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Abstract 

Raising the abstraction level is widely seen as a solution 
to increase productivity, in order to handle the growing 
complexity of real-time embedded applications and the 
time-to-market pressures. In this context, the use of a real-
time operating system (RTOS) becomes extremely important 
to the development of applications with real-time systems 
requirements. However, the use of a detailed RTOS at early 
design phases is a contra sense, and the existing system 
level description languages (SLDL) lack support for RTOS 
modeling at higher abstraction levels. In this paper, we 
introduce an abstract RTOS model, and a set of refinement 
steps that allows refining the abstract model to an 
implementation model at lower abstraction levels. This 
abstract RTOS model provides the main features available 
in a typical RTOS, permitting the designer to model 
parallel and concurrent behavior of real-time embedded 
applications at higher abstraction levels. We use SystemC 
language with some extensions to build the abstract RTOS 
model, allowing a quick evaluation of different scheduling 
algorithms and synchronization mechanisms at the early 
stage of system design. An experimental result with a 
telecom system that consists of fifty tasks with four priority 
levels shows the usefulness of this model. 

1 Introduction 

In order to handle the fast-growing complexity of real-
time embedded applications and time-to-market pressures, 
the design abstraction has been raising to the system level 
specification. Moreover, the software modules are taking 
increasingly important roles in the design of real-time 
embedded applications. Previsions are that embedded 
software represents 80% of the cost of an embedded system 
development [1]. Consequently, the use of a RTOS has 
become extremely important to manage the dynamic real-
time behavior often found in embedded software. 
According to the SIA Roadmap, half a billion dollars in 
shipments of RTOSs was sold in 2002 [1]. However, the 

existing SLDL and methods lack support for modeling a 
RTOS at higher abstraction levels. The designers, 
consequently, must use a detailed RTOS implementation at 
higher abstraction levels. Nevertheless, at higher abstraction 
level, using a detailed RTOS is a contra sense negating the 
abstract system model principles. 

The designer needs both new design methodologies and 
new design techniques to model an abstract RTOS behavior 
at early design phase. However, at higher abstraction levels, 
the system model does not have enough information 
available to model a specific RTOS. The capture of abstract 
RTOS behavior in system level models requires 
enhancements in current design practice. 

Transaction level (TL) is an emergent description level 
for system level design. There are many authors [2][3] 
realizing TL in different ways. In fact, transaction expresses 
communication exchanges. In other words, transaction 
informs the relative order of each process communication. 
Transaction level is an abstraction level, which can lend 
some focus to the ordering of events. The TL modeling 
(TLM) is a sufficient model to represent the events 
ordering. The clock abstraction levels and the separation 
from computation and communication details make the 
model simpler and efficient for fast high-level evaluation. 

This work addresses an abstract RTOS model for 
embedded systems at transaction level. Moreover, a set of 
successive refinement steps is proposed in order to 
synthesize the RTOS TLM into an implementation model at 
lower abstraction levels. The RTOS TLM is written on the 
top of SystemC language [4] with some extensions to model 
the dynamic real-time behavior. It provides the main 
features offered by typical RTOS in software development 
like real-time scheduling, interrupt handling, multitasking, 
task management, task synchronization and preemption [5]. 

Additionally, the designer can obtain power consumption 
estimate of the scheduling algorithms and its penalty in the 
overall system [6]. This estimation is a modeling feature 
that expresses the power consumption in the final 
implementation. The estimation starts from a rough 
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evaluation and is improved by the back-annotation 
technique. 

One important contribution of this work is to model an 
RTOS TL allowing fast evaluation of different scheduling 
algorithms and synchronization mechanisms at early design 
phases, since it enables system simulations an order of 
magnitude faster than lower abstraction levels like RTL. 
Another associated contribution is that our model can be 
integrated into existing system level design flows based on 
C/C++ languages (e.g. SystemC). 

This paper is organized as follows: Section 2 presents 
the related work; the design flow and how the abstract 
model may be integrated are presented in Section 3; Section 
4 presents the RTOS model; Experimental results with a 
telecom system that consists of fifty tasks with four priority 
levels are the subject of Section 5; and finally Section 6 
presents conclusions and future work. 

