
Abstract RTOS Modeling for Embedded Systems

Fabiano Hessel, Vitor M. da Rosa, Igor M. Reis,
Ricardo Planner

Faculdade de Informática
Pontifícia Universidade Católica do RS

Av. Ipiranga 6681, Porto Alegre, BRAZIL
hessel@inf.pucrs.br

César A. M. Marcon, Altamiro A. Susin
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Av. B. Gonçalves, 9500, Porto Alegre, BRAZIL

marcon@inf.ufrgs.br

Abstract

Raising the abstraction level is widely seen as a solution
to increase productivity, in order to handle the growing
complexity of real-time embedded applications and the
time-to-market pressures. In this context, the use of a real-
time operating system (RTOS) becomes extremely important
to the development of applications with real-time systems
requirements. However, the use of a detailed RTOS at early
design phases is a contra sense, and the existing system
level description languages (SLDL) lack support for RTOS
modeling at higher abstraction levels. In this paper, we
introduce an abstract RTOS model, and a set of refinement
steps that allows refining the abstract model to an
implementation model at lower abstraction levels. This
abstract RTOS model provides the main features available
in a typical RTOS, permitting the designer to model
parallel and concurrent behavior of real-time embedded
applications at higher abstraction levels. We use SystemC
language with some extensions to build the abstract RTOS
model, allowing a quick evaluation of different scheduling
algorithms and synchronization mechanisms at the early
stage of system design. An experimental result with a
telecom system that consists of fifty tasks with four priority
levels shows the usefulness of this model.

1 Introduction

In order to handle the fast-growing complexity of real-
time embedded applications and time-to-market pressures,
the design abstraction has been raising to the system level
specification. Moreover, the software modules are taking
increasingly important roles in the design of real-time
embedded applications. Previsions are that embedded
software represents 80% of the cost of an embedded system
development [1]. Consequently, the use of a RTOS has
become extremely important to manage the dynamic real-
time behavior often found in embedded software.
According to the SIA Roadmap, half a billion dollars in
shipments of RTOSs was sold in 2002 [1]. However, the

existing SLDL and methods lack support for modeling a
RTOS at higher abstraction levels. The designers,
consequently, must use a detailed RTOS implementation at
higher abstraction levels. Nevertheless, at higher abstraction
level, using a detailed RTOS is a contra sense negating the
abstract system model principles.

The designer needs both new design methodologies and
new design techniques to model an abstract RTOS behavior
at early design phase. However, at higher abstraction levels,
the system model does not have enough information
available to model a specific RTOS. The capture of abstract
RTOS behavior in system level models requires
enhancements in current design practice.

Transaction level (TL) is an emergent description level
for system level design. There are many authors [2][3]
realizing TL in different ways. In fact, transaction expresses
communication exchanges. In other words, transaction
informs the relative order of each process communication.
Transaction level is an abstraction level, which can lend
some focus to the ordering of events. The TL modeling
(TLM) is a sufficient model to represent the events
ordering. The clock abstraction levels and the separation
from computation and communication details make the
model simpler and efficient for fast high-level evaluation.

This work addresses an abstract RTOS model for
embedded systems at transaction level. Moreover, a set of
successive refinement steps is proposed in order to
synthesize the RTOS TLM into an implementation model at
lower abstraction levels. The RTOS TLM is written on the
top of SystemC language [4] with some extensions to model
the dynamic real-time behavior. It provides the main
features offered by typical RTOS in software development
like real-time scheduling, interrupt handling, multitasking,
task management, task synchronization and preemption [5].

Additionally, the designer can obtain power consumption
estimate of the scheduling algorithms and its penalty in the
overall system [6]. This estimation is a modeling feature
that expresses the power consumption in the final
implementation. The estimation starts from a rough

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

evaluation and is improved by the back-annotation
technique.

One important contribution of this work is to model an
RTOS TL allowing fast evaluation of different scheduling
algorithms and synchronization mechanisms at early design
phases, since it enables system simulations an order of
magnitude faster than lower abstraction levels like RTL.
Another associated contribution is that our model can be
integrated into existing system level design flows based on
C/C++ languages (e.g. SystemC).

