
Time and Energy Efficient Mapping of Embedded Applications onto NoCs

César Marcon, André Borin, Altamiro Susin, Luigi Carro, Flávio Wagner
Instituto de Informática – UFRGS – Av. Bento Gonçalves, 9500, Porto Alegre, RS – Brazil

{marcon, borin, flavio}@inf.ufrgs.br, {susin, carro}@eletro.ufrgs.br

Abstract - This work analyzes the mapping of applications onto
generic regular Networks-on-Chip (NoCs). Cores must be placed
considering communication requirements, so as to minimize the
overall application execution time and energy consumption. We
expand previous mapping strategies by taking into consideration
the dynamic behavior of the target application and thus potential
contentions in the intercommunication of the cores.
Experimental results for a suite of 22 benchmarks and various
NoC sizes show that a 42% average reduction in the execution
time of the mapped application can be obtained, together with a
21% average reduction in the total energy consumption for state-
of-the-art technologies.

1. Introduction
New technologies allow many millions of transistors

integrated onto a single chip and thus the implementation of
complex systems-on-chip (SoC) that need special
communication resources to handle very tight design
requirements. In addition, deep sub-micron effects pose
formidable physical design challenges for long wires and
global on-chip communication. Many designers propose to
change the full synchronous design paradigm to a global
asynchronous and local synchronous (GALS) design
paradigm [1]. GALS design subdivides the application into
sub-applications. Each sub-application is a synchronous
design physically placed inside a tile, and the communication
between tiles is provided by an asynchronous communication
resource. A network-on-chip (NoC) is an infrastructure
essentially composed by a set of routers interconnected by
communication channels. A NoC is suitable to deal with the
GALS paradigm, since it provides asynchronous
communication, high scalability, reusability, reliability, and
efficient energy consumption [2].

An application composed by a set of existing cores, such
as processors and memories together with their
communication channels, must be mapped onto a physical
network structure. To fulfill this goal, many mapping
strategies have been proposed, which look for an ideal
placement of the cores. For instance, in [3] and [4] a model
based on a weighted graph reflecting the communication
capacity of each channel is used. However, previously
published approaches tend to overestimate the channel
occupation, thus requiring extra bandwidth to ensure that all
communications are performed within the allocated time. The
overall effect is a major increase in the energy consumption.
In addition, models like the ones presented in [3] and [4],
which are based on weighted graph, are appropriated to model
applications where the communication need is estimated in
advance and not during the application execution. Hence, a
conservative approach must be taken by the designer
regarding bandwidth requirements, increasing the energy
consumption of the NoC.

In this paper we introduce a new model, called CDM,
which captures the dynamic behavior of the messages of an
application. This new model allows a CAD tool to take into
account the varying necessity of bandwidth along the
execution of an application and hence helps reduce the total
energy consumption of the system. Comparing our approach
with previous published work, we achieve an average
reduction of 42% in application execution time, at the same
time reducing the total energy consumption of the system by
21% for state-of-the-art technologies, for a suite of 22
benchmarks and various NoC sizes.

The remaining of this paper is organized as follows.
Section 2 discusses previous work related to the application-
mapping problem. Section 3 describes our target architecture.
Section 4 explains the mapping strategy to reduce the
application execution time and the energy consumption on the
target architecture. Section 5 presents experimental results,
and Section 6 draws final conclusions.

2. Related Work
Hu and Marculescu [3] propose a mapping approach

called communication weighted model (CWM), based on an
application characterization graph (APCG), where the weight
of a channel corresponds to the bit volume of the messages
transmitted over this channel. With this model, they show that
it is possible to reduce the energy consumption by more than
60%, when compared to ad-hoc mapping solutions.

Murali and De Micheli [4] implement a similar solution.
Their CWM is also characterized by an application graph,
which they call core graph. Their algorithm maps cores onto a
mesh NoC architecture under bandwidth constraints, with the
goal of minimizing the average communication delay.

Ye, Benini and De Micheli [5] propose a model to
evaluate the energy consumption in a communication
infrastructure considering switches, internal buffers, and
interconnect wires. The same authors, in [6], describe the
contention problem in NoCs and the associated performance
reduction. They recommend a solution employing a routing
algorithm that minimizes the energy consumption, because
the required buffers in the network are reduced.

In all approaches that use the CWM strategy, essential
information regarding the exact time instant at which
messages are exchanged is lost.