2 Related Work 

Recently, several works have been focusing on automatic 
RTOS and code generation. Kohout [7] describes the Real-
Time Task Manager (RTM) as a processor extension that 
minimizes the drawbacks associated with RTOSs by 
supporting, in hardware, a few of the common RTOS 
operations that are performance bottlenecks. Adomat [8] 
proposes an exclusive external hardware module designed 
to perform RTOS functions. This model improves 
performance, but it does not allow existing RTOSs to easily 
take advantage of its offerings. 

Wang [9] proposes a high-level abstract model and 
synthesize operating system based on device drivers. O’Nil 
[10] uses a library for each supported OS and an automatic 
selection mechanism, they generate device drivers for a 
range of operating systems. Yi [11] proposes a virtual 
synchronization technique to the case where multiple 
software tasks are executed under the supervision of a real-
time operating system in a single processor. It runs only 
application tasks on the ISS (Instruction Set Simulator) and 
models the RTOS in the cosimulation backplane to achieve 
faster cosimulation. 

Cortadella [12] presents a way to combine static 
scheduling and dynamic scheduling in software synthesis. 
Gauthier [13] and Dziri [14] propose a methodology for 
automatic generation of application-specific operating 
systems and correspondent application software for a target 
processor. This methodology mainly focuses on software 
synthesis issues, the information regarding abstract model 
of the operating system integrated into whole system is not 
provided. Tomiyama [15] described a technique for 
modeling fixed-priority preemptive multi-tasking systems 
based on concurrency and exception-handling mechanisms 

provide by SpecC [16]. This model is limited in its support 
for different scheduling algorithms and inter-task 
communication. 

More recently, researchers have realized the importance 
of dynamic behavior and propose to include it in system 
level design models. Such dynamic features are essentially 
services provided by an OS. Desmet [17] proposes a high 
level model of a system-on-chip operating system (SoCOS). 
It is used for modeling, simulation and analysis of the 
system, and implementation through gradual refinements. 
The emphasis is on the task concurrency issues. However, 
the SoCOS requires own proprietary simulation engine and 
a manual system model creation. Gonzales [18] proposes an 
abstract RTOS model using master-slave timed SystemC. 
The model has a global clock to keep track of time. 
Gerstlauer [19] describes an RTOS model, which is 
effectively a set of commonly used RTOS services, to 
extend the original SpecC language’s ability to handle the 
interleaved execution behavior of dynamic schedulers. The 
adaptation of this model to another SLDL language like 
SystemC may be a hard and complex task, due to lack of 
support to model common services as preemption and true 
multitask execution. 

Our abstract RTOS model is similar to Gonzales and 
Gerstlauer approaches. The main difference is that our 
RTOS model is written on top of SystemC language 
considering untimed system specification at higher 
abstraction levels [3]. By introducing some extensions in 
the SystemC scheduler execution model, we have a 
powerful and flexible RTOS model. Our model allows the 
preemption/resume task and the true multitask execution 
beyond make an estimated power consumption of the 
scheduling algorithms. It can be directly integrated into any 
SystemC-based system model and design flow, and is very 
easy to use. 

3 Design Flow 

This Section describes an embedded system design flow, 
starting from a TL specification, which is refined gradually 
to a hardware and software implementation model, as 
illustrated in Figure 1. The main issue is demonstrating the 
design flow for a specific application with automatic 
generation of an embedded RTOS. 

The system design flow starts with TL specification 
written in SystemC/C++/C and IP modules, where the 
designer specifies the system behavior. The designer 
informs system requirements and architectural constraints, 
like power consumption limit, real-time constraints and 
number of processors of the target architecture. After this, 
two partitioning steps are accomplished. The first one 
determines IP components and hardware and software 
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processes. The IP and hardware synthesis are not the scope 
of this work. In the second partitioning step, the designer 
groups the software processes into multiple clusters. Each 
cluster will be mapped onto a processor in the final 
implementation. The result is a TLM where each cluster 
executes a specific behavior in parallel with other clusters. 
Abstract channels accomplish the communication between 
clusters. 