This paper is organized as follows: Section 2 presents
the related work; the design flow and how the abstract
model may be integrated are presented in Section 3; Section
4 presents the RTOS model; Experimental results with a
telecom system that consists of fifty tasks with four priority
levels are the subject of Section 5; and finally Section 6
presents conclusions and future work.

2 Related Work

Recently, several works have been focusing on automatic
RTOS and code generation. Kohout [7] describes the Real-
Time Task Manager (RTM) as a processor extension that
minimizes the drawbacks associated with RTOSs by
supporting, in hardware, a few of the common RTOS
operations that are performance bottlenecks. Adomat [8]
proposes an exclusive external hardware module designed
to perform RTOS functions. This model improves
performance, but it does not allow existing RTOSs to easily
take advantage of its offerings.

Wang [9] proposes a high-level abstract model and
synthesize operating system based on device drivers. O’Nil
[10] uses a library for each supported OS and an automatic
selection mechanism, they generate device drivers for a
range of operating systems. Yi [11] proposes a virtual
synchronization technique to the case where multiple
software tasks are executed under the supervision of a real-
time operating system in a single processor. It runs only
application tasks on the ISS (Instruction Set Simulator) and
models the RTOS in the cosimulation backplane to achieve
faster cosimulation.

Cortadella [12] presents a way to combine static
scheduling and dynamic scheduling in software synthesis.
Gauthier [13] and Dziri [14] propose a methodology for
automatic generation of application-specific operating
systems and correspondent application software for a target
processor. This methodology mainly focuses on software
synthesis issues, the information regarding abstract model
of the operating system integrated into whole system is not
provided. Tomiyama [15] described a technique for
modeling fixed-priority preemptive multi-tasking systems
based on concurrency and exception-handling mechanisms

provide by SpecC [16]. This model is limited in its support
for different scheduling algorithms and inter-task
communication.

More recently, researchers have realized the importance
of dynamic behavior and propose to include it in system
level design models. Such dynamic features are essentially
services provided by an OS. Desmet [17] proposes a high
level model of a system-on-chip operating system (SoCOS).
It is used for modeling, simulation and analysis of the
system, and implementation through gradual refinements.
The emphasis is on the task concurrency issues. However,
the SoCOS requires own proprietary simulation engine and
a manual system model creation. Gonzales [18] proposes an
abstract RTOS model using master-slave timed SystemC.
The model has a global clock to keep track of time.
Gerstlauer [19] describes an RTOS model, which is
effectively a set of commonly used RTOS services, to
extend the original SpecC language’s ability to handle the
interleaved execution behavior of dynamic schedulers. The
adaptation of this model to another SLDL language like
SystemC may be a hard and complex task, due to lack of
support to model common services as preemption and true
multitask execution.

Our abstract RTOS model is similar to Gonzales and
Gerstlauer approaches. The main difference is that our
RTOS model is written on top of SystemC language
considering untimed system specification at higher
abstraction levels [3]. By introducing some extensions in
the SystemC scheduler execution model, we have a
powerful and flexible RTOS model. Our model allows the
preemption/resume task and the true multitask execution
beyond make an estimated power consumption of the
scheduling algorithms. It can be directly integrated into any
SystemC-based system model and design flow, and is very
easy to use.

3 Design Flow

This Section describes an embedded system design flow,
starting from a TL specification, which is refined gradually
to a hardware and software implementation model, as
illustrated in Figure 1. The main issue is demonstrating the
design flow for a specific application with automatic
generation of an embedded RTOS.

The system design flow starts with TL specification
written in SystemC/C++/C and IP modules, where the
designer specifies the system behavior. The designer
informs system requirements and architectural constraints,
like power consumption limit, real-time constraints and
number of processors of the target architecture. After this,
two partitioning steps are accomplished. The first one
determines IP components and hardware and software

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

processes. The IP and hardware synthesis are not the scope
of this work. In the second partitioning step, the designer
groups the software processes into multiple clusters. Each
cluster will be mapped onto a processor in the final
implementation. The result is a TLM where each cluster
executes a specific behavior in parallel with other clusters.
Abstract channels accomplish the communication between
clusters.