We have developed experimental work that shows that for
embedded applications and random benchmarks this
information cannot be neglected. By not considering the
varying nature of the communication bandwidth requirements
along the execution of an application, the mapping algorithm
can produce solutions that require in average 40% more

 33

1B-2

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

execution time than a minimal solution. On the other hand, by
introducing the communication bandwidth variability in the
model, our tool can reduce both the application execution
time and the energy consumption.

Our approach is based on a communication dependence
model (CDM), where the application graph transports the
knowledge of dependences between messages. The placement
of the cores onto the NoC is based on this extra information,
relating the amount of bits to be transmitted with the moment
when the communication must take place. Moreover, the
energy model presented in [5] is extended to consider static
energy consumption, which is very relevant in new sub-
micron technologies. This work assumes that application tasks
are previously partitioned and assigned into a set of cores.

3. Target Architecture Description
Mapping approaches such as CDM and CWM are useful

for all communication infrastructures where mappings may
affect the overall performance, like hierarchical busses and
NoCs. This paper approaches only NoCs as target
architecture, with a 2D-mesh topology and composed by ϕ ×
ω tiles. Figure 1 depicts that each tile τ contains a router r and
a core c.

 ω

ϕ

r1,1

c1,1

τ1
r2,1

c2,1

τ2
rϕ,1

cϕ,1

τϕ

r1,2

c1,2

τϕ+1
r2,2

c2,2

τϕ+2
rϕ,2

cϕ,2

τ2.ϕ

r1,ω

c1,ω

τ (ω-1).ϕ+1
r2,ω

c2,ω

τ (ω-1).ϕ+2
rϕ,ω

cϕ,ω

τω.ϕ
Figure 1 – Schematic of the target architecture

Tile-based architectures require the implementation of
routing algorithms to transmit packets across the network.
Routing algorithms can be divided into two classes:
deterministic and adaptive. Deterministic routing algorithms
completely specify the path from the position of the source
tile to the position of the target tile. In adaptive routing
algorithms, the possible paths depend on the network traffic.
Adaptive routing algorithms increase the number of possible
paths and require more resources because of their complexity.
Therefore, we decided to choose the deterministic XY routing
algorithm, which is free from deadlocks and livelocks and still
route with minimal path [7]. Other works also use the same
routing policy, like in [3] and [4], so that the comparison with
our work may be based on the same ground rules. The
algorithm behavior can be summarized in two steps: (i) first,
packets are routed along the X-axis until they reach the target
tile column; (ii) packets are then routed along the Y-axis until
they reach the target tile row.

4. Problem Formulation
The problem of mapping application cores onto NoCs is a

complex one. The designer splits the application tasks into
cores. Each core has given computation and communication
requirements, which can be obtained through simulation and
profiling techniques. To better understand the mapping
application problem, we present three definitions.
Definition 1: A communication weighted graph is a directed
graph CWG = <C, M>, where C = {c1, c2, …, cn} represents
the set of application cores, corresponding to the set of CWG
vertices. Let Wij be the weight that corresponds to the bit
volume of all messages exchanged between cores ci and cj,
then the set M = {(ci, cj, Wij) | ci, cj ∈ C} symbolizes the traffic
volume of all messages between all application cores. CWG
has an equivalent definition to APCG [3] and core graph [4].
Definition 2: A communication dependence graph is a
directed graph CDG = <V, D>. Let vq = (ca, cb, wab) be the q-th
message from core ca to core cb with bit volume wab.
V = {v1, v2, …, vk} denotes the set of all messages between all
application cores and correspond to the set of CDG vertices,
and D = {(vi, vj) | vi, vj ∈ V} represents the set of message
dependences, corresponding to the set of CDG edges. Edges
are non-valued, and the edge direction means message
dependence.
Definition 3: A communication resource graph is a directed
graph CRG = <Γ, L>, where Γ = {τ1, τ2, …, τp} denotes the
set of tiles, corresponding to the set of CRG vertices, and
L = {(τi, τj) | τi, τj ∈ Γ} designates the set of routing paths
between tiles, corresponding to the set of CRG edges. p is the
total number of tiles and is equal to ϕ × ω (Figure 1). CRG
has an equivalent definition to the architecture
characterization graph [3] and to the NoC topology graph [4].