Target architecture 

RTOSTL Synthesis RTOSTL

no 

RTOSRTL

RTOSIP

Application partition

Architecture 
constraints 

System 
requirements Simulation 

(Achieved timing 
constraints?) 

Refinements 

yes 

Communication synthesis 

no 

Simulation 
(Achieved timing 

and power 
constraints?) 

yes 

Back 
annotation

HW Synthesis 

ApplicationTL

ApplicationTL(SW)

ApplicationTL + RTOSTL

ApplicationRTL + RTOSRTL

Implementation model(HW + SW)

ApplicationTL(HW)

Co-simulation 
(Achieved all constraints?) yes no

ApplicationRTL(HW)

Hardware and software synthesis 

Application(IP)

Figure 1: Design Flow 

A RTOS TL library was designed to fulfill real-time 
constraints. It helps the designer to find the best RTOS 
scheduling policy at high abstraction levels considering 
performance evaluation and power consumption. 

Many architectural aspects are omitted allowing faster 
design space exploration, mainly concerning to scheduling 
policy for multitasks and multiprocessor. 

The RTOS synthesis step inserts the necessary RTOS 
primitives in all software processes, and the scheduling 
process. These primitives are operating system calls that 
allow memory management, interrupt request, inter-
processes communication, synchronization mechanisms, 
and others OS features. At this point, the inter-processes 
communication primitives implement the abstract channels 
as a device driver. 

We use profiles techniques to estimate the execution 
time of each process enabling the scheduling mechanisms to 
preempt software process according to the priority specified 
by the designer. In addition, a first power estimation of 
scheduling mechanisms can be done. This estimation is 
based on previous analysis of the scheduling algorithms. 
The estimation parameter is update by back-annotation 
techniques. 

Transaction level abstracts some communication details, 
although it is possible to evaluate the events order and 
analyze if all time constraints are achieved with the chosen 
scheduling mechanism. It helps the designer to quickly 
search for the best scheduling mechanism of each processor 
and the inter-processor communication mechanism. 

A first simulation step is applied to the system. The IP 
and hardware parts behavior are described as test-bench 
allowing software elements validation. Once the application 
achieves all requirements at transaction level, the designer 
can refine the application description and the selected 
RTOS for each processor. 

The refinement of the application description from TLM 
to RTL is done manually generating a synthesizable 
description. The RTOS refinement is based on two 
available libraries: one that is the equivalent of RTOS TL at 
register transfer level and another that is composed by 
RTOS IP. The RTOS TL refinement to RTOS RTL is quite 
natural for our design flow, since both represent the same 
OS at different abstraction level. In this case, all TL 
primitives are changed to RTL primitives. On the other 
hand, the refinement to RTOS IP is harder due to different 
approaches adopted by IP providers, implying some extra 
manual steps. This level provides more precise timing and 
power consumption estimation. 

The application and RTOS are validated by simulation 
and the systems requirements are evaluated. If the 
constraints are achieved, the flow goes to the next step, 
otherwise another scheduling policy or hardware/software 
partition can be evaluated. 

For IP, hardware and software components 
communication interfaces are synthesized to hardware RTL 
according to the communication protocol and the target 
architecture. The design flow supports inter-process 
communication synthesis with shared memory, rendezvous, 
FIFO and buses. The communication synthesis problem is 
not addressed in this work [14]. 

A hardware/software cosimulation is the last validation 
step. It considers one simulator for each processor and one 
simulator for hardware components. This step usually 
expends much time, mainly due to the input simulator 
vector. Nevertheless, the cosimulation step is associated 
with an accurate power model, which allows to feedback the 
achieved power value to the RTOS libraries, improving 
possible next evaluations. 

As the last step of the design flow, hardware and 
software are synthesized to the target architecture. Our first 
approach considers a single FPGA as target architecture. In 
this context, hardware components are synthesized using 
specific FPGA commercial tools. For each software cluster, 
all RTOS primitives are mapped to the correspondent 
RTOS API, enabling to compile the code into processor 
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instruction set. Each compiled code produces the executable 
code for each processor. 