Target architecture

RTOSTL Synthesis RTOSTL

no

RTOSRTL

RTOSIP

Application partition

Architecture
constraints

System
requirements Simulation

(Achieved timing
constraints?)

Refinements

yes

Communication synthesis

no

Simulation
(Achieved timing

and power
constraints?)

yes

Back
annotation

HW Synthesis

ApplicationTL

ApplicationTL(SW)

ApplicationTL + RTOSTL

ApplicationRTL + RTOSRTL

Implementation model(HW + SW)

ApplicationTL(HW)

Co-simulation
(Achieved all constraints?) yes no

ApplicationRTL(HW)

Hardware and software synthesis

Application(IP)

Figure 1: Design Flow

A RTOS TL library was designed to fulfill real-time
constraints. It helps the designer to find the best RTOS
scheduling policy at high abstraction levels considering
performance evaluation and power consumption.

Many architectural aspects are omitted allowing faster
design space exploration, mainly concerning to scheduling
policy for multitasks and multiprocessor.

The RTOS synthesis step inserts the necessary RTOS
primitives in all software processes, and the scheduling
process. These primitives are operating system calls that
allow memory management, interrupt request, inter-
processes communication, synchronization mechanisms,
and others OS features. At this point, the inter-processes
communication primitives implement the abstract channels
as a device driver.

We use profiles techniques to estimate the execution
time of each process enabling the scheduling mechanisms to
preempt software process according to the priority specified
by the designer. In addition, a first power estimation of
scheduling mechanisms can be done. This estimation is
based on previous analysis of the scheduling algorithms.
The estimation parameter is update by back-annotation
techniques.

Transaction level abstracts some communication details,
although it is possible to evaluate the events order and
analyze if all time constraints are achieved with the chosen
scheduling mechanism. It helps the designer to quickly
search for the best scheduling mechanism of each processor
and the inter-processor communication mechanism.

A first simulation step is applied to the system. The IP
and hardware parts behavior are described as test-bench
allowing software elements validation. Once the application
achieves all requirements at transaction level, the designer
can refine the application description and the selected
RTOS for each processor.

The refinement of the application description from TLM
to RTL is done manually generating a synthesizable
description. The RTOS refinement is based on two
available libraries: one that is the equivalent of RTOS TL at
register transfer level and another that is composed by
RTOS IP. The RTOS TL refinement to RTOS RTL is quite
natural for our design flow, since both represent the same
OS at different abstraction level. In this case, all TL
primitives are changed to RTL primitives. On the other
hand, the refinement to RTOS IP is harder due to different
approaches adopted by IP providers, implying some extra
manual steps. This level provides more precise timing and
power consumption estimation.

The application and RTOS are validated by simulation
and the systems requirements are evaluated. If the
constraints are achieved, the flow goes to the next step,
otherwise another scheduling policy or hardware/software
partition can be evaluated.

For IP, hardware and software components
communication interfaces are synthesized to hardware RTL
according to the communication protocol and the target
architecture. The design flow supports inter-process
communication synthesis with shared memory, rendezvous,
FIFO and buses. The communication synthesis problem is
not addressed in this work [14].

A hardware/software cosimulation is the last validation
step. It considers one simulator for each processor and one
simulator for hardware components. This step usually
expends much time, mainly due to the input simulator
vector. Nevertheless, the cosimulation step is associated
with an accurate power model, which allows to feedback the
achieved power value to the RTOS libraries, improving
possible next evaluations.

As the last step of the design flow, hardware and
software are synthesized to the target architecture. Our first
approach considers a single FPGA as target architecture. In
this context, hardware components are synthesized using
specific FPGA commercial tools. For each software cluster,
all RTOS primitives are mapped to the correspondent
RTOS API, enabling to compile the code into processor

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

instruction set. Each compiled code produces the executable
code for each processor.