The CDM approach implies the extraction of message
dependence from the application cores. This means that all
messages are relatively ordered by their dependences. On the
other hand, the CWM approach does not take the
communication ordering into consideration. Only the volume
of bits exchanged between cores is considered in the CWG
[3][4]. As a consequence, CWM cannot prevent contentions,
thus disabling the precise estimation of the application
execution time, and require a conservative approach,
increasing bandwidth requirements and hence energy
consumption.

 Start

End

D → A
30

A → C
50

C → D
25

(a)

(c)

(b)

A B

C D

45 30

40

25 C → A
45

A → B
40

B A

D C

A → D
35

35 50

Figure 2 – CDG (a), CWG (b) and CRG (c) examples

To a better understanding of these concepts, Figure 2
depicts the CDG of a hypothetical example, where four cores
C = {A, B, C, D} exchange six messages with communication
rates between 25 and 50 units. Figure 2(a) shows the CDG,
which highlights the message interdependences. Figure 2(b)

 34

shows the equivalent CWG, and Figure 2(c) portrays a CRG
where C is arbitrarily mapped onto a 2x2 NoC. Since the set
of CDG vertices contains information of all messages and
cores, CWG can be obtained from CDG.

4.1 Energy Model
The energy consumption of the application is originated

from both cores and network operation. This work focuses
only on NoC energy consumption and presents a model to
estimate dynamic and static energy consumption. This energy
model is used as an objective function to evaluate the cost of
each mapping. It is important to notice that the consumption
of the cores is independent of the mapping, as this is the same
assumption also found in [3][4].

Static energy consumption is mainly originated from
subthreshold leakage current and is proportional to application
execution time and the number of gates. Usually, static energy
contributes with the smallest part of total energy consumption.
However, for sub-micron technologies, the leakage current
cannot be neglected, and the static energy becomes a
meaningful part of total energy consumption, reaching up to
20% in state-of-the-art technologies [8]. Dynamic energy
consumption is proportional to switching activity, which
happens when packets move across the NoC dissipating
energy inside each router and on the router interconnection
wires.

Our energy model computes static and dynamic power
dissipation to estimate the total energy consumption of the
NoC. This work uses an approach similar to the one presented
in [3] and [4] and extends the concepts to static energy
consumption. We use the same concept of bit energy Ebit to
estimate the dynamic energy consumption for each bit when
the bit flips its polarity from the previous value. Ebit is split
onto dynamic energy EWbit consumed on the switch wires,
dynamic energy EBbit consumed on the buffers, dynamic
energy ESbit consumed on the logic gates of each switch, and
dynamic energy ELbit consumed on the links between tiles, as
described in equation 1.
(1) Ebit = EWbit + EBbit + ESbit + ELbit

EBbit, ESbit and EWbit model the total energy consumed by a
bit passing through a router. EBbit depends on the buffer size
and technology to estimate how many bit flips occur to write,
read, and preserve the information. When technology and
routing policy are defined, EBbit and ESbit can be estimated by
electrical simulation. For regular mesh NoCs, with square
dimension tiles, it is reasonable to estimate that ELbit is the
same for all NoC interconnections. While ELbit is directly
proportional to tile dimension, EWbit becomes negligible for
large tiles, since EWbit does not depend on the increase of tile
size. This makes equation 2 a reasonable estimation for bit
dynamic energy consumption.
(2) Ebit = EBbit + ESbit + ELbit

Equation 3 computes the dynamic energy consumed on the
NoC by a bit traffic from core ci to cj, where η corresponds to
the number of routers that the bit goes through.

(3) jcic
bit

,
E = η (ESbit + EBbit) + (η - 1) ELbit

Let λq be the bit volume of each message vq ∈ V. Then,

qv
bitE = λq × jcic

bit
,

E | (ci, cj) ∈ vq.

Equation 4 gives the total amount of NoC dynamic energy
consumption EDyNoC, which considers all bit flips during the
transmission of messages across the NoC.