4 The RTOS Model 

As mentioned previously, our RTOS model is 
implemented on the top of the SystemC language. However, 
the SystemC lacks support to model the dynamic real-time 
behavior commonly found in embedded software. 
Typically, SystemC does not provide a mechanism to 
preempt and resume a thread during execution time. In 
order to allow the aforementioned problem, we make some 
languages extensions. The SystemC Open Initiative still 
works in a new release (SystemC 3.0) to provide 
mechanisms to solve it. 

The RTOS model is incorporated into the RTOS TL 
library and can be parametrizable in terms of task 
parameters. The library provides RTOS models with 
different scheduling algorithms. Our RTOS model supports 
both periodic and non-periodic real-time tasks. 

The RTOS model provides two major categories of 
services: OS management and Task management. 

OS management services are responsible to the 
initialization of the RTOS. The sc_rtos_init initializes the 
relevant RTOS data structures and starts the multitasking 
scheduling. In addition, the sc_rtos_reset reinitializes the 
RTOS, it is very useful for validation purposes. In order to 
allow the preemption and resume tasks during execution 
time, we introduced two primitives: sc_rtos_task_suspend
that preempt a task and sc_rtos_task_resume that resume a 
task. These primitives receive the task identification as 
parameter. 

Task management services are responsible to make the 
interface between the kernel and the system application. 
One of the objectives is to provide to the user an easy way 
to describe an application as a set of tasks. In the following 
sections we will discuss the task model, scheduler model, 
and synchronization model. 

4.1 Task Model 

We model the task such that it holds all necessary 
information to execution. Each task is implemented as a 
PosixThread in order to allow preemption and resume by 
the scheduler. The sc_task_create primitive is used to 
characterize the execution of the task. It defines the task 
parameters such as: identification, name, priority, period, 
deadline, worst-case execution time (WCET), and best-case 
execution time (BCET). In addition, this primitive assigns 
the task to the scheduler that attributes idle as the initial task 
state. 

Several others standard RTOS primitives are included in 
the model like as task notify (sc_task_notify), task 
termination (sc_task_end), and task suspension 
(sc_task_wait). To model periodic tasks, we introduced the 
sc_task_end_cycle primitive. This primitive notifies the 
scheduler that a task finished its computation in the current 
cycle. Figure 2 presents a partial source code example of 
task modeling. The system sys_ex is initialized (line 2) and 
executed by 100,000 ns (line 4). We have two tasks: t1 and 
t2 (lines 8 and 10). The task t1 is created with the following 
parameters: identification = id1, name = t1, priority = 1, 
period = 80, WCET = 14, BCET = 8, and deadline = 30. 
The task t1 is assigned to the scheduler in line 9. The RTOS 
scheduler is initialized with time slice (line 13). Tasks are 
derived of PosixThread class (line 16). 

1. int sc_main(int argc, char *argv[]) { 
2. system sys_ex("System example"); 
3. ... 
4. sc_start(100000, SC_NS); 
5. } 

6. class system : public sc_rtos { 
7. system(sc_module_name name) : sc_rtos(name)  { 
8. task t1 = new task(id1, "t1", 1, 80, 14, 8, 30); 
9. sc_task_create(t1); 
10. task t2 = new task(id2, "t2", 3, 60, 12, 11, 25); 
11. sc_task_create(t2); 
12. ... 
13. sc_rtos_init(1); 
14. } 
15. }; 

16. class task: public PosixThread, public sc_module { 
17. task(id, "task_name", priority, period, wcet, bcet, deadline) :  
18. sc_module("task_name") { 
19. ... 
20. } 
21. run() { 
22. while(true) { 
23. // task behavior pointed by id 
24. sc_rtos_end_cycle(); 
25. } 
26. }; 

