughly representing the area to
implement the system. The third line shows maximum
operating frequency estimation. The last line displays the
CPU time to complete the synthesis on a Sun UltralO, 333
MHz/256 MB RAM.

Table 2 - Polygon benchmark synthesis data.

137

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

Table 1 shows that hand coded implementation is 30
times faster than the Fivegrocesses implementation. If the
same performance level is to be attained for both
implementations, the Fivegrocesses should have its clock
frequency increased 30 times. Besides this, Table 2 show8
that automatic synthesis penalizes area (3 to 7 times) and
operating frequency (up to 1.58).

DropInsert results are not shown because the available
physical synthesis tools could not synthesize all processes
due to the excessive number of states. Some processes of
the automatic generated VHDL description have more than
500 states, which is 25 times more than the hand coded
description. This gives a measure of how far is the
underlying SDL model of computation from synchronous
systems, a result similar to what is reported in [181.

5 Conclusions

It is possible to enumerate some SDL language
advantages for hardware design, such as:

Steep leaming curve, as it has graphical as well as
textual input formats;
Easy system description, due to a relatively small
number of languages primitives;
Possibility to express non-determinism due to its
concurrency model;
Fast system verification due to the abstract
communication model used in MSC simulation.
However, the SDL communication model is unsuitable

to represent many classes of embedded systems, due to the
lack of constructions to express synchronous processes, like
the possibility to simultaneously evaluate more than one
signal transition at each SDL state. The communication
model directly affects the choice of the number of processes
to implement a system, compromising design modularity.
Using many communicating processes may strongly
compromise the quality of the hardware implementation.

The SDL specification using multiple commercial
environments revealed that available tools are not fully
compatible, although all claim to be compliant to the ITU-T
SDL standard. This is particularly true in the case of SDL
graphical format. This incompatibility is not observed when
dealing with VHDL tools.

The Archimate automatic translation of SDL to VHDL
generates an implementation that end up using much more
area and operates at a considerably lower frequency than
the equivalent hand coded design. There are two reasons for
this:

The main reason is the SDL communication model. To
represent this model, Archimate groups all process
inputs into a single input, with a serial protocol
identifying each input;
The VHDL generated by Archimate reflects the same
structure of the input SDL description, i.e., a set of

0

process, mostly without optimization.
These results show that much more effort is required in

higher-level synthesis tools research in order to generate
hardware descriptions competitive with hand coded
implemented systems. The authors suggest that hardware
parts of computational systems be described with HDLs,
leaving SDL to describe software and the communication
between asynchronous subsystems.

References

[l] K. Van Rompaey, D. Verkest, I. Bolsens and H. De Man.
Coware, A Design Environment for Heterogeneous
Hardware/Sofbvare Systems. In: European Design
Automation Conference. 1996.

[2] B. Lee and A. Lee. Hierarchical Concurrent Finite State
Machines in Ptolemy. In: Intemational Conference on
Application of Concurrency to System Design. pp. 34-40.
1998.

[3] G. Berry. The Foundations of Esterel. Available at:
http://www.esterel.org. INRIA.

[4] B, Kleinjohann. Multilanguage Formalism. MEDEAEsprit
Conference HW/SW Codesign. pp. x.l.1-x.1.22, 1998.

[5] Virtual Component CO-Design (VCC). Available at:
http://www.cadence.com.

[6] R. Klein. A Hardware Software CO-Simulation Environment.
In: RSP'96. pp. 173-177. 1996.

[7] D. E. Thomas, J. K. Adams and H. Schmit. A model and
methodology for Hardware-Software Codesign. IEEEDTC,

[8] ITU-T. Programming Languages: SDL Methodology
Guidelines, SDL Bibliography. ITU-T Recommendation
2.100 -Appendices I and 11, March 1993.

191 Telelogic TAU. A SDL tools for real time systems
development. Telelogic, Inc. Available at:
http://www.teiclogic.com

[lo] Cinderella. A visual SDL tools for systems development.
Available at: http://www.cinderella.dk.

[l l] Telelogic Objectgeode. A SDL tools for real time systems
development. Telelogic, Inc. Available at:
http://www.telelogic.com

[12] Arexsys Archimate. A SDL synthesis tool. Arexsys, Inc.
Available at: http ://www .arexsys . com.

[13] Leonard0 Spectrum. Available at:
http://www.exemplar.com.

[14] Xilinx Foundation. A system synthesis tool. Xilinx, Inc.
Available at: http://www.xilinx.com.

[15] D. Cohen, Introduction to Computer Theory. Wiley & Sons,
1991.

[16] J. M. Daveau, G. Marchioro, A. Jerraya. VHDL generation
from SDL specification. In: CHDL. pp. 182-201, 1997.

[17] N. Calazans, F. Moraes, C. Marcon, V. Blauth, R. Valiati, E.
Manfroi. Effective Industry-Academia Cooperation in
Telecom: a Method, a Case Study and Some Initial Results.
In: XIX Simp6sio Brasileiro de Telecomunica@s, 2001.

[18] A. Muth, G. Farber. SDL as a System Level Specification
Language for Application-Specific Hardware in a Rapid
Prototyping Environment. In: ISSS 2000. pp. 157-162.2000.

Acknowledgements: F. Moraes. N. Cakazans and F. Hessel are partially
financed by CNPq @reject numbers 522939196-1, 520091/96-5.
6801 17/01-6) and FAPERGS hroject number OU0565.5).

vol. 10(3), pp. 16-28. 1993.

138

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:26:22 UTC from IEEE Xplore. Restrictions apply.

http://www.esterel.org
http://www.cadence.com
http://www.teiclogic.com
http://www.cinderella.dk
http://www.telelogic.com
http://www.exemplar.com
http://www.xilinx.com