(4) EDyNoC = ∑
=

k

0q

qv
bitE

The static power consumption of each router PSRouter is
proportional to the number of powered elements, with a very
small influence of switching activity. With p representing the
number of tiles, equation 5 computes the NoC static power
consumption PStNoC.
(5) PStNoC = p × PSRouter

Static energy consumption is proportional to the total
number of gates dissipating static power and to the execution
time texec. Thus, equation 6 computes NoC static energy
consumption EStNoC.
(6) EStNoC = PStNoC × texec

Finally, equation 7 gives the total NoC energy
consumption ENoC, which computes the consumption of static
and dynamic energies.
(7) ENoC = EStNoC + EDyNoC

With the objective of inserting the energy parameters into
the CDM and CWM approaches, a NoC was described and
synthesized to a 0.35micron TSMC ASIC standard cell
library. The synthesis result is a netlist of cells. The
manufacturer supplies energy values for the standard cell
library, allowing the extraction of ESbit, EBbit, ELbit, and PSRouter
parameters. These parameters are independent from
application and NoC dimension. On the other hand, p and texec
are application-dependent parameters. The execution time texec
is measured in clock cycles, considering a 100 MHz operation
frequency, and p is greater or equal to the number of cores in
the application.

4.2 Comparing Communication Algorithms
As both communication weighted algorithms (CWAs) and

communication dependence algorithms (CDAs) implement
solutions for NP-complete problems [3][4], we have used a
simulated annealing search method to reach the best mapping
solutions in both cases. Moreover, we have also implemented
exhaustive search methods, so that we could compare the
quality of the solution.

For both modeling approaches the algorithms start from an
initial mapping, evaluate the mapping cost, and search for a
new mapping that reduces the previous cost until reaching a
stop condition. CRG edges and vertices represent
communication resources: links and routers, respectively. For
both algorithms, cost variables are associated to each CRG

 35

edge and vertex to store the corresponding part of the
mapping cost. The mapping objective function is defined as
the sum of all cost variables of CRG edges and vertices. The
CWA and CDA objective functions are not the same. While
CWA searches only for mappings that reduce the dynamic
energy consumption, as it is described in equation 4, CDA
also evaluates static energy consumption, which is
proportional to execution time, as it is described in equation 7.
As a result, CDA indirectly searches for mappings that reduce
the overall execution time.

The initial mapping of CDA or CWA is selected by
randomly associating application graphs (CWG or CDG) with
CRG; i.e. all cores ∈ C are randomly mapped onto a possible
tile ∈ Γ. To compute the mapping objective function, all cost
variables of CRG edges and vertices are initially reset.

Let tiles τi and τj be mappings of cores ca and cb,
respectively. For CWA, all bits of the communication channel
(ca, cb), represented by Wab, are associated to the
correspondent cost variable of vertices and edges of CRG,
starting from τi, following the XY routing algorithm and
ending in τj. The cost variable of each CRG edge computes
the dynamic energy of a link by multiplying Wab by ELbit, and
the cost variable of each CRG vertex computes the dynamic
energy of a router by multiplying Wab by ESbit + EBbit. The sum
of all cost variables of CRG results in the total dynamic
energy EDyNoC, for a given mapping. The goal of CWA is to
find mappings that reduce EDyNoC. EStNoC is not computed
because this model is inappropriate to capture the time taken
by the whole application.

While CWG considers only the communication volume,
CDM captures the message dependences. Messages that have
producer-consumer precedence can not be concurrent.
However, temporally independent messages can occur at the
same time and may consequently lead to package contention.
To obtain benefits from this time notion, to each edge and
vertex of CRG a cost variable list is associated, where each
list position contains the energy sum of all independent
messages that share the same communication resource. The
algorithm considers the worst case, i.e. all independent
messages that share the same communication resource
produce contention. The message contention implies a larger
application execution time texec and consequently more static
energy dissipation EStNoC. Therefore, CDA minimizes the
probability of contentions by searching core mappings that
spread the messages over parallel links.

The total delay of messages depends on the mapping, on
the bandwidth, and on the number of bits. The algorithm
computes the total delay of messages by adding the message
delay only when messages are dependent from each other or
when independent messages occupy the same communication
resource. With the total delay of messages we apply equation
6 to obtain EStNoC. Similarly to CWA, for CDA all bits of the
message vc = (ca, cb, wab), represented by wab, are associated to
the correspondent vertices and edges of CRG, starting from τi,
following the XY routing algorithm, and ending in τj. The
cost variable list of a CRG edge computes the dynamic energy
of a link, in a given period, by multiplying wab by ELbit. The

cost variable list of a CRG vertex computes the dynamic
energy of a router, in a given time period, by multiplying wab
by ESbit + EBbit. The sum of all cost variables of CRG results in
the total dynamic energy EDyNoC, for a given mapping. CDA
uses equation 7 as an objective function to evaluate the
mapping cost. The goal of the CDM algorithm is to find
mappings that minimize ENoC.