Figure 2: Task modeling 

4.2 Scheduler Model 

At the system level we are not interested in the exact task 
functionality, but rather how long it takes to compute and 
the tasks interactions. From this point of view, the first task 
of the RTOS is to determine which process runs next, e.g. to 
decide the tasks execution order. Task management, 
performed by scheduler, is the most important function in 
the RTOS model. Our scheduler model considers that all 
tasks are independent threads. Hierarchical tasks need to be 
flatted. Each task is characterized by deadline, period, 
priority, WCET, and BCET. Moreover, a task may be 
preempted by a higher priority task. 
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The scheduler model considers that a task can be in one 
of three basic scheduling states: ready, execute or idle [6], 
as is depicted in Figure 3. There is at most one task 
executing at any time. If there is no useful work to be done, 
just the schedule task works. Our model considers that all 
tasks are in the idle state at the beginning (sc_task_create).
The task stays in idle state while it does not enter in a new 
period or while it needs data that is not yet received. A task 
goes into the ready state when it receives the required data, 
when it enters in a new period or when it is preempted by a 
higher priority task. When a task is preempted 
(sc_rtos_task_suspend) it waits for a resume command 
from the scheduler (sc_task_resume). A task can go into the 
execute state when it receives a run command from the 
scheduler. The task will receive this command only when it 
has all data required, is ready to run, and the scheduler 
selects the task as the next task to run. Once the task has 
finished its computation in the current cycle, it sends a 
message to the scheduler (sc_task_end_cycle) and goes to 
the idle state. The task also goes to the idle state when it 
requests a data that is not available. Otherwise, when non-
periodic task finished its execution, it sends a terminate 
message to the scheduler (sc_task_end). In this case, the 
scheduler kills the task (sc_rtos_task_kill).

Ti preempted 

Ti chose to run 

Ti gets data 
Ti needs data, 
Ti end cycle 

Ti received data, 
Ti new period 

Idle 

Execute Ready 

Initial state 

Figure 3: Scheduling state of tasks 

The scheduler is modeled as a SystemC thread process 
(sc_thread) that runs continually. In case of a task goes to 
the idle or ready states, the scheduler selects among the 
ready tasks, a candidate task to run, according to scheduler 
algorithm. However, if there is not a candidate task (ready 
list is empty), the scheduler just waits until a ready task is 
available. For instance, our scheduler implements FCFS, 
Round Robin, Rate-Monotonic (RM) and Earliest Deadline 
First (EDF) scheduling algorithms [20]. 

4.3 Synchronization Model 

RTOS synchronization model provides services to 
synchronize concurrent and cooperative tasks, supporting 
mechanisms that handle inter-processor and intra-processor 
synchronization problems. Our model offers two primitives: 
sc_task_wait and sc_task_notify.

The sc_task_wait calls causes current task to wait until 
another task invokes the sc_task_notify primitive or a 

specified amount of time has elapsed. When it happens the 
task goes to the idle state being inserted into a wait task list 
and becomes disabled for scheduling purposes. The 
sc_task_notify calls wakes up a single task that is waiting 
for data synchronization. 

When tasks execute input/output operations, like 
send/receive the tasks need to notify the RTOS scheduler. 
We implemented this notification by the use of these two 
primitives. An abstract receive operation is implemented on 
lower levels as a receive function aggregated to 
sc_task_wait call, meaning that the task is waiting for input 
data. An abstract send operation is implemented on lower 
abstraction levels as a send function aggregated to 
sc_task_notify call. The sc_task_notify allows to scheduler 
wake up the tasks that are waiting for the sent data. 

5 Case Study 

We use our design flow to redesign a telecom system in 
context of industry/academy cooperation. The system is a 
digital private branch exchange (PBX) whose commercial 
name is XT-130. The PBX is a soft real-time system [6]. 
The industry goal is to aggregate new important feature, as 
voice over IP (VOIP), without losing time redesign all 
telecom product line. The main trouble is that all telecom 
system was ad hoc designed to support real-time 
requirements; generating a monolithic system, where 
application and operating system are strongly coupled. To 
aggregate new feature without much effort it is necessary to 
use an OS that supports the actual and new features, which 
is generally found in modular designs. However, monolithic 
to modular design swap can imply functionality reduction, 
mainly to real-time functions, implying many design 
evaluating time, reducing the industry profits and many 
times resulting market losses. As a solution, we proposed 
our approach that enables fast evaluations at earlier design 
stages. 