4 The RTOS Model

As mentioned previously, our RTOS model is
implemented on the top of the SystemC language. However,
the SystemC lacks support to model the dynamic real-time
behavior commonly found in embedded software.
Typically, SystemC does not provide a mechanism to
preempt and resume a thread during execution time. In
order to allow the aforementioned problem, we make some
languages extensions. The SystemC Open Initiative still
works in a new release (SystemC 3.0) to provide
mechanisms to solve it.

The RTOS model is incorporated into the RTOS TL
library and can be parametrizable in terms of task
parameters. The library provides RTOS models with
different scheduling algorithms. Our RTOS model supports
both periodic and non-periodic real-time tasks.

The RTOS model provides two major categories of
services: OS management and Task management.

OS management services are responsible to the
initialization of the RTOS. The sc_rtos_init initializes the
relevant RTOS data structures and starts the multitasking
scheduling. In addition, the sc_rtos_reset reinitializes the
RTOS, it is very useful for validation purposes. In order to
allow the preemption and resume tasks during execution
time, we introduced two primitives: sc_rtos_task_suspend
that preempt a task and sc_rtos_task_resume that resume a
task. These primitives receive the task identification as
parameter.

Task management services are responsible to make the
interface between the kernel and the system application.
One of the objectives is to provide to the user an easy way
to describe an application as a set of tasks. In the following
sections we will discuss the task model, scheduler model,
and synchronization model.

4.1 Task Model

We model the task such that it holds all necessary
information to execution. Each task is implemented as a
PosixThread in order to allow preemption and resume by
the scheduler. The sc_task_create primitive is used to
characterize the execution of the task. It defines the task
parameters such as: identification, name, priority, period,
deadline, worst-case execution time (WCET), and best-case
execution time (BCET). In addition, this primitive assigns
the task to the scheduler that attributes idle as the initial task
state.

Several others standard RTOS primitives are included in
the model like as task notify (sc_task_notify), task
termination (sc_task_end), and task suspension
(sc_task_wait). To model periodic tasks, we introduced the
sc_task_end_cycle primitive. This primitive notifies the
scheduler that a task finished its computation in the current
cycle. Figure 2 presents a partial source code example of
task modeling. The system sys_ex is initialized (line 2) and
executed by 100,000 ns (line 4). We have two tasks: t1 and
t2 (lines 8 and 10). The task t1 is created with the following
parameters: identification = id1, name = t1, priority = 1,
period = 80, WCET = 14, BCET = 8, and deadline = 30.
The task t1 is assigned to the scheduler in line 9. The RTOS
scheduler is initialized with time slice (line 13). Tasks are
derived of PosixThread class (line 16).

1. int sc_main(int argc, char *argv[]) {
2. system sys_ex("System example");
3. ...
4. sc_start(100000, SC_NS);
5. }

6. class system : public sc_rtos {
7. system(sc_module_name name) : sc_rtos(name) {
8. task t1 = new task(id1, "t1", 1, 80, 14, 8, 30);
9. sc_task_create(t1);
10. task t2 = new task(id2, "t2", 3, 60, 12, 11, 25);
11. sc_task_create(t2);
12. ...
13. sc_rtos_init(1);
14. }
15. };

16. class task: public PosixThread, public sc_module {
17. task(id, "task_name", priority, period, wcet, bcet, deadline) :
18. sc_module("task_name") {
19. ...
20. }
21. run() {
22. while(true) {
23. // task behavior pointed by id
24. sc_rtos_end_cycle();
25. }
26. };

Figure 2: Task modeling

4.2 Scheduler Model

At the system level we are not interested in the exact task
functionality, but rather how long it takes to compute and
the tasks interactions. From this point of view, the first task
of the RTOS is to determine which process runs next, e.g. to
decide the tasks execution order. Task management,
performed by scheduler, is the most important function in
the RTOS model. Our scheduler model considers that all
tasks are independent threads. Hierarchical tasks need to be
flatted. Each task is characterized by deadline, period,
priority, WCET, and BCET. Moreover, a task may be
preempted by a higher priority task.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