If the mapping cost achieved with a new mapping is
smaller than the one previously stored, the current mapping
and cost are saved for further comparison. Simulated
annealing may accept worse mappings, depending on the
temperature, which is a convergence parameter of the
algorithm. While the stop condition has not yet been reached,
a new mapping is randomly chosen, and the cost is evaluated
again. While simulated annealing considers parameters as
initial temperature and number of iterations, the stop
condition for an exhaustive search requires the evaluation of
all mappings.

In embedded applications like the graphical ones used in
this work, the number of messages between cores is much
larger than the number of cores. Since each vertex of CDG
represents a message between two cores and each vertex of
CWG represents a core, CDGs are larger than CWGs,
implying more CPU time and more data storage area for the
algorithm execution. A comparison between CDA and CWA
is presented in Section 5.

4.3 Comparing Communication Models
The main advantages of CWM are (i) easy extraction of

the application core graph (CWG), since this can be done by
simulation techniques; (ii) low computational complexity; and
(iii) the accurate estimation of EDyNoC, since dynamic energy
may be well computed by the total bit traffic in the NoC. On
the other hand, the extraction of CDG is hard to be
automatically obtained, since simulation allows the extraction
of the possible message ordering, but not the message
dependences. This implies that CDGs have to be described in
design time by hand, and this is an error prone task. The
greater complexity of CDM directly reflects in the complexity
of the algorithm to deal with it, which increases the
computation time and the memory usage. However, CDM
captures both the bit volume, which allows computing the
value of EDyNoC, and the message ordering, which allows
estimating the instants of time when more than one message
can pass through the same link, and consequently avoiding
such occurrence by a better core mapping. Such approach is
pessimistic, since not all communications that can occur
concurrently will happen concurrently. Even so, the overall
application performance tends to increase, if potential
contentions were avoided.

The global communication behavior of a certain
application can be expressed as a function of start of
transmission times, bit volume, and transmission rate of each
message. For many applications, the exact determination of
communication needs at design time may not be possible,
since it depends on the specific input data that can only be
available at runtime. These data have an important influence

 36

on the bit volume of messages and less or no influence on
other parameters. The order in which messages are
transmitted is usually not changed, since it depends on the
algorithm executed by the application, which is usually fixed
in embedded systems. Since CDM models the dependency
between messages, a feature not available in CWM, it allows
evaluating the potential for contention among dependent
messages, even without the precise knowledge of the exact bit
volume for each message. This capacity enables to find
mappings that further reduce energy consumption and
execution time. Simultaneously, it makes CDM less sensitive
to input data variations at runtime, as it will be shown in the
next section.

4.4 Problem Illustration
This section illustrates the application of the CDM and

CWM approaches with the same hypothetical example of
Figure 2, where two mappings imply different execution times
and energy consumptions. It is also shown that CWM is not
suitable to capture such differences, since this model
computes the same energy consumption for both mappings.

Energy consumption = 805 × 10-12J
 B

C A

D

160

0

40

90

60

90

225
70

30

0

0

40

 A

C B

D

120

45

200

0

25

130

65
25

40

75

30

50

(a) (b)

Figure 3 – Two mappings with energy estimated by CWA

Figure 3 illustrates two mappings of the example shown in
Figure 2. Just for illustration purposes, this example assumes
that ESbit + EBbit = ELbit = 1. 10-12 J. Each vertex and edge of
CRG is annotated with its total amount of energy
consumption. As CWM cannot capture contention problems,
CWA estimates that both mappings consume the same energy
(805 × 10-12 J).

Figure 4 shows the same mappings of Figure 3, now
evaluated with CDM. Each edge and each input link of each
vertex is annotated with its energy at a given slice of time. For
instance, in Figure 4 (a) the tile corresponding to core D is
annotated with 35S1 and 25S1, which means that there are 2
messages with 35 and 25 bits, respectively. These two
messages are concurrent – see Figure 2(a) – and are annotated
in the cost variable list of vertex D. Both use the SOUTH (S)
link of core D (one from A to D and the other from C to D)
increasing the overall execution time of the application and,
consequently, the static energy EStNoC. Just for illustration
purposes, consider t the necessary number of clock cycles to
transfer one bit from one tile to its neighbor tile and
PStNoC = 1 10-12 J/t the power consumed by clock cycle. In this
case, the energy consumption and execution time are 2.7%
and 20% greater, respectively, when comparing mapping (a)
with mapping (b). These differences are only captured with
CDA. We emphasize that when the number of messages and

cores of the application increases these differences also
increase, as it will be shown in Section 5. The overhead in
performance requirements of CWA-like approaches is the
cause of extra power dissipation. In the experiments of the
next section we show that the CDM approach can remove this
overhead.