The PBX is a complex system composed by more than 
fifty processes, with four priority levels. Twenty percent of 
these processes have real-time requirements. Since much 
code is developed in C/C++ and assembly, we proposed a 
partitioning where system processes are divided as follows: 
92% software elements; 6% assembly routines (treated in 
our design flow as IP components); and 2% hardware 
elements. The hardware parts are mapped into Altera 
FLEX-10KE FPGA. The software elements are grouped in 
clusters (Section 3). IP modules and software clusters are 
mapped into AM186ES (AMD 80186) microprocessor and 
ADSP2185M (Analog Devices) DSP. For each processor a 
small custom RTOS kernel was generated and the system 
description was refined and targeted to the architecture 
using the design flow described in Figure 1. In 
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communication synthesis step we chose shared memory for 
processors communication, and rendezvous protocol for 
FPGA and microprocessor communication. There is no 
communication between FPGA and DSP processes. 

There were some doubts to be solved, firstly if the new 
RTOS approach fulfilled all real-time constraints, secondly 
if the RTOS code size was acceptable, since memory was a 
strong design constraint. These doubts were answered by 
the RTOS code compilation and by the TL/RTL simulation. 
Table 1 depicts the code size achieved for RTOS and the 
rest of application for both processors. 

Table 1: Code size comparison (in bytes) 

 AM186ES DSP 
C/C++ 457,976 16,356 
Assembly 22,233 27,453 
Scheduling algorithm 7,456 2,489 

Test-bench vectors, extracted from real PBX operation 
during high activity (ten minutes of operation time), excited 
the PBX description during RTL simulation and 
cosimulation phases. The three AM186ES simulations, 
illustrated in Table 2, show the advantages achieved by high 
description levels.  

We use profile techniques, with the test-bench vectors, to 
estimate the WCET and the BCET of each process, these 
times are entry of each process in TL simulation. Therefore, 
WCET, BCET and the execution period replaces the 
process behavior, allowing faster simulation with 
reasonable accuracy, as RTL simulation confirms. For TL 
and RTL simulation, the rest of the systems is considered as 
test-bench, on the other hand, the cosimulation considers 
the joint operation of three simulators (two C/C++ 
simulators and one VHDL simulator). 

Table 2: AM186ES simulation analysis 

Simulation time 
TL-simulation 16min 
RTL-simulation 6h 15min
Cosimulation 98h 43min

At TL it was possible to observe that RM scheduling 
achieved the smallest number of context switches, as it is 
depicted in Table 3. Table 3 also shows the number of times 
that the real-time processes that did not achieve theirs 
deadline in TL simulation, needing to be delayed. EDF 
scheduling acquired the best result. Considering context 
switching, real-time deadline and the low algorithm 
complexity, we chose RM as the scheduler policy for 
AM186ES operation. The majority of DSP tasks are time 
slices scheduled by a timer interrupt. Nevertheless, some 
tasks with less priority are Round-robin scheduled by a 
small custom RTOS kernel, with less than 3 Kbytes (Table 
1). The total size of AM186ES RTOS is three times bigger 

than the ADSP2185M, due to other included features, like 
memory management. 

Table 3: AM186ES scheduling analysis 

Scheduling Context switches RT constraints fail 
Round-robin 465,577 97
EDF 490,254 3
RM 402,239 5

Actually, we are studying the possibility of replacing our 
custom RTOS by RtLinux open source. This decision is 
motivated to allow the evaluation of the RTOS IP branch in 
our design flow. The great challenge is to maintain 
AM186ES processor, which addresses only 1 Mbyte of 
memory. 

6 Conclusions and Future Work 

This paper addresses the issue of modeling abstract 
RTOS at higher abstraction levels. We presented an abstract 
RTOS model and a set of refinements steps that allows 
refining the abstract model to an implementation model at 
lower abstraction levels. The model allows the designer to 
evaluate quickly different scheduling algorithms and 
synchronization mechanisms at early design phases in order 
to validate the dynamic real-time behavior of the system. 
Additionally, the designer can have an estimated power 
consumption of the scheduling algorithms and its penalty in 
the overall system. The proposed abstract model provides 
all main features found in any modern RTOS but not 
available in current SystemC language through a reduce set 
of system calls. We apply this model in the development of 
a PBX system composed of fifty tasks with four priority 
levels and real-time requirements. 

Future work includes implementing the RTOS interfaces 
for commercial real-time operational systems and new 
techniques to power estimation at higher abstraction levels. 
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