The scheduler model considers that a task can be in one
of three basic scheduling states: ready, execute or idle [6],
as is depicted in Figure 3. There is at most one task
executing at any time. If there is no useful work to be done,
just the schedule task works. Our model considers that all
tasks are in the idle state at the beginning (sc_task_create).
The task stays in idle state while it does not enter in a new
period or while it needs data that is not yet received. A task
goes into the ready state when it receives the required data,
when it enters in a new period or when it is preempted by a
higher priority task. When a task is preempted
(sc_rtos_task_suspend) it waits for a resume command
from the scheduler (sc_task_resume). A task can go into the
execute state when it receives a run command from the
scheduler. The task will receive this command only when it
has all data required, is ready to run, and the scheduler
selects the task as the next task to run. Once the task has
finished its computation in the current cycle, it sends a
message to the scheduler (sc_task_end_cycle) and goes to
the idle state. The task also goes to the idle state when it
requests a data that is not available. Otherwise, when non-
periodic task finished its execution, it sends a terminate
message to the scheduler (sc_task_end). In this case, the
scheduler kills the task (sc_rtos_task_kill).

Ti preempted

Ti chose to run

Ti gets data
Ti needs data,
Ti end cycle

Ti received data,
Ti new period

Idle

Execute Ready

Initial state

Figure 3: Scheduling state of tasks

The scheduler is modeled as a SystemC thread process
(sc_thread) that runs continually. In case of a task goes to
the idle or ready states, the scheduler selects among the
ready tasks, a candidate task to run, according to scheduler
algorithm. However, if there is not a candidate task (ready
list is empty), the scheduler just waits until a ready task is
available. For instance, our scheduler implements FCFS,
Round Robin, Rate-Monotonic (RM) and Earliest Deadline
First (EDF) scheduling algorithms [20].

4.3 Synchronization Model

RTOS synchronization model provides services to
synchronize concurrent and cooperative tasks, supporting
mechanisms that handle inter-processor and intra-processor
synchronization problems. Our model offers two primitives:
sc_task_wait and sc_task_notify.

The sc_task_wait calls causes current task to wait until
another task invokes the sc_task_notify primitive or a

specified amount of time has elapsed. When it happens the
task goes to the idle state being inserted into a wait task list
and becomes disabled for scheduling purposes. The
sc_task_notify calls wakes up a single task that is waiting
for data synchronization.

When tasks execute input/output operations, like
send/receive the tasks need to notify the RTOS scheduler.
We implemented this notification by the use of these two
primitives. An abstract receive operation is implemented on
lower levels as a receive function aggregated to
sc_task_wait call, meaning that the task is waiting for input
data. An abstract send operation is implemented on lower
abstraction levels as a send function aggregated to
sc_task_notify call. The sc_task_notify allows to scheduler
wake up the tasks that are waiting for the sent data.

5 Case Study

We use our design flow to redesign a telecom system in
context of industry/academy cooperation. The system is a
digital private branch exchange (PBX) whose commercial
name is XT-130. The PBX is a soft real-time system [6].
The industry goal is to aggregate new important feature, as
voice over IP (VOIP), without losing time redesign all
telecom product line. The main trouble is that all telecom
system was ad hoc designed to support real-time
requirements; generating a monolithic system, where
application and operating system are strongly coupled. To
aggregate new feature without much effort it is necessary to
use an OS that supports the actual and new features, which
is generally found in modular designs. However, monolithic
to modular design swap can imply functionality reduction,
mainly to real-time functions, implying many design
evaluating time, reducing the industry profits and many
times resulting market losses. As a solution, we proposed
our approach that enables fast evaluations at earlier design
stages.