Energy = 955 × 10-12 J
Execution time = 150 t

Energy = 930 × 10-12 J
Execution time = 125 t

B

C A

D

25E1, 25L1

40S2

402, 503
30N1, 45E3

301

0

25L1

251, 452

35S1, 25S1
30L1

251, 351

0

402 0

45L2, 40W2
50N340L2, 50L3

A

C B

D

25E1

35L1, 30W1

0
40N2

402

351, 402

25L1

251

30L1, 25S1
35E1

251

301
45S2, 40L2
50L3

452 503

45L2

40E2

50N3

(a) (b)
Figure 4 – Mappings of the Figure 3 estimated by CDM

5. Experimental Results
Table 1 summarizes the characteristics of 22 applications

mapped onto 8 different NoC sizes (NS). There are 4
embedded applications (a distributed Romberg integration [9],
an 8-point Fast Fourier Transform [10], and 2 image
applications for object recognition and image encoding) with
some variations, in a total of 8 embedded applications. The
remaining applications are benchmarks randomly generated
by a proprietary system, which is similar to TGFF [11];
however, our system describes a benchmark by a CDG, which
represents message dependence and bit volume of each
message. The chosen application characteristics are: number
of cores (NC), number of messages between cores (NM), and
total amount of bit traffic during application execution (TBT).
NS is equivalent to the number of CRG vertices, NC
corresponds to the number of CWG vertices, and NM matches
the number of CDG vertices.

Table 1 – NoC dimensions and application characteristics

 NS NC NM TBT
2 x 2 3; 4; 4 15; 12; 23 213; 450; 23,234
3 x 2 5; 6; 6 43; 17; 43 78,817; 174; 49,003
2 x 4 7 33 23,235
3 x 3 7; 9; 9 16; 18; 32 1,600; 1,860; 43,120
2 x 5 8; 9; 10 24; 51; 22 2,215; 23,244; 322,221 R

an
do

m

be
nc

hm
ar

ks

3 x 4 11 62 123,337
3 x 2 5 16 1,600
2 x 4 5; 8 16; 18 1,600; 5,930
3 x 3 8 31 4,655,025
3 x 4 10; 12 15; 25 3,100; 2,578,920
8 x 8 62 344 9,799,200 Em

be
dd

ed

ap
pl

ic
at

io
ns

10 x 10 93 415 562,565,990

For each application, the best mapping achieved with
CWM is compared to the best mapping achieved with CDM.
Gains obtained with CDM when compared to CWM are
summarized in Table 2. ES represents evaluations obtained by
exhaustive search, while SA symbolizes evaluations obtained
with simulated annealing algorithm. ETR gives the average
execution time reduction, and ECS denotes the average

 37

energy consumption saving, for a given technology, when the
best mapping obtained with CDM is compared to the best one
obtained with CWM. ECS0.35 column refers to values obtained
from 0.35micron technology, and ECS0.07 column refers to
values obtained by scaling results from 0.35micron to
0.07micron [8].

Table 2 – Average energy consumption saving and execution
time reduction obtained from comparison of CWM and CDM

evaluations

 Algorithm NS ETR ECS0.07 ECS0.35
2 x 2 32 % 16 % 0,51 %
3 x 2 39 % 17 % 0,54 %
2 x 4 31 % 15 % 0,48 %
3 x 3 43 % 25 % 0,8 %
2 x 5 50 % 27 % 0,86 % R

an
do

m

be
nc

hm
ar

ks

ES / SA

3 x 4 47 % 25 % 0,8 %
3 x 2 39 % 17 % 0,54 %
2 x 4 31 % 15 % 0,48 %
3 x 3 43 % 25 % 0,8 % ES / SA

3 x 4 47 % 25 % 0,8 %
8 x 8 44 % 22 % 0,7 % Em

be
dd

ed

ap
pl

ic
at

io
ns

SA 10 x 10 51 % 28 % 0,89 %
 Total average 42 % 21 % 0,67 %

As seen in the ETR column, CDM results, in average, a
reduction of 42% of execution time when compared to CWM.
The ECS0.35 column illustrates a very small energy
consumption saving, since the static leakage current is not that
important for this technology generation. However, for sub-
micron technologies, where the static dissipation is more
relevant, there is a significant reduction in energy
consumption (21% in average), as we can see in column
ECS0.07. In addition, Table 2 shows a slight tendency of better
energy consumption savings and execution time reduction
when the NoC size increases. Finally, results obtained with
exhaustive search are very similar to the ones achieved with
simulated annealing. For all small NoCs (up to 3x4 or 2x5),
both algorithms reached the same results. For larger ones (8x8
and 10x10), it is not possible to find optimal mappings with
the exhaustive search within a reasonable computation time.

The mapping cost evaluation of CWA considers mainly
the number of links between cores. At the same time, the
number of messages has higher influence in CDA, because
messages cannot occupy the same link at the same time. This
leads the CWA computational complexity to be proportional
to the number of links (NL) and the CDA computational
complexity to be proportional to the number of messages
(NM). In embedded applications, NM may be much larger
than NL. However, the increase in CPU time with the increase
of the NM/NL ratio is practically linear and has a small slope.
In our experiments, the worst case of CDA took only 15%
more CPU time then CWA.

The main drawback of CDA is associated to the extra
memory to run the algorithm, since for CDA all vertex and
edges of CRG preserve a list of concurrent messages, while
CWA implies the use of only one data element for each vertex
and edge. In our experiments, the worst case of CDA took 26
times more memory than CWA.

6. Conclusions
This paper addressed the problem of mapping application

cores onto NoCs. A communication dependence model
(CDM) is introduced and compared to a communication
weighted model (CWM). We conclude that a mapping
algorithm that implements CDM is able to reduce some
application requirements, when compared to a mapping
algorithm that implements CWM. Experimental results show
an average reduction of 42% in the application execution
time. The CDM approach also reduces the energy
consumption. For instance, for a 0.07micron technology an
average of 21% in energy savings is achieved. This reduction
is obtained because CDM may avoid or, at least, reduce
message contention, while CWM may not. Moreover, to map
applications where the communication needs of each core are
not known at design time, CDA may also achieve mappings
that reduce the energy consumption and execution time, while
CWA may not. Algorithms that implement CDM present only
a moderate increase in the execution time when compared to
algorithms that implement CWM, with much better mapping
results.

References
[1] A. Iyer and D. Marculescu. Power and Performance

Evaluation of Globally Asynchronous Locally Synchronous
Processors. ISCA, pp. 158-168, May 2002.

[2] W. Dally and B. Towles. Route Packets, Not Wires: On-
Chip Interconnection Networks. DAC, pp. 648-689, June
2001.

[3] J. Hu and R. Marculescu. Energy-Aware Mapping for Tile-
based NoC Architectures Under Performance Constraints.
ASP-DAC, pp. 233-239, January 2003.

[4] S. Murali and G. De Micheli. Bandwidth-Constrained
Mapping of Cores onto NoC Architectures. DATE, pp. 896-
901, February 2004.

[5] T. Ye; L. Benini and G. De Micheli. Analysis of Power
Consumption on Switch Fabrics in Network Routers. DAC,
pp. 524-529, June 2002.

[6] T. Ye; L. Benini and G. De Micheli. Packetization and
routing analysis of on-chip multiprocessor networks.
Journal of Systems Architecture, vol. 50, issues 2-3, pp.
81-104, February 2004.

[7] C. Glass and L. Ni, The Turn Model for Adaptive Routing.
ISCA, pp. 278-287, May 1992.

[8] D. Duarte, N. Vijaykrishnan, M. Irwin, H-S Kim, G.
McFarland. Impact of Scaling on The Effectiveness of
Dynamic Power Reduction Schemes. ICCD, pp. 382-387,
September 2002.

[9] R. Burden and J. D. Faires. Study Guide for Numerical
Analysis, McGraw-Hill, New-York, 2001.

[10] M. Quinn. Parallel Computing- Theory and Practice,
McGraw-Hill, New-York, 1994.

[11] R. Dick, D. Rhodes and W. Wolf. TGFF: task graphs for
free. CODES/CASHE. pp.97–101, March 1998.

 38