The PBX is a complex system composed by more than
fifty processes, with four priority levels. Twenty percent of
these processes have real-time requirements. Since much
code is developed in C/C++ and assembly, we proposed a
partitioning where system processes are divided as follows:
92% software elements; 6% assembly routines (treated in
our design flow as IP components); and 2% hardware
elements. The hardware parts are mapped into Altera
FLEX-10KE FPGA. The software elements are grouped in
clusters (Section 3). IP modules and software clusters are
mapped into AM186ES (AMD 80186) microprocessor and
ADSP2185M (Analog Devices) DSP. For each processor a
small custom RTOS kernel was generated and the system
description was refined and targeted to the architecture
using the design flow described in Figure 1. In

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

communication synthesis step we chose shared memory for
processors communication, and rendezvous protocol for
FPGA and microprocessor communication. There is no
communication between FPGA and DSP processes.

There were some doubts to be solved, firstly if the new
RTOS approach fulfilled all real-time constraints, secondly
if the RTOS code size was acceptable, since memory was a
strong design constraint. These doubts were answered by
the RTOS code compilation and by the TL/RTL simulation.
Table 1 depicts the code size achieved for RTOS and the
rest of application for both processors.

Table 1: Code size comparison (in bytes)

 AM186ES DSP
C/C++ 457,976 16,356
Assembly 22,233 27,453
Scheduling algorithm 7,456 2,489

Test-bench vectors, extracted from real PBX operation
during high activity (ten minutes of operation time), excited
the PBX description during RTL simulation and
cosimulation phases. The three AM186ES simulations,
illustrated in Table 2, show the advantages achieved by high
description levels.

We use profile techniques, with the test-bench vectors, to
estimate the WCET and the BCET of each process, these
times are entry of each process in TL simulation. Therefore,
WCET, BCET and the execution period replaces the
process behavior, allowing faster simulation with
reasonable accuracy, as RTL simulation confirms. For TL
and RTL simulation, the rest of the systems is considered as
test-bench, on the other hand, the cosimulation considers
the joint operation of three simulators (two C/C++
simulators and one VHDL simulator).

Table 2: AM186ES simulation analysis

Simulation time
TL-simulation 16min
RTL-simulation 6h 15min
Cosimulation 98h 43min

At TL it was possible to observe that RM scheduling
achieved the smallest number of context switches, as it is
depicted in Table 3. Table 3 also shows the number of times
that the real-time processes that did not achieve theirs
deadline in TL simulation, needing to be delayed. EDF
scheduling acquired the best result. Considering context
switching, real-time deadline and the low algorithm
complexity, we chose RM as the scheduler policy for
AM186ES operation. The majority of DSP tasks are time
slices scheduled by a timer interrupt. Nevertheless, some
tasks with less priority are Round-robin scheduled by a
small custom RTOS kernel, with less than 3 Kbytes (Table
1). The total size of AM186ES RTOS is three times bigger

than the ADSP2185M, due to other included features, like
memory management.

Table 3: AM186ES scheduling analysis

Scheduling Context switches RT constraints fail
Round-robin 465,577 97
EDF 490,254 3
RM 402,239 5

Actually, we are studying the possibility of replacing our
custom RTOS by RtLinux open source. This decision is
motivated to allow the evaluation of the RTOS IP branch in
our design flow. The great challenge is to maintain
AM186ES processor, which addresses only 1 Mbyte of
memory.

6 Conclusions and Future Work

This paper addresses the issue of modeling abstract
RTOS at higher abstraction levels. We presented an abstract
RTOS model and a set of refinements steps that allows
refining the abstract model to an implementation model at
lower abstraction levels. The model allows the designer to
evaluate quickly different scheduling algorithms and
synchronization mechanisms at early design phases in order
to validate the dynamic real-time behavior of the system.
Additionally, the designer can have an estimated power
consumption of the scheduling algorithms and its penalty in
the overall system. The proposed abstract model provides
all main features found in any modern RTOS but not
available in current SystemC language through a reduce set
of system calls. We apply this model in the development of
a PBX system composed of fifty tasks with four priority
levels and real-time requirements.

Future work includes implementing the RTOS interfaces
for commercial real-time operational systems and new
techniques to power estimation at higher abstraction levels.

7 Acknowledgement

This work is sponsored by CNPq/Brazil contract #
300291/2003-5.

References

[1] International Technology Working Group: International
Technology Roadmap for Semiconductors 2001 Edition: Ex-
ecutive Summary. Semiconductor Industry Association,
2001.

[2] Grotker, T.; Liao, S.; Martin, G. and Swan, S.: System Design
with SystemC. Kluwer Academic Publishers, 2002.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

[3] Cai, L.; Gajski, D. Transaction Level Modeling: An over-
view. In Proceedings of CODES+ISSS, pp. 19-24, Newport
Beach, California, USA, October 2003

[4] Synopsys Inc.: SystemC Version 2.0 Users Guide. 2003.
Available at: www.systemc.org.

[5] Butazzo, G.: Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1999.

[6] Wolf, W.: Computer as Components: Principles of Embed-
ded Computing System Design. Morgan Kaufmann, 2000.

[7] Kohout, P.; Ganesh, B.; Jacob, B.: Hardware Support for
Real-time Operating Systems. In Proceedings of
CODES+ISSS, pp. 45-51, Newport Beach, California, USA,
October 2003.

[8] Adomat, J.; Furunäs, J.; Lindh, L.; Stärner, J. Real-Time
Kernel in Hardware RTU: A step towards deterministic and
high performance real-time systems. In Proceedings of 8th
Euromicro Workshop on Real-Time Systems, L’Aquila, Italy,
pp. 164-168, June 1996.

[9] Wang, S.; Malik, S.: Synthesizing Operating System Based
Device Drivers in Embedded Systems. In Proceedings of
CODES+ISSS, pp. 37-44, Newport Beach, California, USA,
October 2003.

[10] O’Nil, M.; Jantash, A.: Device Driver and DMA Controller
Synthesis from HW/SW Communication protocol
specifications. Design Automation for Embedded Systems,
vol. 6, pp.177-205, 2001.

[11] Yi, Y.; Kim, D.; Ha, S.: Virtual Synchronization Technique
with OS Modeling for Fast and Time-accurate Cosimulation.
In Proceedings of CODES+ISSS, pp. 1-6, Newport Beach,
California, USA, October 2003.

[12] Cortadella, J.: Task generation and compile time scheduling
for mixed data-control embedded software. In Proceedings
of Design Automation Conference, June 2000.

[13] Gauthier, L.; Yoo, S.; Jerraya, A.: Automatic generation and
targeting of application-specific operating systems and
embedded system software. IEEE Transaction on CAD,
November 2001.

[14] Dziri, M.; Samet, F.; Wagner, F.; Cesario, W.; Jerraya, A.:
Combining Architecture Exploration and a Path to
Implementation to Build a Complete SoC Design Flow from
System Specification to RTL. In Proceedings of ASP-DAC,
pp. 219-224, Kitakyushu, Japan, January 2003.

[15] Tomiyama, H.; Cao, Y.; Murakami, K.: Modeling fixed-
priority preemptive multi-task systems in SpecC. In
Proceedings of SASIMI, October 2001.

[16] SpecC. Available at: www.specc.org.

[17] Desmet, D.; Verkest, D.; DeMan, H.: Operating System
based Software Generation for System-on-Chip. In
Proceedings of Design Automation Conference, June 2000.

[18] Gonzales, M.; Madsen, J.: Abstract RTOS Modeling for
Multiprocessor System-on-Chip. In Proceedings of
International Symposium on SoC, 2003.

[19] Gerstlauer, A.; Yu, H.; Gajski, D.: RTOS Modeling for
System Level Design. In Proceedings of DATE, March 2003.

[20] Silberschatz, A.; Galvin,P.: Operating System Concepts.
John Wiley & Sons Inc., 2000.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 14:22:00 UTC from IEEE Xplore. Restrictions apply.

	footer1:

